
INFOR.!V1ATICA, 1996, Vo!. 7, No. 3.389-405

ANALYSIS OF WELL-UNDERSTOOD DOMAIN FOR
SOFTWARE TOOLS BUILDING

Vytautas STUIKYS

Kaunas University of Technology
Student1.j 50, 3031 Kaunas, Lithuania
E-mail: vytas.stuikys@if.ktu.lt

Abstract. This paper presents the framework for well-understood domain analysis
as a decisive stage for the successive process of domain-specific software tools building.
Specific features of the well-understood domain analysis are fonnulated. Initial model of
the tools to be built and the analysis process are described. Analysis is performed with
the reusability concept in mind and as a result essential domain knowledge is extracted.
The latter is defined by a term "domain knowledge template".

Key words: domain analysis, reuse, VHDL, domain-specific program, program gen­
eration, knowledge template.

1. Introduction. Domain analysis is a widely discussed topic in the soft­
ware engineering area aiming to introduce the available framework for domain
knowledge extraction and it successive use in software systems building. The
benefit of this process can be significantly enhanced if its execution is performed

with the reuse concept in mind. By domain knowledge we mean domain assets,

i.e., components in the form of requirements, models, specifications, designs,

templates, source codes, etc. If these components are gained from a domain in

such a manner that their most general features and characteristics are defined
at the stage of the process performed, then this asset can be transferred to a

system designer and reused in the same software system or relative applications

of that domain.

Building of the tool or system is our aim. The tool should provide facilities

for domain specific program generation. By a domain specific program in

this context we mean the behavioural or/and structural description of electronic

hardware pieces in VHDL (VLSIC Hardware Description Language, IEEE std.,

1988, i.e., the standard high level language created on the ADA concept basis).

390 Analysis of well-understood domain for software tools building

Such a tool is called the domain-specific Program Generator (PG).

Our intention is to use the PG for experimental validation of some concepts

of the interactive program generation, and students teaching at the postgraduate

level as well. To build such a tool, the system designer is to have essential

knowledge about the domain concerned. We suppose that at the primary stage

an initial system model is to be built, i.e., initial requirements and specifications

introduced by a system analyst or transferred from the higher level (external)

system. Then additional detailed knowledge is to be extracted from the domain

through domain analysis (DA). As a result the more exact model is built.

In this context, DA is regarded as a key ingredient part of the system building

process. DA is not a trivial problem: various approaches and tools are proposed

for it solving. Our approach is orientated towards those aspects of the problem

which are related with DA when a domain can be treated as the well-understood

one. We will provide a more exact definition of this term later.

The content of this paper is as follows. The relevant papers related to our

work are analyzed briefly in Section 2. The main differences between analysis

of a domain and the well-understood domain are formulated in Section 3. The

initial system model is described in Section 4. The rest material presents the

details of our approach - the framework and the process for well-understood

DA with the main results gained from DA are presented in Sections 5 and 6,
respectively.

2. References related to our work. The references analyzed are categorized

into two groups: 1) those that are related to a program generation as an inde­

pendent problem; 2) those in which a program generation is dealt with in the

context of software reuse and domain analysis.

The main concepts presented in works of the first group are as follows. In

Teitelbaum and Reps (1981) the program synthesizer was described for gener­

ating programs in PUM from templates. The ATLAS program generator as a

menu-based system which produces test programs for the digital units under test

(UUT) was presented in Gross and Gerg (1983). The program generator's use

in modelling area was discussed and· some generalized concepts for Program

Generator building are proposed in Luker (1987). The papers (phelps, 1987;

Terry, 1987) deal with the program generating problem from the standpoint of

a commercial use. The various aspects of the knowledge-based approach for a

high-level language programming automation wa'! analyzed in Hindin (1986).

V. Stuikys 391

The domain - specific program generation and design in adapted ATLAS subset

for testing of the analogues UUT was described in Stuikys and Toldin (1989),

Stuikys and Toldin (1993), Stuikys (1993).

Papers of the second group have been widely discussed in numerous con­

ferences, workshops and special issues are published on this theme. Here we

present only those references which were analyzed during this paper prepara­

tion.

