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Abstract. The present paper considers the problem of gen­
eral estimation of static model parameters and systematic measure­
ment errors. The general estimation algorithm is based on static 
model linearization and on the least-squares method. The efficiency 
of this algorithm is illustrated by means of computer-aided digital 
simulation. The obtained equations and the algorithm of general 
estimation of static model parameters and systematic measurement 
errors can be applied for the solution of different practical problems. 
Estimatibility conditions must be satisfied in all cases. 
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1. Introduction. Estimation tasks usually consider the 
observation errors as a sequence of independent random vari­
ables with zero mean and a certain covariation matrix (Bard, 
1970; Brandt, 1975; Demidenko, 1981). However, in numer­
ous applications the zero-mean requirement for the random 
error sequence is not satisfied. This fact results in a supple­
mentary bias of estimates. Thus it is necessary to obtain the 
estimates of a static system model by shifted observations, 
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i.e. by observations with a systematic error. A certain ap­
proach to the estimation of static-model vector parameters 
and systematic measurement errors was proposed in N emura 
and SpeCiunas (1989). 

The aim of this paper is to investigate the problem of gen­
eral estimation of systematic measurement errors and static 
model parameters, and to design an algorithm of general esti­
mation, based on the linearization and least-squares methods. 

2. Algorithm for general estimation of. model pa­
rameters and systematic measurement errors. Math­
ematical model of the multivariable nonlinear static system 
being considered can be defined by a following system of non­
linear equations:' 

where 

<Pka = bk, bk = [~lk] , ek = [elk] , 
U2k e2k 

(1) 

(2) 

(3) 

Cl, C2 - estimated vectors of T1 and T2 measure correspond­
ingly, Ylk, Y2k(k = 1,8) - m-measured sequences of the mea­
surement results for the m-measured nonlinear functions 
fl(Xk,C1) and h(Xk,C2); xk(k = 1,8) - m-measured deter­
ministic input sequence; Va and V2k (k = 1, s )-m-measured 
sequences of random variables representing the measurement 
errors for the nonlinear functions !I (x k, (;1), h ( x k, C2). Se­
quences of m-measured vector random variables Vlk and 
V2k(k = 1,8) have non-zero mean values blk and b2k(k = 1,8) 
and corresponding covariation matrices 0 1 and O2 , and they 
can be defined by the equation (3), where elk, e2k(k = 1,8) 
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are sequences of independent m-measured random variables 
with zero mean and covariation ~atrices !ll and !l2 corre­
spondingly. 

A following problem is being considered. Let us assume 
that the following values are known: observances Ylk, Y2k, 
analitical expressions !I (x k, cd and 12 (x k , C2 ), certain initial 
values cio and C20 for the vector parameters Cl and C2 and the 
covariation Ifatrix !l of the vector of random measurement 
errors e r = l eik' efk]. It is necessary to estimate Cl, C2 and 

8k (k = 1,S). 
In order to obtain necessary relationships, linearization 

of the equations (1), (2) is accomplished in the vicinity of the 
working poin~, defined by estimates 

(4) 

obtained in the previous step v of the estimation process: 

Ylk = !I (Xkv' elv )+Llkv(Xk -Xkv )+Flkv(Cl -civ )+Vlkv, (5) 

Y2k = 12(xkv,e2v)+L2kv(Xk-Xkv)+F2kll(C-C2v)+V2kv, (6) 

where 

Llkv= 
8il (.) 

" Flkll = 
8il (.) 

" 
8Xk X/e=X/ev' 8Cl X/e=X/ev' 

" " q=qv q=Cl v 

L2kv = 
8fz(·) 

" F2kv = 
8fz(·) 

8 Xk X/c=X/ev' 8C2 Xk=Xkv 
" " C2=C2v C2=C211 

Let us introduce the following notations: 

qlkv = Ylk - !I (Xkv' elv) + LlkvXkll + FlkvClv, (7) 
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Q2kv -:- Y2k - h(Xkv, C2v) + L2kv Xkv+ F2kvC2v. (8) 

Then the equations (5), (6) can be rewritten as 

(9) 

(10) 

Considering the equations (9), (10) simultaneously, we can 
eliminate the u:O:known vector x k. That leads to a following 
relationship: 

where 
(12) 

Equation (11) can be rewritten in a more compact form: 

[r;LFlk~; -L":;LF2kv; L-;fv; -L:;L] [ ~~ 1 = Zkv' (13) Vlkv 
V2kv 

Taking into account the relationship (3), the latest matrix 
equation can be rewritten as 

+ [L-;L; -L:;L] (14) 

By introducing the notation 

(15) 
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Gkv = [Llk1v; -L;k1v] , (16) 

Dkv = [Llk1vF1kv; -L;lvF2kv; GkV~k]' (17) 

instead of (14) we get 

(18) 

