
INFORMATICA, 1996, VoL 7, No, 3,371-388

STABILIZING PROTOCOL
FOR A NETWORK OF PROCESSORS

Leo SINTONEN

Tampere University of Technology, Software Systems Laboratory
POB 553, 33101 Tampere, Finland
E-mail: lsi@cs.tut.fi

Abstract. It is desirable in many applications, that a set of cooperating processes do
not loose their coordination due to failures. This paper presents a fault-tolerant protocol
for a network of processors, which form a logical ring on a physical broadcast medium.
The presented protocol makes possible for a set of processes to reestablish their normal
operation after transient or permanent process failure or transient communication failures.
The protocol is described, model for the system is developed, and in the framework of
this model it is proved, that the system reuches a smble and correct configuration in
finitely many steps after failure.

Key words: cooperating processes, fault-tolerunt computing, distributed algorithms,
self-stabilization, token bus protocol, event driven protocol.

1. Introduction. The increasing use of distributed computing in safety

critical applications has made fault-tolerance a desirable feature, Distributed

systems that tolerate up to k failing processes and still perform correctly are

called k-resilient (Rangarajan et aI., 1995). A system of processor is self

stabilizing, when started from an illegal initial state is guaranteed to converge

to a legal state in finite number of steps (Dijkstra, 1974). In this paper we con

sidered applications, in which a set of processors cooperate by cOOllllllnicating

and can loose the coordination due to a processor failure or a communication

failure. Class of applications considered in this context include, e.g., applica

tions of mobile Local Area Networks in automation, when communication is

done through some kind of shared broadca<;t media like radiowaves.

Tbe problem of failing processors is discussed broadly in distributed systems

tl!xtbooks. The problem is usually treated in terms of reliability and availability
obtainable through replication and resilient protocols (Rangarajan et al., 1995).

372 Stabilizing protocol for a network of processors

In this paper we do not define fault tolerance in terms of reliability. Instead we

define fault tolerant protocol as an algorithm having stabilizability properties.

The concept of self-stabilization was introduced by Dijkstra (1974). He

considered a set of n + 1 state machines connected to a ring. An important issue

in the verification of such systems is the number of states of each processor. In

(Burns and Pachl, 1989) the authors show, that there is a self-stabilizing system

with no distinguished processor, if the size of the ring is prime. Their protocol

uses 0 (n 2) states at each processor, where n is the number of processors. Rings

have also been studied in (Aatebo and Datta, 1994). The authors represent a

self-stabilizing algorithm for mutual exclusion, which requires two states in

each machine in the network.

Application of self-stabilization to fault-tolerance has been studied in Arora

and Gouda (1993), Laranjeira et al. (1993). These generalize the notion of

fault-tolerance to variety of state systems. The desired properties of the system

are described by invariant predicates identifying the legal states related to fault

tolerance. Verification of the system is then based on the notion of convergence

towards legal state set. Stabilizability and discrete event dynamic systems are

discussed in Sobh (1991). The automaton model is used to develope techniques

to describe the behaviour of such systems. Stabilizability is defined as the

property of system to return to a "good" state by control of events.

Communication and communication protocols are an important part of dis

tributed computation, and contribute also essentially to the fault-tolerance. Self

stabilizing communication protocols have been studied (Gouda and Multari,

1991). In Gouda and Multari (1991) there are two processes involved in com

munication. Authors represent a formal method for this case.

The protocol presented in this paper can be regarded as an access protocol

with safety features. The protocol was originally designed for applications,

where reliability and fault-tolerance are required (Sintonen, 1990). The ac

cess method is event-driven multiple access. Communication is through shared

medium, but the order of using the medium is ring. Events are used to control

the operation sequence of the systems. Processors cooperate by observing event

sequence and can deduce station failures. Based on the observation processors,

called stations here, can modify their view of the configuration. Transient errors

in communication lead the system into a state, from which the normal operation

can be restored. Thus, the part of the algorithm implementing reliability fea-

L. Sintonen 373

tures can be regarded as a separate layer. This is a new approach to reliability

and it allows to combine resiliency and self-stabilation.

Model is represented to prove the reliability properties of the protocol. The

model is based on the abstraction of global events, which cause transitions.

Transitions a local and are locally guarded. Transitions cause processors to

modify their view of the configuration. This allows us to describe the coordi

nation amog distributed processors.

