
INFORMATICA, 1996, Vol. 7, No. 3,281-294 

LOAD BALANCING PROBLEM FOR PARALLEL 
COMPUTERS WITH DISTRIBUTED MEMORY 

Raimondas CIEGIS 

Institute of Mathematics and Informatics 
Akademijos 4, 2600 Vilnius, Lithuania 
Email: raimondas.ciegis@fm.vtu.lt 

RamunasSABLINSKAS, Juozas SIMKEVICIUS 

Vytautas Magnus University, 
Vileikos 8, 3000 Kaunas, Lithuania 

Jerzy WASNIEWSKI 

The Danish Computer Center for Research and Education 
UNI-C, DTH, Bldg. 305, 
DK-2800 Lyngby, Denmark 

Abstract. This paper deals with load balancing of parallel algorithms for distributed­
memory computers. The parallel versions of BLAS subroutines for matrix-vector product 
and LU factorization are considered. Two task partitioning algorithms are investigated 
and speed-ups are calculated. The cases of homogeneous and heterogeneous collections 
of computers/processors are studied, and special partitioning algorithms for heteroge­
neous workstation clusters are presented. 

Key words: parallel algorithms, load balancing, parallel virtual machine, distributed­
memory computers. 

1. Introduction. The load balancing is one of the most important prob­
lems for constructing efficient parallel algorithms (Golub and Van Loan, 1991; 
Freecman and Phillips, 1991). For many problems we can assume that compu­
tation/communication ratio is sufficiently high and we expect to achieve linear 
speed-up on p processors (at least for sufficiently large problems). Parallel 
computation is load balanced when each processor has the same amount of 
useful calculation and communication during the whole computation time. 

We consider local-memory computers when static task partitioning algo­
rithm must be used because of redistribution of the workload during the com-



282 Load balancing problem for parallel computers 

putation is too expensive. Such algorithms are important in the ca<;e of parallel 
computers with slow conununication in comparison with computation rate . 

. This situation is typical for distributed computing on workstation clusters, for 
example by using Parallel Virtual Machine (PVM) software system (Geits et 
al., 1993). In the latter ca<;e the load balancing problem is even harder as we 
must take into account the possibility of heterogeneous computer clusters. 

Let us assume that the implementation of some numerical algorithm could 
be splitted into parts which are distributed among processors. Such work 
distribution in advance is called the static scheduling. We note that there are 
three different ca<;es to be considered. In the first case the local subtasks have 
different computational complexity and we can not estimate this complexity a 
priori. Examples of such algorithms are numerical integration and the bisection 
iterative method for solving non linear equations (Ortega, 1988; Demmel et al., 
1993). In this case the load balancing of static ta<;k distribution could be 
very poor. Then the fJool-of-tasks idea is used to improve the load balancing 
and the mixed approach of dynamic scheduling and static scheduling could be 
employed to reduce the amount of conununication. We will not consider this 
ca<;e in our paper. 

In the second ca<;c all subtasks have equal computational complexity. To 
illustrate our analysis we consider Level 2 BLAS subroutine sgemv which 
produces the matrix-vector product (in fact we are investigating a slightly sim­
plified version of sgemv ). Let us assume that A is an m x n matrix. We can 
express the matrix-vector product a'> m dot product'> 

Yi = ai . X, 

where ai denotes the ith row of A. For parallel computers the rows of the 
matrix A are predistributed among all processors. 

In the third ca<;e the computational complexity of subta<;ks is not equal 
but it could be estimated in advance. To illustrate the analysis we consider 
Level 3 BLAS subroutine sgetrf which computes the LU decomposition of an 
n x 71 matrix A. During the ith stage of Gaussian elimination we deal with an 
(71 - i) x (n - i) suhmatrix of A and the amount of computations is reduced 
at each stage. 

2, The load balancing of parallel implementation of sgem1', Suppose 
that we wish to construct a parallel implementation of sgemv using p proces­
sors. We a<;sume that p ~ 1n, where m is the number of rows of A. Let us 
denote Wi the perfomance rate of ith processor/workstation and Mi the number 
of rows assigned to the ith processor. The computation of m dot products is 
distributed among p processors. In order to get the equitable distribution of 



R. Ciegis et al. 

the work we must solve the following optimization problem 

min max tj =t*, 
111; l~j~p 

subject to the constraints 

M· 
tj = _J, 

U'j 

Ah + Ah + ... + Mp = m, , Mj ~ O. 