By minimizing the function 

n T -1 

Qv(A) = L:( DkvA-ZkV) (GkvnGL) (DkvA-ZkV) (19) 
k=l 

according to all the components of vector A, we obtain the 
necessary relationships for the estimation of A, V): and 8: 

V):V+l = [t Dfv (GkvnGL) -1 DkV] -1 , (20) 
k=l 

-\v+1 = V):v+l t Dfv ( GkvnGfv ) -1 Zk, (21) 
k=l 

8k,V-f1 = ~kav+1' (22) 

The recursive estimation process begins with c = Co, 80 = 0 
and continues until the value 

~v+1 = mfx(:XjV+1 - :Xjv); (j = 1, T1 + T2 + p) (23) 

becomes sufficiently small. The whole estimation algorithm 
can be defined by the equations (16), (17), (20)-(22) and (23). 

The estimatibility conditions can be obtained from the 
requirement for the matrix 
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i.e. det =I 0 must be satisfied; besides, initial estimates 210 and 
220 must be sufficiently close to the genuine values ci and ci· 

3. Computer-aided simulation of the general pa­
rameter and systematic errors estimation algorithm. 
The efficiency of the obtained general estimation algorithm 
can be illustrated by the results of computer-aided numerical 
solution of a simple problem. 

Let us consider a model, describing a static system and 
observations, in the following form: 

(25) 

Y2k=axi+82 (k=l,s), (26) 

where a is an unknown parameter, that needs to be estimated, 
81 and 82 are systematic measurement errors, that must also 
be estimated. We assume, that there are no random measure­
ment errors. It is necessary to estimate the scalar parameter 
a and systematic errors 81 and 82 by the observations listed 
in the Table 1. 

Table 1. Signal measurements 

k 1 2 3 4 5 

Y1k 2 3 4 5 6 

Y2k 3 6 11 18 27 

The following relations were obtained for the calculation 
of estimates ~v and 62v : 

Xkv = Y1k - ~v, ~o = 0, XkO = Ylk, (28) 
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(29) 

G kv = [1 __ ",_",1_] 
, 2av X k(v-l) 

(k = 1, s; v = 0,1, ... ). (30) 

The estimate of the parameter a can be obtained via least­
squares method according to the equation: 

(v=1,2, ... ). (31) 

T,he genuine values in this case are: a* = 1, 8i = 1, 82 = 2. 

Investigation of two component estimation algorithms 
was accomplished. Algorithm No 1: in the first step the pa­
rame~er a i~ being estimated according to (31) with ao = 0 
and 810 = 820 = 0, then 81 and 82 are being estimated, us­
ing the already obtained estimate a1; in the second step first 
of all the parameter a is being estimated, using estimates 811 

and 821 , and then the estimates 812 and 822 are obtained, us­
ing the estimate a2, and so on. Algorithm No 2: in the first 
step ",aI, 81 alld 82 are being estimated, using the initial values 
aD, 810 and 820 ; in the second step a, 81 , 82 are being esti­
mated, using recently obtained estimates aI, 811 and 821 and 
so on. 

The resulting estimates are listed in the Table 2. The 
obtained results prove, that algorithm No 1 is much more 
effective than the algorithm No 2. Besides the initial value 
ao nnecessary for the first algorithm, while for the 
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Table 2. Estimates of the parameter a and systematic er­
rors 81 and 82 

AIRo- Estimate values in the first 6 steps 
rit m of the i estimation process z 

N° 0 1 2 3 4 5 I 6 
...... 

- 0.7317 1.1248 1.0113 1.0001 1.0000 1.0000 all 

1 8111 0 1.3666 11.041 1.0004 1.0000 1.0000 1.0000 
8211 0 3.0000 2.13442.0016 2.0000 2.0000 2.0000 
all 0.5 0.7317 1.5649 0.6805 0.958 0.980 1.0007 
...... 

2 8111 0 2.0000 0.5654 1.090 0.9577 1.0018 0.99926 
8211 0 3.0000 3.0000 3.5435 2.008 2.0018 2.0000 
...... 

1.5 0.7317 0.8115 1.0518 0.986 0.9993 0.9999 all ...... 
3 8111 o 0.6666 1.122 0.9716 0.9986 1.0002 1.0000 

~II 0 3.0000 2.111 2.014 2.0008 2.0000 2.0000 

second algorithm it must be sufficiently close to the genuine 
value (e.g. with ao ~ 0.3 the estimation process is unstable). 

4. Conclusions 

1. The necessary equations for the calculation of parame­
ter and syste~atic measurement error estimates were obtained 
on the basis of the least-squares method and on the model lin­
earization principle. 

2. The efficiency of the obtained estimation algorithm 
was illustrated by means of digital computer-aided simulation. 

3. Algorithm of the general estimation of model parame­
ters and systematic measurement errors can be applied in the 
solution of different practical tasks of joint estimation, when 
matrix (24) is non singular. 
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