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Abstract. In the application of Dantzig-Wolfe decomposition to block-angular lin
ear programming problems with R natural blocks. it is possible to have from 1 to R 

subproblems structurally while solving all R independent subproblems computationally. 
Early literature on the topic was inconclusive regarding the relative merits of such for
mulations. This paper attempts clarification by characterizing the significance of the 
degree of decomposition as well as presenting extensive empirical results. 
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1. Introduction. Many resource allocation problems involve semi-autono

mous subsystems (e.g., divisions in a firm, regions in an economy) competing 

for limited, shared resources. When such problems can be modeled as a lin

ear program to optimize some system-wide objective, we have what is known 

as the block-an.gular structure with the resource sharing expressed as coupling 

constraints. The Decomposition Principle of Dantzig and Wolfe (1960) pro

vides both an algorithmic approach to solving such problems by a sequence 

of smaller subproblems, and an economic procedure of price-directive decen

tralization. Essentially, a system coordinator has the job of setting prices on 

the shared resources. At any given level of prices, each subsystem is asked 

to determine its own opt~mal activities. Such activities can be translated into 

actual utilization of the shared resources and submitted to the coordinator as 
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proposals. Weighing the proposals from all the subsystems, the coordinator 

can attempt to improve on the system-wide objective by determining the next 

round of prices. The Decomposition Principle shows that this is a finite process 

converging to equilibrium prices on the shared resources. It is well known 

that decentralization cannot be achieved by price-direction alone because the 

unilaterally optimal activities of the subsystems based on the equilibrium prices 
are not feasible system-wide in general. System-wide feasibility can only be 

enforced by the coordinator. For this reason, early literature on the topic set

tled for letting the coordinator determine the final course' of actions for the 

subsystems, making the interpretation of decentralization somewhat awkward. 

It is perhaps less well known (see e.g. Dantzig 1963, Ch. 23) that a better 
alternative is for the coordinator simply to compute the optimal allocation of 

the shared resources based on the equilibrium prices. The subsystems can then 
determine their own activities with the given allocation. This way, the subsys
tems are told what their shares of the common resources are rather than what 

they must do, which should convey a better sense of autonomy and decentral
ization. It turns out that this scheme is also key to the analysis of the degree of 
decentralization. As it is always possible to aggregate subsystems, the question 
is how more or less decentralization affects the process of coordination. Early 

literature (Labro, 1964; Lasdon 1970, Ch. 3; Madsen, 1973) was inconclusive. 
This paper attempts to clarify this issue and to draw some conclusions from 
extensive empirical evidence. 

2. Block-angular linear programs. We consider decision processes in re

source allocation that can be modeled as block-angular linear programs (BLP). 

Such a problem with R blocks has the following form in which vectors and 
matrices are denoted in bold-face. 

(P) 

maximize L CrXr , 

r=l, ... ,R 

subject to L Arxr = ha, 
r=l, ... ,R 

Brxr = r, r= I, ... ,R, 

xr~O, r=I, ... ,R, 

(I) 

(2) 

(3) 

(4) 

where Cr is I x n r , b r is mr x I and all other vectors and matrices are of 
compatible dimensions. Each index r from 1 to R represents one of the R 
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subsystems with the corresponding vector of activities (decision variables) Xr . 

The system-wide objective function, given by (1), is the sum of linear objective 

functions Cr Xr for the R subs~stems. bo is the vector of shared resources. 

The consumption matrix Ar transforms activities in subsystem r into consump

tions of shared resources. The balance of system-wide consumption of shared 

resources is expressed in (2). Each subsystem has its own technology ma

trix Br and demand vector br, defining local constraints through (3). Finally, 

the activity levels are required to be non-negative. The problem is then to 

determine activity levels for all the subsystems that are feasible within the re

spective subsystem, that collectively satisfy the balance of shared resources, and 

that maximize the system-wide objective function. Or, letting each subsystem 

optimize its own objective while vying for the shared resources, an optimal 

allocation of the latter is sought to maximize the sum total of the objectives. 