These papers are subdivided into two groups:

a) papers in which a direct relationship between a program generation and

software reuse can be found and estimated through the composition and
generative concept: Biggerstaff and Richter (1990), Griss (1993), Jarz­

abek (1995);

b) papers dealing with the approaches that correspond to the scheme -

"from domain analysis to program generation through reuse concept":

Yin, et a!., (1987), Prieto-Diaz (1990a, 1990b), Iscoe (1990), Lubars
(1990), Isco (1991), Maiden and Sutcliffe (1992, 1993 a, 1993 b),

Kanapeckas et ai, (1995).

'The domain knowledge analyzed can be found in: Arrnstrong (1992), IEEE
Standard ATLAS (1981), IEEE Standard VHDL (1988), IEEE Standard 1076

(1989), Baker (1993), Ashenden (1995).

The encouragement to write this paper has been received mainly from two
sources. The first was the fact that there is a poor number of works in which
the well-understood domain is analyzed independently. The second stimuli was

the concept mentioned in Prieto-Diaz (1990): "If a domain language exists that
can acceptably describe the objects and operations of required system, then the

systems analyst has a framework to hang the new specification. This is the

reuse of analysis of information, and in our opinion it is the most powerful sort

of reuse".

3. Differences between a domain analysis and the well-understood do­

main analysis. What is DA can be understood from the definition given in
R. Prieto-Diaz (1990): it "can be conceived of as an activity occurring prior

to systems analysis and whose output (i.e., a domain model) supports systems

analysis in the same way that systems analysis output (i.e., requirements analysis
and specification document) supports the systems designer's tasks". It must be

noted that there are several others definitions (see, for example, Rolling (1994) :

392 Analysis of well-understood domain for software tools building

DA "refers to the process of identifying, collecting, organizing and representing

the relevant information in a domain. It involves analysis and study of existing

systems, using knowledge captured from domain experts', underlying theory,

and perspectives on technology that is relevant to the domain".) Acco/ding

to the first definition the main goal of DA is a domain model building. By a

domain model many authors (Prieto-Diaz, 1990; Iscoe, 1990) understand a do­

main language by which the domain objects and their relationships (properties)

are described (an objected-oriented approach to DA). There are domains, how­

ever, in which a domain model (or models) already exists. So, domains can be

subdivided into two main categories according to the domain model existence:

• a domain (case 1)

• the well-understood domain (case 2).

The term "well-understood domain" means that the domain's high cognition
level is achieved and it can be measured. The measuring means (units) of this

level could be: the number of models and the level of abstractions used for

their representation, the existence of standards, the number of standards, the

standard's status (local, international); the number, status and characteristics of
the tools developed for domain specific tasks solving, et al.

The case 2 means that a domain at least once was analyzed. If the in­

ternational standards for a certain domain exist (as in our case), it must be

emphasized that a very wide and thorough examination of that domain has
been done before creating the standard. The complexity of this problem can be

conceived of from the examples described in AlLAS, IEEE (std. 1978,80,84,

89) or in VHDL, IEEE std. (1987). No matter, however, what a case we have,

the case 1 or 2, DA can be performed again and again if the goals for analysis

are changed. Especially it is true if the teaching aspects are in mind.

It is not ours intention to provide the differences between DA in the case 1

and case 2 in general. The differences formulated below should be accepted as

our experience in this area.

1. For well-understood domain the domain problems' space can be identi­

fied, i.e., the domain scope defined. For example, the problems' space

for domain analyzed is as follows: structural, behavioural description

of domain entities, signal flow description between inputs and outputs,

configuration of system architecture, modelling time delay and event

sequencing, and data modelling (VHDL tutorial, 1989).

V. Stuikys 393

2. It should be supposed that in the case 2 a domain can contain several

more narrow domains (an application areas) which, in turn, could be

treated as the independent ones. So, for well-understood domain a do­

main hierarchy can be defined in which domain objects, their properties

(characteristics), domain task classes, task specifications, and tasks mod­

els are included. For example, the domain analyzed consists of hardware

design (synthesis), modelling, testing. The latter, for example, can be

treated as an area of the digital, analogue or hybrid circuits testing.

3. As a result of the statement 2, an hierarchical approach can be intro-
duced, namely:

• object classes hierarchy and their properties analysis,

• task-oriented analysis,

• specification-oriented analysis,

.' model-oriented analysis at each level of objects hierarchy.