This paper is organized as follows. In Section 1 general issues related to

this work are discussed. The protocol is described in Section 2. In Section 3

the computational model for the system is developed. In Section 4 the static

station failure properties are proved. Effect of communication and timing errors

is discussed in Section 5. Concluding remarks arc made in Section 6.

2. Description of the protocol

A. Topology. The topology considered in this paper is a bus. Stations on

the bus form a logical ring according some list of addresses. The addresses are

numbers 0, ... ,N - 1. There is a station which controls the operation of the
bus. The address of this station is initially O. It can be any station, but there is

only one control station at a time.

Every station maintains a list of the actual configuration. Stations are also

assumed to know their initial configuration. The address of the control station
is in local variable ctrCstation.

A station has registers to hold the following parameters: PREDECES

SOR register contains PREVIOUS_ADDRESS, which is the address of the
predecessor station on the logical ring. The DESTINATION_ADDRESS and

SOURCE_ADDRESS registers hold the destination and source addresses of

the la<;t message on the bus. Station also has register holding it's own address

value. How the registers are implemented is not relevant here.

Stations communicate by sending a frame to a shared medium. Frame

contains the address of the receiver station, the address of the sender station,

data and possibly other relevant fields.

Stations have circuit to recognize the-events FRAME_ENDED, circuits to

detect colllision and to generate the event COLLISION_ENDED, and to detect

the start of a sending on the bus. They also have counter to give time marks

D and T, explained later.

B. Protocol. The protocol is ba<;ed on the observable events on the bus.

374 Stabilizing protocol for a network of processors

Every station listens the bus and receives both the destination address and the

source address and stores them in the registers respectively.

Receiving. When a station notices it's own address in the DESTINA

nON_ADDRESS register, it receives the frame.

Sending. When a station has a frame to send, it waits until it receives the

address of it's predecessor in the logical ring into the SOURCE_ADDRESS

register.
Then it waits for the event FRAME __ ENDED of it's predecessor station.

After that it sends it's frame. After the end of the frame it waits time for a

time delay D to hear the next station to begin sending (event S). When this

happens, the sending phase is ended. Delay D is equal or greater than 2· T,

where T is the round trip delay.

The event starting the delay counter D is the frame ended-event FE.
Counter D is cleared by the begun-sending-event S when next station begins
sending, or after period D.

After the event FE stations execute the following program:
ProgramSend:

IF source_address = previous_address

THEN Send

FI
If a station has no data to send, it sends a token frame in order to give to

the next station turn to send.

Ring initialization. The control station initializes the ring. It has initially

address O. The address of the control station is held in the variable con
trol_station_address, local at every station. Control station also restarts the ring
after failure.

When starting, all stations compute:
ProgramInit:

WHENEVER

IF my address = control_station address AND BUS_.EMPTY
THEN my-turn_to_send FI

The event BUS_EMPTY is signalled by the counter T. Thus the station 0
always takes the initiative when there has been no signal on the bus for period T.

'The T counter is started by the START - event from outside, or by the

frame-ended or collision ended-events. It is also started, after execution of

L Sintonen 375

ProgramModify below, when a station has taken the role of control station. It

is cleared when a station begins to send, or after time period T.

Station failure. After sending a frame, if the bus remains empty after delay

D, the next station has not begun to send, which creates the event N S.
Station then sends a broadcast management frame indicating the failed sta

tion. The address of the failed station is in the variable failed_station. Stations

remove the failed station from the configuration list.

Event N S causes stations to execute ProgramModify:
ProgramModify:

Remove(failed _station_address)

IF failed_station_address = PREVIOUS_ADDRESS

THEN PREVIOUS _ADDRESS := PREVIOUS_ADDRESS - 1

FI
IF failed_station_address = controCstation_address

FI

THEN controCstation_address:= controCstation __ address + 1
IF controCstation_address = my_address

THEN become_control_station

FI

Thus, if a station fails, it is automatically removed'from the list by all other
stations. If control station failed, next station in the configuration list is selected

to control station.

Re-entering station. A previously failed station wishing to rejoin the ring

resets it's PREDECESSOR register value to the initial value, and restores the

configuration list. It then listens the bus, and starts sending some defined signal
after noticing any FRAME_ENDED on the bus, in order to cause a collision.