3. Dantzig-Wolfe decomposition. First, we summarize the Dantzig-Wolfe 

(1961) decomposition algorithm (see Ho ( 1987) for recent development in this 
approach). Then its interpretation a'l decentralized planning wiil be given. Let 

Fr = {xr I Brxr = br, Xr ~ O} be the set of all feasible solutions to subsystem 

r; and Xr = {x~; k = 1, ... , I<r I x~ is an extreme point of Fr} be the set 
of extreme points of Fr. For simplicity, we assume that Fr is nonempty and 

bounded. It is then a bounded polyhedral convex set. Using the fact that any 

point in such a set can be represented by a nonnegative convex combination 

of its extreme points, one can rewrite (P) in the following equivalent extremal 

form: 

Max L: L: (CrX~)Ari' 
r=l, ... ,Ri=l, ... ,Kr 

S.t L: L: (ArX~)Ari = ba, 
(E) r:::l, ... ,Ri:::l, .. ,Kr 

E Ari = 1, r = 1, ... , R, 
i:::l, ... ,Kr 

Ari~O, i=I, ... ,Kr, r=I, ... ,R, where x~c:Xr. 

Thus solving (E) is equivalent to solving (P). Since I< is often very large 

and not known a priori, a restriction strategy is applied to solve (E). The 

Dantzig-Wolfe decomposition algorithm uses a subset of Jr extreme points in 

Xr to formulate a (Restricted) Master Problem, say, 
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Dual Variables 
r=l, ... ,R i=l, ... ,Jr 

s.t. L L (ArX~)Ari = bo, 
r=l, ... ,R i=l, ... ,Jr 

L Ari = 1, r = 1, ... , R, 
i=l, ... ,Jr 

Ari ~ 0, i = 1, ... , Jr, r = 1, ... , R. 

During the k-th cycle of the algorithm, (1\J k) is solved. Let (/Tk , uT, ... , 
u~) be the optimal dual solution. The vector /T k is known as the price vector 

corresponding to the coupling constraints. To see if the objective can be further 
improved by introducing any extreme point in X not yet included in fl;fk, the 

following subproblem is solved. This is essentially an implicit simplex pricing 
step using the prices /T k • 

max v~ = (cr - 7Tk Ar )xr - u~, 

S.t. Brxr = br, 

Xr ~ O. 

If v; ~ 0, then nothing in Fr can improve the objective. If this holds for all 
r, then the solution of (Alk) is optimal for (E). Otherwise a new extreme point, 

called a proposal, with v; > 0 can be included in (Mk+ 1) for an improved 
solution in the next cycle. Convergence is finite as each Xr is a finite set (see 

Dantzig (1963». Furthermore, if l is the dual optimal solution to (Sn, then 

(7T k , pT . .. , p~) is a dual feasible solution to (P) and hence provide..'> an upper 
bound Zk on the maximum value of z. Therefore, in practice, we can stop the 

decomposition algorithm if !Zk - zk! < [ for some [ ~ O. 

4. Decentralized resource allocation. The Dantzig-Wolfe decomposition 

algorithm can be interpreted as a process of price-directive coordination of the 

subsystems which are allowed to optimize their own objectives while vying for 

the shared resources. The master problem (1\i[k) plays the role of coordinator 

who sets the prices 1rk on the shared resources boo At such given price lev
els, each subsystem seeks to maximize its own objective while "paying" for 

the consumption of shared resources. This process is the subproblem (S~) 
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whose solution gives rise to a proposal (proposed comsumption) Arxr . If the 

corresponding value of v~ is positive, it signals to the coordinator that the pro

posal can be used to improve on the system-wide objective. After collecting 

all such profitable proposals from this round of coordination, the coordinator 

maximizes the system-wide objective over all available proposals. By taking 

convex combinations of proposals coming from each subsystem and requiring 
such combinations to satisfy the balance of shared resources, the coordinator 

can maintain system-wide feasibility while improving on the objective. This is 

the process involved in the master problem (Mk+l). 
Considering each sequence of Master and Subproblems as a cycle in the 

coordinating process, equilibrium prices 7r* on the shared resources will be 
obtained after a finite number (k*) of cycles. At such prices, no subsystem will 

be able to generate a profitable proposal. The optimal activity levels for each 

subsystem is given by the covex combination of proposed solutions: 