4. The main task is not to create new models for well-understood domain

but to find, understand and select the existed ones which at the most

degree correspond to the aims formulated. This procedure in the follow­
ing Sections (5 and 6) are formulated as a problem of the basic domain

knowledge elicitation.

5. In case 1 special tools for DA are needed and used (Iscoe et aI, 1991).

In case 2 the special tools are not so highly required, because of the fact

that the general model (standard language) and domain-specific tools

can be used not only for reaching the goals for which they have been

developed but they can serve to support DA tasks as well. This concept

is argued in DA model presented in Section 5.

6. The basic domain knowledge extracted from the well-understood do­

main through DA can be expressed by such a term as the "knowledge

template". A wide range of knowledge templates can be found for well­

understood domain. It is important to note that these templates can be

defined not only at the source program (subprogram) description level,

but at the tasks and task specification level, as well. Furthermore, they

have at least two representation forms: the textual and visual (pictorial).

7. If a domain can be treated as well-understood the various aspects of the

domain should be analyzed and expert knowledge are highly needed.

8. A team should be created for DA which would operate under close co-

394 Analysis of well-understood domain for software tools building

operation between a domain expert, system analyst and system designer.

Some ideas so far discussed are summarized in Fig. 1.

Informal!)omain
Knowledge

various aspects
(technological,
economical,
social, etc.

Initial System Model

Formal & Informal
!)omain Knowledge

Informal system
model in terms of
requirements and
specifications, and
functions

Fig. 1. Interrelationship between domain applications, domain models

and domain system which is to be built.

4. System initial model. The system initial model is presented as a set of

requirements and specifications formulated at the primary stage of the design.

These requirements are as enumerated below.

1. The PG will not be a conunercial tool. It is orientated for students

teaching at the postgraduate level in VHDL programming and interactive

program generation. It ought to have capabilities for examinations of

models used for the program generation.

V. Stuikys 395

2. The PG is an independent system but it could be integrated and connected

with other CAD systems (which support the VHDL) through the external

interfaces (files).

3. The tool is to perform the following main functions which are enumer-

ated in the priority decreasing order:

• program creating (generating);

• teaching;

• editing;

• gluing.
4. The system is to deliver the behavioural and structural descriptions of

hardware pieces in VHDL (IEEE std. 87, 93). But not the full lan­

guage capabilities are intended to be implemented, only those which are

frequently used and reveal the essential features of the language.

5. Hardware descriptions generated by the tool ought to be started from

the gate level. The higher levels (register, microcell and system) will be

also comprised but after an experience gained from the lowest, i.e., the

gate level.

6. It is not required that the tool would produce the formal description in

VHDL of the entire system. Hardware pieces will be initially produced

by the tool using the program creating (generating) function. Then those

pieces will be connected by gluing facilities to form a more complex

system.

7. The syntactic and semantic correctness of hardware descriptions gener­

ated by the tool is to be guaranteed in software engineering sense. But·

the formal approval of the correctness is not required. It will be based

on expert knowledge.

8. Interactions between the tool and its user are to be minimized, i.e., the

effective user's interfaces should be built. A special emphasis is to be

given to the pictorial objects repre..c;entation.

9. The program's creating is described as:

• a composition function by which a formal description is produced

from the reuse library components; it must be noted that we intend to

implement the more powerful reuse mechanism.. .. than simple generic

of VHDL or those that are used in the existing tools of that class;

• a generating function by which a VHDL description is produced from

396 Analysis of well-understood domain for software tools building

the domain problems specifications.

10. The system is to be open for extensions and modifications.

We suppose that through DA the initial model will be detailed, added and

changed, i.e., the more exact model synthesized as it generalized in Fig. 2.
The model presented can be assumed as a higher level stage of the system

development process and that this model should be intuitively incorporated into

the entire cycle of the tool design.

I.

external

system

Synthesis

Requirements,
___ ... specifications, for

tool building

model's

Required
level achieved

assessment

Analysis

l

J
.,"""" ... -""".~""

Fig. 2.· General framework for DA.

'1

I

V. Stuikys 397

5. The framework and process for well-understood domain analysis. The

general model for the well-understood DA is presented in Fig. 3. This model

is based on the strict cooperative work of the team members performing the

analysis. The team consists of a system analyst, programmer(s) and domain

expert. A programmer or programmers are the domain specific tools designers.