All stations notice the collision, and reset their PREDECESSOR register to

the initial configuration value, and restore the configuration list to the initial

configuration.

Program Reset:

BEGIN

Reset

END
After this, the bus remains empty, until the control station restarts the opera

tion. lbe operation continues with the new station added. Because the register

376 Stabilizing protocol for a network of processors

values at the stations correspond to the initial configuration, the protocol notices

the non-existing stations as failed stations. The system reorders the configura

tion list in successive computations by ProgramModify, and sets the value of

the PREVIOUS_ADDRESS register to the correct value.

Changing the control station. Due to ProgramModify, fail-stop of the cotrol

processor causes next operating station to become control station.

C. Events and timeouts. Events related to the operation of the protocol are

summarized below. Events and their timing relationships are depicted in Fig. 1.

FE = frame ended.

C E = collision ended.

S = next station starts sending a frame.

The events above are derived by circuits.

BE = BUS_EMPTY, expiration of the timer T.

N S = next station is not sending. Expiration of timer D at sending phase.

System has two timers:

T = bus activity timer,

D = interframe gap timer.

i-I S

FE

Fig. 1. Protocol event sequence.

3. The model

i+l
r-------

FE,CE

""""""'NS .. T

i
I
BE

A: General framework. To prove the stabilizability properties of the protocol

t1!e following model is developed. The process at each station has the form:

L Sintonen

Process

[] <event> ; <transition>

[] <event> ; <transition>

endproc

Each transition is a program of the form:

<guard> __ < sequence of local statements >

377

Events are global. Happening of an event selects a transition. Transition is

a program to be excuted. In the semantics of this model "transition becomes

true" means, that the corresponding program is executed. Execution of a tran

sition can cause events. When the guard becomes true, the sequence of local

statements is executed. The guard is a boolean expression of local variables.

Event variables have values derived from the physical events and timeouts by

circuits. Local statements act only on local variables.

B. Configuration. The global state of the system is denoted by s. Compu

tation is a sequence of states {so, SI, •.• , Si, Si+!, ..• }, where Si+l is the next

state to Si.

System starts in state So, when "nothing happens". In this state the predicate

"BUS_EMPTY" is true. This predicate can also be true elsewhere during the

computation, let's say in some interme!iiate state s~. This means, that the

operating cycle is started from beginning by the responsible station.

In the system under consideration the computation is infinite.

The topology is a logical ring. There are N stations in the ring, numbered

0, ... , N - 1-
Notation. View is the partial state of system described by the predecessor

registers of stations. The state of the system is denoted by (s, w), where w is

the list describing the view of the system, and s is the rest of the state of the

system.

Let pre(i) be the variable denoting the predecessor-register of station i. The

value of pre(i) is the address of the predecessor of i.

The configuration C of the ring is the list of station identifiers or addresses

c= {0,1,2, ... ,i,k, ... ,m}.

List C describing the configuration is ordered circularry by the relation <.

378 Stabilizing protocol for a network of processors

The initial configuration is denoted by Co,

Co, = {0,1,2, ... ,N-1},

where N is the number of stations in the ring.

The list ~V = {pl'e(O), pl'e(l), ... , pl'e(n - I)}, pl'e(i) E C describes

the partial state of the ring, called view.

The values of pl'e(i) in a configuration are from the set of numbers 0, ... ,

N-l.
The initial configuration of the ring can change during the operation due to

the deletion and addition of stations. The actual configuration is denoted by C
in the following.

DEFINITION 1. Two adjacent stations i and j, i < j, in a configuration C
are connected, if! pre(j) = i.

DEFINITJO!'I 2. Configuration C is connected, if! all pairs of adjacent

stations are connected.

In the initial configuration the system is assumed to be connected.

The operation of the ring is controlled by the transition TO:
TO: < FE> -----" < ProgramSend >.
Modification of the configuration is controlled byt guard 1'1.

1'1: < N 5 > --+ < ProgramModify>.
Restart of the ring is done by guard 1'2.

1'2: < BUS_EMPTY> ,--+ < Programlnit >.

Reset of local configuration variables is controlled by T3.
1'3: < CE > --+ < ProgramReset >.