L: (X~)A;i' (5) 
i=l, .. "k* 

where A;i are the corresponding optimal weights in the master problem (M k*). 
This illustrates the well known fact that decentralization cannot be achieved 

by price direction alone. Indeed, given only 7r*, it is in general impossible 
for a subsystem to recover the optimal solution in (5) by itself. Nonetheless, 

having the subsystem activities dictated by the coordinator according to (5) 

obviously detract., from the spirit of decentralized planning. Fortunately, a 

better alternative exists. From (Jl1k-), the coordinator can compute the optimal 

allocation of the shared resources to each subsystem as: 

b~r::: L (Arx~ )A;j. (6) 
i=l, ... ,k* 

Given this allocation, each subsystem can then proceed to determine its own 

activities by solving: 

(8~) 
s.t. Arxr = b~r 

Brxr = br, 
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This way, the subsystems are accorded more autonomy procedurally. We 

show below that this concept is also key to a better understanding of the degree 

of decentralization. 

5. Degree of decentralization. Since subsystems can be aggregated there is 

a choice of the degree of decentralization. Given a maximum of R subsystems 

as in the above development, it is possible to decompose with anywhere from 1 

to R subproblems simply by various arbitrary grouping of the subsytems. Let 

us examine first the extreme case of using a single subsystem. The master and 

subproblems become: 

(SI~) 

Maxzk = L [ L (CrX~)]AIi 
i=I, ... ,Jl r=l, ... ,R 

s.t. L [ L (ArX~)] AIi = bo, 
i=I, ... ,Jl r=I, ... ,R 

L AIi = 1, 
i=l, ... ,Jl 

AIi~O, i=I, ... ,Jl. 

max v~ = [ L (cr - 'Irk Ar )Xr] - (j~, 
r=I, ... ,R 

s.t. Br Xr = br ; r = 1, ... , R, 

Xr~O; r=I, ... ,R. 

Dual Variables 

Note that there is now a single convexity constraint (instead of R) in the 

master problem. Moreover, the subproblem (SIn can still be decomposed and 

solved subsystem by subsytem as before because their constraints do not inter

act. The only difference is that once the subsystem activities Xr are determined, 

an aggregate proposal 

L (Arx~) (7) 
r=I, ... ,R 

is formed and submitted to the master problem. This apparent decomposability 

of the aggregate subproblem may lead one to specUlate that the formulations 

with 1 or R convexity constraints are totally equivalent. That this is not the 

case can be shown using the concept of resource allocation described above. 
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Indeed, with only one set of optimal weights Ai;, it is not possible to allocate 

the shared resources to the subsystems as done with (6). Therefore, in this case 

there is actually no decentralization at all although algorithmically, it is still 

possible to solve the entire problem by a sequence of R subproblems and then 

applying the formula in (5) to construct a solution. Using this same argument 

to any other grouping of the subsystems implies that the number of convexity 

constraints is a direct measure of the degree of decentralization. 

6. Optimal degree of decentralization. Having clarified its meaning, we 

can now address the question of what effect the degree of decentralization has 

on the process of price-directive resource allocation. Early literature (Labro, 

1964; Lasdon, 1970, Ch. 3; Madsen, 1973) was inconclusive mainly because of 

a preponderance on algorithmic performance and the lack of tools and models 

for significant empirical results. In this work, we used an adaptation for Apple 

Macintosh computers of the advanced implementation of the Dantzig-Wolfe 

algorithm described in Ho & Sundarraj (1989). Ten test problems from diverse 

applications were included. Their origins and characteristics are summarized 

in Table 1. 