But the leading role in team activity belongs to the system analyst because of

the fact that he (or she) is responsible for the initial system model creation,

understanding of goals for domain specific tools needed. It must be noted that

for reaching goals of the DA the initial knowledge about domain analyzed is

highly eligible not only for a domain expert (it is obligatory), but for system
analyst and tools designers, as well.

According to the proposed model, the activity performed can be described

as an iterative process. To perform this process, several ways can be used.

These are listed as the cases a, b, c and d below:

a) direct DA by a separate team member,

b) direct DA by a separate team member with interviewing with other team
members,

c) DA with the domain models and tools use,

d) a mixed way as a combination of cases a, b, and c.

The case a) is indicated by a single break lines in Fig. 3. The process should
be conceived of as a knowledge elicitation from the domain via direct study of
books, text-books, tutorials, documentation, lecture courses, etc.

In ca..<;e b) (see double break lines in Fig. 3.) there is an additional possibility

of interviewing with other team members. But it is not anticipated neither in

case a) nor in case b) to use the domain models and tools for DA.

The case c) is denoted by two-orientated lines in Fig. 3. This way can ensure

the more systematized knowledge extraction. The case d) could be treated as

the most powerful mechanism in the process.

As a result of the process performed, knowledge from a domain is extracted.

This knowledge is called as basic domain knowledge (BDK) because it is im­

possible to comprise all aspects of the domain. By BDK we understand that part

of domain knowledge which relates to the initial goals and initial system model

formulated for tools building. The concrete content of BDK will be presented

in Section 6. It must be noted that BDK is to be assessed. The assessment is
presented in our model as a final interviewing between the system's analyst

Domain Model
orland

Domain Tools

I
I
I
I
I
I

t , , ,
I ,
lSystem

. _ ~ __ ,requirements l '-- , J -& pr.o~le~
Domain Applications L-Assessment level specIfIcations

Fig. 3 The framework for the well-understood domain analysis.

VJ
IC
00

~ :s
~

'<' ..
1:;.

~
~
:;::
I:: :s
l}
~
Q

~
t}
~ s·
'0> .,

i:
~

~
Q
<:>
t;'"

~
~
~.

v. $tuikys 399

Domain knowledge
finding

- Domain objects, operations

c=5 and its relationship

Expert - Domain models (classifica-
tion schemes, general, speci-
fic models, problem

l\ .. ~ specifications)

Domain knowledge
understanding

A~rovedand
se ected .
domain models

.... I..-

Domain knowledge
modifying ~

Chanled models

I
(BD templates)

.... 1;0 ,

(R&S) Domain knowledge matching
I+- with System Requirements Changing Not match and Specifications (R & S)

(misunderstan-
ding)

Selected knowledge
(BDK templates)

.. (.,.

Domain knowledge
transferring for
system design

Fig. 4. The process of analysis for well-understood domain.

400 Analysis of well-understood domain for software tools building

and system designers.

The processes for DA through the model proposed are detailed in Fig. 4.

The general procedure which starts within domain analysis and ends within a

tools implementation via the intermediate stages is shown in Fig. 5.

Domain Analysis I
Requirements

specifica-tions, domain
models

Domain Applications

Map to

Computer Science & Engineering

Map to 1
Domain Specific Languages

(DSL)

1 Map to

Implementation of Domain Tools
functioning on DSL basis

Implementation

Fig. 5. A general tool buiding procedure: from analysis to implementa­

tion.

6. The main results gained from DA. The main results achieved from DA

are formulated as BDK (see Fig. 3.). By BDK in this context we mean the

following:

• classification schemes of
- domain objects, i.e., hardware circuits (or circuit pieces),

- object characteristics (parameters),

V. Stuikys 401

-- main problems (tasks) related to the domain,

- problem specifications,

- models used;

• models itself;

• domain problems (tasks) itself;

• problem specifications itself;

• object model's examples in VHDL for their reuse in PG.

It must be stated that various classification schemes contain the valuable

information for PG interfaces building. The problem specifications and object

model examples in VHDL are used for the PG main function implementa­

tion (see Section 4). The proble~ specifications include the following forms:

Boolean equations, truth tables, structural diagrams, circuit schematics, state

tables for finite automata models (Baker, 1993) timing diagrams and process

model graphs (Armstrong, 1992).