283 

(l.a) 

(l.b) 

2.1. The case of homogeneous processors. First of all "ve consider the 
case of homogeneous workstation/processor cluster when perfomance rates of 
all processors are equal, so that we have 

Wj=l, i=1,2, ... ,p. 

Then the solution of (1) is well-known for real-valued 1\11i and it is defined as 

m 
ivlt = lII2 = ... = lvfp = -

p 

The ca.~ in which m is not divisable by p is also handled simply. Let l' = 
l m / p J, where l z J denotes the greatest integer less than or equal to z, and let 
q = m mod p be the reminder of the integer division of In by p. Then we 
allocate 

1''11; = l' + 1, i = 1,2, ... , q 

rows of A to the first q processors and 

Ali = 1', i = q + 1, q + 2, ... , p 

rows to the remaining p - q processors. Notice that for the load-balancing. 
of the sgemv operation it is not important which rows are assigned to each 
processor. 

Next we give efficiency estimates of the obtained parallel implementation of 
sgemv. The communication cost is not included into the analysis. These results 
are well-known but we are giving a brief derivation for the self-completeness 
of our paper (see Golub and Van Loan, 1993; Demme1 et al., J ~93). 

The efficiency of a p-processor parallel algorithm is given by (Golub and 
Van Loan, 1993) 

T(l) 
Ep = pT(p) , 



284 Load balancing problem for parallel computers 

where T( k) is the time required to execute the program on k processors. A 
concept related to efficiency is speed-up Sp, which is defined as 

s = T(l) 
p T(p)" 

For some problems the fastest sequential algorithms do not parallelize and so 
a distinct parallel algorithm is used and the speed-up is defined as 

The speed-up estimate from below for the sgemv algorithm is given by 

s ~ ~ = rp + q ~ rp + 1 = p (1 _ P - 1 ). (2) 
p r + 1 r + 1 r + 1 p( r + 1) 

'Ibis formula can also be obtained by noticing that during r stage..<; all p pro­
cessors are utilized and during the last stage only q processors are utilized and 
p - q processors are idle. The worst case is when r = 1, i.e., m = p + 1, then 
we have 

s _ p+ 1 
p - 2 ' 

and the efficiency of the parallel algorithm is equal to 0.5. This load imbalance 
becomes smaller with increasing r (see Table 1, where the efficiency Ep values 
are presented for p = 10 and different values of r). 

Table 1. Effenciency E lo of the parallel sgemv version. 

REMARK 1. We obtain the result of sgemv operation after two stages when 
m = p + 1. The same speed-up can be achieved using only PI = l(m + 1)/2J 
processors. 

The load balance will be 'improved if we subdivide the last row among 
s processors, calculate partial dot products independently, send them to one 
of the processors and compute the required row-vector product. In practice 
the efficiency of this modification depends on the communication speed of the 



R. Ciegis et al. 285 

network used. If we do not take into account the communication time then 
the optimal number of processors s is obtained by solving the minimization 
problem 

min Csn + s -1) = R(s*). 

Then it follows from the necessary minimization condition that 
2n 

-2' + 1 = 0, 
s 

and we get the optimal number of processors s· = .J2ri'. 
2.2. The case of heterogeneous workstation cluster. In this section we 

consider the case of heterogeneous workstation cluster. Let's assume that 
performance rates of processors satisfy the following inequalities 

Wl:;:; W2:;:;"':;:; wp. 

Then we get the real-valued solution of the minimization problem (1) 
mw· 

!vIj = W J , j = 1,2, ... ,p, 
p 

where Wp is the total performance rate of parallel computer (or virtual parallel 
computer) 

l-Vp = Wl + W2 + ... + wp. 

We assign to the jth proccesor the following number of rows 

M · = lmWjJ J W' j = 1,2, ... ,p. 
p 

Then we only need to distribute the remaining q rows, where 

q = m - (Ml + M2 + ... + Mp) :;:; p - 1. 

The algorithm for solving this problem is given in Fig. 1. 

For j = 1 to p 
t . _ Mj + 1 
J -

Wj 

For i = 1 to q 
tk = min {tj} 

ll!O;jl!O;p 

!vh:= Mk + 1 
Ivh + 1 

tk = ---

Fig. 1. The distribution of remaining q rows of A. 

(3) 



286 Load balancing problem for parallel computers 

The idea of the algorithm is to assign an additional row to the processor 
which will finish this new work first. This process is repeated q times. 

EXAMPLE 1. Suppose we have p = 4 processors and m = 130 rows. 
Let's assume that the relative perfomance rates of processors are the following 

Wl = 0.129, W2 = 0.202, W3 = 0.349, W4 = 0.620. 