Table 1. Characteristics of test problems 

Problem Blocks Rows Columns Nonzeros Application 

Coupling Total 

EGD085 10 8 1443 680 3635 Electric Dispatch 

FIXMAR 4 18 325 452 2601 Production Planning 

FORESTRY 6 11 402 603 3794 Forestry Model 

MEAT12 6 46 381 311 2992 Ingredient Mix 

MEAT31 8 11 384 577 4284 Ingredient Mix 

MEAT43 9 16 648 605 4726 Ingredient Mix 

MEGE06 6 17 1011 687 6066 Electric Capacity Expansion 

MEGE08 8 17 1343 908 8200 Electric Capacity Expansion 

MRP3 3 31 301 522 2010 Material Requirements Planning 

MRP5 5 61 961 1740 8450 Material Requirements Planning 
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As a mea<;ure of the amount of coordination necessary to achieve price-di

rective resource allocation, we focused on the number of cycles required hy 

the Dantzig-Wolfe algorithm. To ensure comparability of the experiments, the 

option of generating only a single proposal at the optimality of each subproblem 

wa<; chosen. Also, the tolerance for convergence (the E discussed in §3) was set 

at the zero tolerance in all cases to require an exact optimal solution. T\\'o sets 

of experiments were conducted. 'The first compared the effect of using a single 

suhprohlcm to that of using the maximum number of suhprohlems for all the 

test prohlems. The results are shown in Tahle 2. Except in onc case, complete 

decentralization required less coordination as measured hy the number of priee

proposal cycles than no decentralization. The exception was with a model for 

electric capacity expansion that required unusually few cycles and where the 

master prohlem is highly degenerate. While the difference hetween the 8 or 9 

cycles ohserved may not he of significance, it does provide a counter example. 

Tahle 2. Numher of cycles with R suhprohlems vs I suhprohlem 

Problem H. I\umher of cycles 

(Blob) R suhsprohlems I subproblcm 

EGn085 10 8 14 

MEGE06 6 9 9 
MEGE08 8 9 8 

FORESTRY 6 16 55 

MEAT I 2 6 39 136 

MEAD] 8 13 36 

MEAr43 9 11 43 

MRP3 3 ]6 26 

MRP5 5 45 89 

FIXMAR 4 36 128 

For the second set of experiments, three of the test prohlems that can be 

suitably dccomposed into various numbcr of subprohlems werc used. 'Ille num

ber of pricc-proposal cycles required for the various degrecs of decentralization 
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are summarized in Table 3. Again, the results support the general observation 

that the amount of coordination decreases \vith increasing degree of decentral

ization. Note that we are not concerned with the actual amount of computation 

or information involved in the process, but simply the number of times the 

coordinator would have to adjust prices on the shared resources and solicit 

proposals of activities from the subsystems. Naturally, fewer cycles should 

also imply less total effort on the part of each subsystems. That such effort is 

undertaken by more subsystems should not matter because in decentralization, 

parallel processes are flot additive. Early literature on the topic was misleading 

by confounding the trade-off between work per subsystem and the number of 

subsystems which implied a need for the determination of an optimal degree 

of decentralization. Based on our perspective and observation, the empirically 

optimal degree of decentralization is the maximum number of subsystems. 

Table 3. Number of cycles vs number of subproblems 

Number of Number of cycles for problem 

Subproblems FIXMAR FORESTRY MEATl2 

6 16 39 

5 25 78 

4 36 25 77 

3 49 26 80 

2 61 27 98 

128 55 136 

7. Conclusion. We have shown that the number of convexity constraint'> 

used in the coordinating master problem in the Dantzig-Wolfe approach to 

price-directive resource allocation provides a meaningful measure of the degree 

of decentralization. Also, the number of price-proposal cycles, i.e., the number 

of times the coordinator needs to adjust prices and solicit proposals of activities 

from the subsystems is an appropriate measure of the amount of coordination 

required by the process. Based on these arguments, empirical results are pre

sented to suggest that in most cases, the optimal degree of decentralization is 

the maximum number of subsystems. 
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APIE DEKOMPOZICLJOS KRITERLJlJ 

TIESINIAME PROGRAMAVIME 

James K. HO ir Etienne LOUTE 

Staripsnyje nagrinejami resursq paskirstymo tarp daugelio padaliniq arba tarp dauge
lio regionq u~daviniai. Sie u~daviniai suvesti i blokines-kampines struktiiros tiesinio 
programavimo uMavinius. Nagrinejamas Dantzigo-Wolfo dekompozicijos aIgoritmas. 
Resursq paskirstymo u~davini bandoma sr~sti ji skaidant i dalinius u~davinius. Ieskoma 
optimaJaus dekompozicijos kriterijaus. 