Transition TO becomes true after event FE (frame ended). Transition 7'1

becomes true when control frame is detected. 7'2 becomes true when counter

l' expires. T3 becomes true when end of collision is detected.

From the description of the protocol the following specification regarding

transitions T can be written.

51: Normal operation: T2; TO; TO; ... ,

52: Transitions: transition diagram is depicted in Fig. 2.

In the diagram the possible next events and transitions after a completed

transition are shown. Labels on arcs denote the event causing the transition.

L. Sintonen 379

B~
T2

~
TO Tl T3

~E
T2

, Fig. 2. Transition diagram.

The model is summarized in Table 1 below.

Table 1. Components of the ~odel

Event Transition Guards Guard expression

FE. TO, ProgramSend CondSend source_address =
= previous_address

NS TI, ProgramModify CondModifyConf source address =
= previous_address

CondModifyCtrl failed station =
= ctrLstation

CondNewCtrl my_address =
= ctrCstation+ 1

T T2, ProgramInit CondInit mLaddress =
= ctrCstation

CE T3, ProgramReset CondTrue true

4. Static failure modes

A. Station Failure. Stations are assumed to operate in the fail-stop-mode.

Failure mode: station does not begin to send on it's turn. When a station

failure occurs, station istotally stopped regarding the operation of the protocol.

It is assumed' that there are no other errors.

We adopt the following notation of variables:

xi denotes the predecessor-register,

x~ denotes the own-address register of station i and has always value i.

Then the partial state at station i is described by the pair xi x~. Configuration

C can thus be described as list of xJ values for every station i.

The computation of the protocol reaches the point, where the failed station

should begin to send. The next possible event after this is event N S.

380 Stabilizing protocol for a network of processors

According to the description of the station failure procedure of the protocol,

transition Tl becomes true.
Let Tl be true. Let the connected state W before the failure be

where k - 1, k and k + 1 are assumed to be adjacent in W. Let station k be

the failing station.
After the computation of ProgramModify, the state becomes:

k-l k-l xkxk+l
Xl x 2 1 2 ..• ,

where stations k - 1 and k + 1 are conneted. Because no other alterations to

W were made, the new state is connected.
Computation of ProgramModify in the case of failed station k - 1 in VV

makes substitutions x~+l /x~-l into neighbouring stations of k, and thus con

nects k - 1 and k + 1.
If the failing station k is a control station, then the computation of Program

Modify changes the control to the next station k + 1.

Theorem 1. In a ring of N stations there can be n
failures.

N - 2 station

Proof. The proof follows from the repeated application of the procedure

above. By definition here, at least two stations are needed to form a ring.

Aftter Tl transition T2 becomes true, and the control station starts the
operation from the beginning.

T2 becomes true also when there are no stations able to send. Regarding to

the assumed failure mode case this means that there are < 2 stations operable.

In this case T2 = true will cause the control station ececute cycle Tl; T2
forever.

If the failed station is the control station, then due to ProgramModify, control

has changed to station k + 1.

The failure mode when station fails during sending causes by assumption

station to detect frame ended, FE. This causes TO become true, and next
station to begin sending. If failure was transient, operation continues normally.

If failure is permanent, station is removed during the next cycle.

L. Sintonen 381

B. Insertion of stations. A station previously failed is inserted into the ring.

New stations with new addresses can not be inserted. Failure mode: there is an

operating station in the ring which has the same value in the PREDECESSOR

register as the inserted station. Let the value be j.

The computation of the protocol reaches a point where the station with value

j in the predecessor register should start sending. Two stations start sending,

and collision occurs. The transitions that can become true are:

T3: < C E > -. < PrograrnReset >.
PrograrnReset resets the state from IV to IV'. After reset the bus is detected

empty, counter T expires. Transition T2 becomes true, and station execute

ProgramInit, which causes the control station to restart the ring.

After reset the system is in a state IV', where the value of the PREDECES

SOR at each station is the same as in the initial (full) configuration. If there

were 71 missing stations in state IV, then there will be n - 1 missing stations

in W'.

Because all the register values point to the stations in the original configura
tion, there are values that point to a missing station. The system then proceeds

in the following steps:

Step 1. After T2 becomes true, the control station tries to start the operation

of the actual ring by executing ProgramInit.