The templates for BDK are regarded as the most essential result in the

context of our goals achieved. The examples of these templates are as follows:

• generalized textual descriptions in VHDL of hardware pieces such as
gates, registers, mUltiplexers, counters, etc. (see Fig. 6 for details);

• visual frames for hardware entities to form schematics of a circuitry
required;

• at the task level the basic domain tasks such a behavioural, structural,
signal (data) flow descriptions, signal event sequencing and data type

descriptions (VHDL tutorial, 1989) are regarded the domain task tem­

plates;

• at the specification level the truth and state tables' representation forms,

the frames for Boolean equations, etc., are instances of templates at this level.

7. Discussion. Domain analysis is regarded a<; a key ingredient part of the

software system building process. It is assumed that domain analysis is to

be performed with the reusability in mind. To achieve this goal, the domain

analysis model is proposed. This model comprises only those aspects of the

domain which can be treated as the well-understood one. The cognition level

of the well-understood domain can be measured by the number of the models,

standards, tools, their status, etc. existing in that domain. The domain analysis

model is described as a procedure of the basic domain knowledge extraction by

a team providing the analysis. The team consists of a system analyst, domain

402 Analysis of well-understood domain for software tools building

,--;ntity Gated _@pl is- ·-l
I Generic (Delay_Time: TIME: = @pS as); I

I port (@g21:inBIT;@g22:0utBIT);11

end Gated_@pl;

Architecture DataFlow_@pl ofGated_@pl is I
begin

@g22 < = @p4 @g23 after
I

Delay_Time; I

en_d_D_a_t_a_F_Io_W_-_@_P_l_; _______ J
Fig. 6. The textual template in VHDL for gate level with parameters

@xx that are to be defined before the template instantiation.

expert and tool designer (or designers). The leading role in the team belongs

to the system analyst. The starting point for analysis is creation of the initial.

model which can be produced by the system analyst or introduced from the

higher level system. By this model the design goals and initial requirements
are formulated. The domain analysis result is the detailed initial model which
is expressed by the domain objects' classification schemes, domain problem

specifications, domain objects models in VHDL and summarized by the term

"knowledge template". The knowledge templates could be treated as the most

reusable items for software tools building.

By a domain expert and system analyst we mean the University teach­

ers (professors) who are engaged in teaching of the computer hardware related

courses. The tool designers are postgraduates who are seeking for M.Sc. or doc­

toral thesis preparation. By a domain model and tools for domain analysis we
mean the standard VHDL language, ALLIANCE (ASIMUT) and CADENCE
tools, respectively.

The analysis should be regarded as a successful activity with the results

achieved mainly due to the fact that all participants involved have had back-

V. Stuikys 403

ground knowledge about the domain concerned.

8. Acknowledgments. I would like to thank the associate professors P.

Kanapeckas, E. KazanaviCius, S. MaciuleviCius and postgraduates V. Rastenyte,

A. Strukov, M. Terleckis, G. Ziberkas for the numerous discussions on this topic

and associate professors V. Reklaitis, A. Mikucka<; and G. Palubeckis for this

paper's draft review.

REFERENCES

Annstrong, D. (1992). Chip-level Modelling with VllDL. Mir, Moscow. 174 pp. (in

Russian).

Ashenden. PJ. (1995). The Designer's Guide to VHDL. Morgan Kaufmann Publisher.

688 pp.

Baker, L. (1993). HDL Programming with Advanced Topics. John Wiley and Sons.

365 pp.
Biggerstaff, T., and C. Richter (1990). Reusability framework, assessment and direc­

tions. In W. Tracz (Ed.), Software Reuse: Emerging Technology (Tutoria/). IEEE

Computer Society Press. pp. 3-·11.

Fisher, G., S. Henninger and D. Redmiles (1991). Cognitive tools for locating and
comprehending software objects for reuse. In 13th International Conference on
Software Engineering. Austin, Texas. pp. 318--328.

Griss. M.L. (1993). Software reuse: from library to factory. IBM Systems Journal,
32(4), 548-566.

Gross, O.B., and J.S. Gerg (1983). Automatic ATLAS program generator (AA PG) for
the advanced electronic warfare test set. AUTOTESTCON, 4,286-291.

Hindin. H. J. (1986). Intelligent tools automate high-level language programming. Com-
puter Design. pp. 54-56.

