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1. Introduction. The stability of a linear delay-differential system with a 
point delay in its state has been studied in different works (Hmamed, 1985; 
Hmamed, 1986a; Hmamed 1986b; Mori, 1986; Bourles, 1987; Mori and 
Kokame, 1989; De la Sen, 1992a; De la Sen, 1992b). However, the main 
difficulty when dealing with delayed systems in the time-domain is the non 

availability of exact explicit solutions for any t > ° and the absence of direct 
stability tests of easy testing for such systems. If an exact explicit solution 
could be obtained for a delayed system for any t > 0, the study of its stability 
would become direct. In this note a simple general method to obtain such a 
solution is proposed, and an exact explicit solution for any t is provided for the 
linear scalar invariant case with one point-delay. 

In many works exact formulae for solving delayed systems have been given. 
The most general of those results can be found in De la Sen (1988). However, 
in the literature none of the exact given solutions for systems with state-delays 
is explicit. This means that the exact solutions always include a subsidiary 

delayed differential equation that is not directly solvable to compute the fun

damental matrix (De la Sen, 1988; Burton, 1985). Let us consider a first-order 

homogeneous and invariant linear differential system with one point delay in 

its state, as shown in the next equation: 

(1) 
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with initial conditions x(t) == 0 'Vt < 0; x(O) = rp(O) = xo, where ao, al E R* 
and h E R+. For t such that 0 ~ t < h system (1) is reduced to the non

delayed system x(t) = aox(t) with initial condition x(O) = Xo which can 

be solved as an ordinary first-order differential equation with a known forcing 

term in the case when rp(t) is nonzero on [-h,O), (Burton, 1985). Since the 

global stability is independent of the chosen initial conditions, it is sufficient 

the choice of rp(t) = 0 on [-h,O) with rp(O) = Xo to investigate the stability 

of (1). Again, note that for t such that h < t ~ 2h Eq. 1 becomes 

(2) 

Once again, it could be possible to solve (2) as an ordinary first-order 

differential equation with a known forcing term, and find an exact explicit 

solution cf;z(t) of xCi) fort such that h < t ~ 2h. By following successively 

this simple method, it would be possible to find the exact explicit solution for 

any interval. However, the problem is to find a general formula for the Tt term, 

and then to solve exactly and explicitly the delayed differential equation and 

then cheking directly its stability by using the above solution. This goal is 

pursued in the next section for a class of first-order linear delayed systems by 

following the so-called method of steps (Hale, 1977). 

2. Study of a class of first-order homogeneous linear systems with one 

point-delay. Let us consider a first-order homogeneous and invariant linear 

differential system with one point delay in its state, as shown in Eq. 1, subject 

to initial conditions x(t) == 0 'Vt < 0; x(O) = rp(O) = Xo, where ao, al E R* 
and h E R+. For t such that 0 ~ t < h system (1) is reduced to the non

delayed system x(t) = aox(t) with initial condition x(O) = Xo and with exact 

explicit solution cf;l(t) = xoeaot • For successive intervals is possible to apply 

the method described in Section 1. The exact explicit solutions for the second 

and third intervals are the following ones: 

For t such that h ~ t < 2h, 

(3) 

For t such that 2h ~ t < 3h, 

(t) - A. (t) _ aot [1 alh 2aih2 alt 2aiht aiT2 ] x - '1-'3 - xoe - -- + -- + -- - -- + --
eaoh e2aoh eaoh e2aoh 2e2aoh ' 

(4) 
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Define b = a1 e- aoh . After some simple algebraic manipulations, it is 

possible to rewrite (3) - (4) as follows. 

tP1(t) = xoeaot , 

tP2(t) = tP1(t) [1 + b(t - h)], 

<P3(t) = <PI(t) [1 + b [(t - h) + ~(t - 2h)2]]. 

It is seen below that the exact explicit solution for the n-th interval is 

(5) 

(6) 

(7) 

(8) 

This solution is formalized in the following main result whose proof is given 

by using complete induction in Appendix A. 