Step 2. Then, some station i-I notices, that the next station i does not start

sending. This causes transition Tl to become true. Thus, the system repeats

the same sequence as in the station failure case, treating the missing station as

a failed station. This results in a state \V" with neighbours i-I and i + 1

connected, as proved earlier.

If there are no other missing stations, the the state IV" is connected, and

the normal operation can continue.

If there are other missing stations, then the system repeats the sequence

Tl, T2 for all missing stations. Thus the final state becomes connected. There

are three possible subcases.

Let the state sequence corresponding to the local views after reset be W'

(with k inserted).

Case 1. Station k is inserted to the tail of some connected subsequence

(i,j) of IV', after position j. There is no station existing immediately after k.

Let's denote the resulting sequence by (.... i, j, k, k + rn, .. .). Stations i

382 Stabilizing protocol for a network of processors

and k + m are connected, and there are m-I missing stations between k and

k + m. In the connected sequence W before reset:

xi - k+m 3- ,

After reset and the execution of ProgramReset the state W' is:

x~ = k, x~ = j, x~+m = k + m-I, x~ = j, x~ = k + 1.

~rom the values above we see stations j and k become connected after reset

by their initial values. Station k is not connected to any other station, so that

the state lV' is not connected.

The values of the variables of the m-I stations between k and k+m are their

initial values. This means, that some stations have in their PREDECESSOR

registers address values of stations, which do not exist in actual ring. Thus,

some station next in turn will not start sending. Let this station be i, which is

the next station from the control station, which has wrong predecessor address,
denoted as wrong view.

The transition Tl will be true.

< N 5 > --+ < ProgramModify >.
ProgramModify makes the substitution x~+2 / k at the station k + 2. But

the station k + 2 does not exist, and therefore there is no program execution at

k+ 2.
The next possible transition to become true is T2:
< 5, BUS_EMPTY> --+ < PrograrnInit >.

The sequence of transitions T2, T 1 will continue, until for the station k + m

ProgramModify is executed, and the value substituted is x~+m / k. Thus, the

state of the ring becomes eventually connected. If there are M stations in

the new ring with the added station included, then the ring is connected after

N - M restarts. In this case it was a.;;sumed, that stations i and k + m are

connected. Relaxing this assumption, however, will not essentially change the

proof. Steps 1 and 2 connect also all missing stations, which are not part of

the sequence (k, k + m).

Case 2. Station k is inserted to the head of a connected subsequence (k +
1, k+ j) of H!I to position k. There is no station existing immediately before k.

Let's denote the resulting subsequence by (... , I, m, ... , k, k + 1, k + 2, k +
j .. .). There are n - 1 deleted stations between m and k. Stations I and ". + j
arc connected.

L. Sintonen

The original value in W is

After reset the state VI/' is:

x~ = k - 1, X k +1 - k 1 -.

383

Thus k and k + 1 become connected. 'The configuration is not connected,

however, because rn and k are not connected. There are n - 1 missing stations

between rn and k. Then Steps 1 and 2 are repeated for all n-l missing stations

between rn and k, starting from rn. Eventually the system becomes connected.

This requires N - M restarts. In the same way the Steps I and 2 connect all

other missing stations, which are not part of the sequence (rn, k).
Case 3. The inserted station is k. There is no station existing immediately

before k or after k in VF'.

Let's denote the resulting configuration by (... , k - n - 1, k: n, ... , k, ... ,
k + rn, k + rn + 1, ...). There are n + rn - 2 missing stations. The proof is
easy by combination of Case 2 and Case 1, in that order.

Case 4. Multiple stations moved, multiple added. It can be deduced from

the definition of the protocol, that when two or more stations reenter simulta

neously, the effect on the local views of the stations is the same as when one

station reentering. Simultaneouly means, that the reentering stations all enter

within the same collision interval. Because the addition algorithm adds stations

in numbering order and independent of the higher number stations, this ca<;e

reduces to the Case 2 above.

Multiple entering stations can cause diferent collision intervals. If a collision

interval occurs before the execution of the algorithm caused by the previous

enter ha<; ended, then the protocol will force the system to repeat the addition

algorithm. Because the algorithm adds stations in numerical order and inde

pendent of higher order stations this case also reduces to the Case 2 above, and

eventually all stations will be a~ded.

C. Example. 'The Case 3 is described by an example below. In this example

there are six stations. Numbers 1, 3 and 2 fail in that order. Station number 3

will recover and is reentered into the ring. Missing stations are underlined.