IEEE Standard 1076 VHDL (1989). Tutorial CAD language systems inc. 77pp.

IEEE Standard ATLAS Language (1981). IEEE std. 416pp.

IEEE Standard VHDL (1988). Language reference manual IEEE std. 1076pp.

Yin, W., M.M. Tanik, D.Y.Y. Yun .• T.L. Lee and A.G. Dale (1987). Software reusability:

a survey and a reusability experiment. IEEE Trans. Software Eng., 65-72.

Iscoc, N. (1990): Domain-specific reuse: an object-oriented and knowledge-based ap­

proach. In W. Tracz (Ed.), Software Reuse: Emerging Technology (Tutorial). IEEE

Computer Society Press. pp. 299-309.

Iscoe, N .. G.B. Williams and G. Arango (1991). Domain modelling for software
engineering. In 13th International Conference on Software Engineering. Austin,

Texas. pp. 340-343.

404 Analysis of well-understood domain for software tools building

larzabek, S. (1995). From reuse library experiences to application generation architec­
tures. In Proceedings of Software Reusability (SSR'95). pp. 114-122.

Kanapeckas, P., S. Maciulevi~ius and V. Stuikys (1995). Domain analysis for the
reusable domain-specific program building. In Information Technology. Tech­
nologija, Kaunas University of Technology. pp. 337-343.

Lubars, M.D (1990). Code reusability in the large versus code reusability in the small.
In W. Tracz (Ed.), Software reuse: Emerging Technology (Tutorial). IEEE Computer
Society Press. pp. 68·-76.

Luker, P.A. (1986). Program generators and generation software. The Computer Journal,

29(4), 315-321.
Maiden, N.A.M., and AG. Sutcliffe (1992). Specification reuse by analogy. Next Gen­

eration CASE Tools. IOS P.ress. pp. 119-131.
Maiden, N.A.M., and AG. Sutcliffe (1992). People-oriented software reuse: the very

thought. In Workshop on Software Reusability. IEEE Computer Society Press. pp.
176-185.

Maiden, N.A.M., and AG. Sutcliffe (1993). Requirements engineering by example: an
empirical study. In Proceedings of IEEE Symposium on Requirements Engineering.
IEEE Computer Society Press. pp. 104-112.

Phelps, R. (1987). New tools automate the application development cycle. Hardcopy,
GNTB 1-26, Moscow. pp. 138-141.

Prieto-Diaz, R. (1990). Domain analysis for reusability. In W. Tracz (Ed.), Software

Reuse: Emerging Technology (Tutorial). IEEE Computer Society Press. pp. 347-
353.

Rolling, W.A. (1994). A preliminary annotated bibliography on domain engineering.
ACM SIG-SOFT, Software Engineering Notes. 19(3), 82-84.

Stuikys, V. (1993). Software design for funNional testing systems. Kaunas University
of Technology, Technologija. 169pp. (in Russian).

Stuikys, v., and E. Toldin (1993). Computer-aided test program design system (CATPDS)
in ATLAS. lnformatica, 4(3-4),384-398.

Teitelbaum, T., and T. Reps (1981). The comell program synthesiser: a syntax-directed
programming environment. ACM, 24(9), 563-573.

Terry, Ch. (1987). CASE tools on an expanded range of computer systems. EDN, 221-
228.

Tracz, W. (1990). Software reuse myths. In W. Trac7 lEd.), Software Reuse: Emerging

Technology (Tutorial). IEEE Computer Society Press. pp. 18-21.

Received February, 1996

V. Stuikys 405

V. Stuikys received Ph.D. degree from Kaunas Politechnic Institute in 1970.

He is currently associate professor at Computer Department, Kaunas University

of Technology, Lithuania. His research interests include program generation

for domain -- specific systems, high level domain - specific languages, expert

systems, digital signal processing and CAD systems.

GERAI APIBREZTOS SRITIES ANALIZE

PROGRAMINES IRANGOS SISTEMAI SUKURTI

Vytautas STUIKYS

Straipsnyje pateikiamas gerai apibre~tos sri ties analizes budas, kuris traktuojamas
kaip kuriamos programines irangos sistemos aukstesnysis lygmuo. Formuluojami gerai
apibre~tos sri ties analizes specifiniai bruo~ai, pateikiamas kuriamos sistemos pradinis
modelis if problemines srities analizes procesas.