Theorem (Main result). Consider system (1). An exact explicit unique 

solution for that system on [0,00), subject to the initial conditions <p(t) = 

0, t E [-h,O), and <p(0) = x(O) = Xo, is built in closed-form by using 

truncated functions as follows 

00 

Q(t) = :L tPiT(t), all t ~ 0 (9) 
i=1 

subject to the initial conditions <p(t) = 0, t E [-h, 0), and <p(0) = x(O) = 
Xo, where 

tPIT(t) = xoeaot(U(t) - U(t - h»), (lOa) 

tPiT(t) = xoeaot (1 + I: ((t - kh)k IT (a1e~aOh))) 
k=l )=1 J 

X (U(t - (i - l)h) - U(t - ih») 

(=> tPiT(t) = 0 for t < (i - l)h. or t ~ ih) for i ~ 2, (lOb) 

where U(t) is the unity step function at t = O. 

Conditions for stability of system (1) could be directly obtained by taking 

the limit when n tends to infinity in Eq. 8. 
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Numerical example. Let us consider the following scalar delayed system 

x(i) = -6x(t) + x(t - 2), (11) 

with initial conditions x(t) == 0 'Vt < 0; x(O) = ip(O) = 3. For t such that 

o ~ i < 2 system (11) is reduced to the non-delayed system x(i) = -6x(i) 
with initial condition x (0) = 3 and with exact explicit solution 4; 1 (t) = 3e- 6t • 

For t such that 2 ~ i < 4, 

xCi) = 4;2(i) = 3e-6t [1 - e:12 + e~12 ], (12) 

and note that 4;1(2) = 4;2(2). According to the Theorem, the exact explicit 
solution for the n-th interval is 

( n-1( i (12))) cPn(t) = 3e- 6t 1 +?: (t - i2)i n ~ . 
.=1 ;=1 J 

(13) 

3. Conclusions. The simple method presented in this note has been used to 

find an explicit exact solution for a class of delay-differential systems with one 

point delay which does not depend on a time-delayed fundamental matrix. 

APPENDIX A. Proof of the main result by complete induction. For 

n = 1 (=} 0 ~ i < h), the proposed solution (9) and system (1) become, 
respectively, to 

Q(t) = 4;1T(i) = xoeaot(U(i) - U(t - h)) = xoeaOt = 4;1(t), (AI) 

xCi) = aox(t), x(O) = xo. ' (A2) 

For Tl = 2 (=} h ~ t < 2h), the proposed solution (9) and system (1) 

become, respectively, to 

. Q(t) = 4;1T(t) + 4;2T(t) = xoeaot [1 + ale-aoh(t - h)], (A3) 

x(t) = aOx(t)·f (114;1(t - h) = aox(i) + alxOeao(t-h). (A4) 

By direct substitution it can be seen that (AI) is a solution for (A2) and (A3) 

is a solutioIl for (A4). Therefore, the theorem is demonstrated for n = 1,2. Let 
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us suppose that the proposed solution (9) is valid for both n - 2 and for n - 1, 

this is, for (n - 3)h ~ t < (n - 2)h and for (n - 2)h ~ t < (n - l)h. Thus 

(A5) 

is a solution for system (1) for any t such that (n - 3)h ~ t < (n - 2)h and 

is a solution for system (1) for any t such that (11 - 2)h ~ t < (n - 1 )11. In 

particular, rP" -1 (t) must satisfy the state equation (1) for such interval: 

(A7) 

Note that, by differentiating rP,,-1(t), one obtains 

~n_1(t)=aOrPn_1(t)+xoeaot[~ (i(t-ih)i-1D (a1e~aOh) )]. (AS) 

Substitute (AS) in (A 7) to yield 

The proposed solution (9) for the n-th interval, (n -1)h ~ t < nh, becomes 

and therefore it must be demonstrated that (AlO) satisfies the state equation as 

follows 

(All) 
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Note that the right-hand side of (All) can be rewritten as 

By adding and substracting the left-hand and the right-hand sides of identity 

(A9) to (AI2) one obtains the next chain of identities 

= aOcPn(t) + xoeaot [Y: ((i - 1)(t - ih)i-1 IT (a1e~aOh ))] 
,=1 ;=1 J 

= ~n(t), (AI3) 
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and hence Eq. 9 satisfies (1) for any positive integer n and it is then a solution for 

(1) subject to initial conditions x(t) == 0 Vt < 0; x(O)cp(O) = Xo. The unicity 
follows from the fact that the right-hand side of (1) is globally Lipschitz (Burton, 

1985). Note also that the existing unicity of the solution is maintained if 

cp: [-h, 0] is any absolutely continuous function with possible isolated bounded 

steps (Burton, 1985). 
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