384 Stabilizing protocol for a network of processors

Stations 0 2 3 4 5

Initial global view:

50 o 1 12 23 34 45

1 fails, - -, ProgramModify.

50 02 23 34 45

3 fails, -

50 02 24 45

2 fails, -

50 04 45

2 coming up.

50 02 04 45

Insert 2, ProgramReset, 1 not sending.

50 Q.l 12 23 34 45

Insert 2, ProgramInit, by 0, ProgramModify.

50 02 tl 34 45

Insert 2, - -, ProgramModify.

50 02 24 45

5. Communication errors

A. Event failure. Event FE is the only event broadcasted. We consider the

case, where the event FE is not properly interpreted.

Sender i sends a frame, station j misses the event Frame_Ended. In the
case that j is not the next station to send, the failure has no effect, since this

event causes no transition in other stations than i + 1. If station i + 1 misses
the event FE, then event N S will be true at all stations except i + 1. After D,
transition Tl occurs at every station except i + 1. This causes all station except

i + 1 to modify their configuration list. After the modification there are station

i + 1 and i + 2 pointing to i as their predecessor station. The next event, that

can be true is expiration of timer T. After this control station makes transition

1'2, and the system restarts. But because there .are two stations after i, there

will be collisison. Thus, transition T3 will be executed by all stations after

C E, and all stations have the initial configuration. The operation will return to
normal through a procedure similar to that explained in chapter 3.2 before.

B. Transmission errors. There can be transient error in the addresses, and

we consider the following cases: there is a wrong or not-existing sender, the

L. Sintonen 385

next address is wrong, or there is wrong or not-existing receiver address. We

consider each ca..e separately. The address of the sending station of the frame

cur rently on the bus is kept in the SOURCE_ADDRESS register of each station.

Case 1. Wrong sending address. The effect is, that some station j, which

is not next in turn, will notice the correct event FE, and will start sending.

Operation continues correctly, but stations between the expected sender i + 1

and j will miss the turn at this cycle.

Case 2. Not-a-sender address. The effect is, that no station will notice event
FE from its predecessor, and no station will start sending. The effect is, that

eventually transition Tl will become true, and station i + 1 is removed from

the onfiguration. Then both station i + 2 and i + 1 will have their predecessor

value Xl = i.

This causes collision after next FE from station i. The recovery will take

place through transition T3. After this, transition T2 will be true. Thus the

control station will execute Prograrnlnit and will restart the operation.

Case 3. Receiver is not existing or wrong. Message will not reach it's des

tination. Because the receiving process will not cause any events related to the

operation, no transitions will be affected and thus the operation will continue

normally.

C. Timing errors. Delay in computation can cause timing errors. We con
sider the case when computation at station is temporarily delayed. Sender is

station i.

- When a station i + 1 ha., failed and is not sending, stations will notice the

event NS.

- Transition Tl will cause station i to execute ProgramModify and have

CondModifyConf true. No station ha'> CondSend true.

- Eventually counter T expires, condition Condlnit will be true at the control

station, and the operation restarts. Program at i + 2 shoud change the value

of the xi+2 register before time (i + 2)~ from the restart in order to continue

sending at this cycle. ~ is the time to pass the sending turn from a station to

another. Total time to make the computation is thus T - D + (i + 2).;l.

By a<;sumption the delay in program execution wa<; transient, so that oper

ation will eventually continue normally.

386 Stabilizing protocol for a network of processors

Timing errors also arise, when the timers expire too early. Avoiding this

kind of errors is a practical matter of setting timer values according to the actual

situation.

If timer T expires erroneously before D, condition Condlnit will be true

at the control station, and control station starts sending. This clears timer D.
Operation continues normally. Other conditions for time delay T are discussed

below.

D. Changing the control station. Let's assume, that control station fails dur

ing the operation and not before initialisation. Then after the sending of station

N - 1 transition Tl eventually becomes true. Station ctrCstation+ 1 executing

ProgramModify will have CondModifyCtrl and CondNewCtrl true and becomes

control station, and all other stations will also execute ProgramModify and have

CondModifyCtrl true and compute the change. After this transition T2 eventu

ally becomes true, and Condlnit becomes true at the new control station which

restarts the operation. The operation of the system requires, that all computa
tions arc made before timer T expires. ·The total time available for computation

is T - D.
From the discussion above in paragraphs C and D it can be concluded, that

the max. time for making transitions at station is T - D for transistion Tl
when control station is changed, and T - D + (i + 2)~ otherwise for the same

transition. Other transitions have no time limits set by timers.

6. Conclusion. A stabilizing protocol for an event driven token bus network

is presented. The protocol is applicable to systems using broadcast-type media

as the communication media.

The system is self-configurating. After processor failures it can reach a

stable configuration where the operation continues normally. This is done in

finitely many computation steps. Faulty processor is identified. Processor fail

ure can also be transient in the sense that the processor can later recover and

join the system. Fault-tolarance is achieved by the use of timeouts and a dis

tinguished control processor. The protocol could be, however, to be distributed

in the sense that in the case of a failure of the control processor some other

processor takes the role.

Model for the protocol was developed, and prove of the stabilizing properties

was carried out. 'The system will tolerate mUltiple station failures. Stations can

be inserted. Operation of the protocol does not a')sume reliable communication.

L Sintonen 387

System can recover from broadcast and communication address errors in finite

steps. It was also proved, that the system will recover from transient timing

errors of the protocol timer, and delays in the program execution.

REFERENCES

Arora, A., and M. Gouda (1993). Closure and convergence: a foundation of fault

tolerant computing. IEEE Transactions on Software Engineering, 19(11), 1015-
1027.

Brown, G.M., M.G. Gouda and c.-L. Wu (1989). Token systems that self-stabilize.

IEEE Tr. on Computers, 38(6), 845-852.
Bums, J.E., and J. Pachl (1989). Uniform self-stabilizing rings. ACM Transactions

on Prog. Lang. and Syst., 11(2), 330-344.
Dijktsra, E.W. (1974). Self-stabilizing system in spite of distributed control. Comm.

ACM, 17(11), 643-644.
Flatebo, M., and A.K. Datta (1994). Two-state self-stabililizing algorithms for token

rings. IEEE Transactions on Software Engineering, 20(6), 500-504.
Gouda, M.G., and N.J. Multari (1991). Stabilizing communication protocols. IEEE

Trans. Comp., 40(4), 448-458.
Laranjeira, L.A., M. Malek and R. Jenevein (1993). Nest: a nested-predicate scheme

for fault tolerance. IEEE Transactions on Computers, 42(11), 1303-1324.
Rangarajan, S., Y. Huang and S.K. Tripathi (1995). Computing reliability intervals for

k-resilient protocols. IEEE Transactions on Computers, 44(3), 462-466.
Sintonen, L. (1990). Event driven bus architecture for bounded area networks. Proc.

IECON'90, Vol. I. pp. 539-541.
Sobh, T.M. (1991). Discrete-event dynamic systems. Rep. GRASP LAB, Univ. of

Pennsylvania. 35 pp.

Received March 1996

388 Stabilizing protocol for a network of processors

L. Sintonen is an associate professor at the Software Systems Laboratory

at the Department of Informatics, Tampere University of Technology. He re

ceived his Dr. Degree in Computer Science in 1980, from Tampere University

of Tl'chnology. His current research interests are modelling and analysis of

distributed systems and protocols.

PROCESl,! TINKLO PROTOKOLO STABILIZAVIMAS

Leo SINTONEN

Oaugeliui dalykiniq sri6q pageidautina, kad trikiq atvejais kooperuojanciq procesq
koordinavimas nesutriktq. Siame darbe apra~omas trikius toleruojantis protokolas tokiam
procesioriq tinklui, kuris organizuotas kaip loginis ltiedas. sukurtas naudojant koki~ nors
fizinl,; vienpusio prane~imq perdavimq terpl,;. Apra~omasis protokolas atkuria normalq
procesq vyksm~ po laikino kurio nors proceso trikio, po nepa~alinimo kurio nors proceso
trikio ir po laikino ry~io trikiu. Darbe nagrim!jamas protokolas bei ji naudojanciq sistemq
modelis ir irodoma, kad po trikiq per baigtinj ltingsniq skaiciq tokiose sistemose bus
atkurta stabili biisena. kurioje sistema tUTt~S korektisk~ konfiguracij~.