In the first stage of the algorithm we assign the number of rows given by (3) 
to each processor 

Ah = 12, M2 = 20, M3 = 34, 11114 = 62. 

The remainder is equal to q = 2. It is interesting to note that the ith processor 
will finish its part of work in time ii, where 

i1 = 93, i2 = 99, i3 = 97, i4 = 100. 

Additional row added to 111) would result in the following computation times 
for each jth processor 

t1 = 100.8, t2 = 104.0, t3 = 100.3, t4 = 101.6. 

Hence, the additional row should be assigned to the third processor and we 
will have M3 = 35. If the second additional row is also added to the third 
processor it will be busy for t3 = 103.6. So we see, that this row must be 
assigned to the first processor and finally we have the following numbers of 
rows assigned to processors 

j\11 = 13, M2 = 20, 1'vI3 = 35, 1\14 = 62. 

The sgemv operation will be finished in time t = 100.8. 

3. The load balancing of parallel implementation of sgetr f. Now we 
consider the parraUel implementation of LU factorization subroutine sgetlJ. 
l1tere should be taken into account two important details about the algorithm, 
which implementation is given in Fig. 2. 

For i = 1 to n - 1 
For j = i + 1 to n 

lji = aji/aii 

For k = j to n 
ajk := ajk -ljiaik 

Fig. 2. The ijk form of LU decomposition. 



R. Ciegis et al. 287 

We can see that at the ith stage of elimination the ith row of A is used 
to modify all the remaining n - i rows of the submatrix. This means that the 
number of modified rows is reduced by one at each stage. At the same time 
we are dealing with an (n - i) x (n - i) submatrix of A and computation 
involves O((n - i)2) operations. We can see that computation complexity of 
the ith subtask is also reduced. 

The load balancing of parallel implementation of sgetif depends on ap­
propriate data distribution. We will consider two popular distributions of the 
matrix A (Golub and van Loan, 1993; Ortega, 1988) 

• by blocks of rows, 

• scattered row distribution. 

We will investigate the efficiency of these distribution algorithms for ho­
mogeneous workstation clusters and will give modifications of the algorithms 
for heterogeneous clusters. In order to prove more general results we will also 
investigate the problem for which the number of subtasks is reduced by one at 
each stage (like in sgetif operation) but the computational complexity of each 
subtask remains constant. 

For convenience we assume that the number of rows n is divisible by p, 
i.e., n = pr. 

3.1. Homogeneous cluster. Block distribution. Subtasks of constant 
complexity. In this section we assume that performance rates of all processors 
are equal. In a block row distribution consecutive rows of A are grouped 
into blocks and allocated to different processors. Then ith processor has rows 
(i-l)r+ 1, (i-l)r+2, .... (i-l)r+r. As it follows from the algorithm given 
in Fig. 2, if a block row distribution is employed then we will have a situation 
in which the first processor becomes idle after r stages, the second processor 
becomes idle after 2r stages, and so on. We will estimate the efficiency of such 
distribution. In this section we will assume that computational complexity of 
all subtasks is constant. Let the time unit be equal to the time used to modify 
one row by one processor. 

Then the time required to execute the program on one processor is given 
by 

n-l . n-l. n(n _ 1) 
T( 1) = ~) n - z) = L: z = 2 .. 

i=l i=l 

(4) 

On a p processor computer the execution of stages 1,2, ... n - r requires r 
time units. Starting from the (n - r + l)th stage only one processor continues 



288 Load balancing problem for parallel computers 

calculations and the time estimate (4) can be used. In detail, we have 

n-r n-1 

T(p) = L I' + L (n - i) 
i=1 i=n-r+1 

=(n-r)r+ 1'(1'-1) = r(2n-r-l). 
2 2 

Then the speed-up of the parallel algorithm with a block row distribution is 
given by 

s _ T(1) _ n(n - 1) n - 1 
P - T(p) - r(2n - 1> - 1) = P (2 _ }) n - 1 . 

If p is fixed and we choose n sufficiently large then 

p P 
Sp-+~::::i-

2 - - 2 
p 

We can see that the efficiency of this distribution algorithm is only 0.5. The 
same result is also valid in the case when l' is fixed and n is sufficiently large. 

3.2. Homogeneous cluster. Block distribution. LV decomposition. In 
this section we will modify the estimates obtained in Sect. 3.1. For the case 
of LU decomposition we must take into account that the time ti required to 
modify one row at ith stage is given by 

t . _ (n + 1 - i) ,- -'------'-. 
n 

Then we have that the program execution on one processor requires the time 

T(l) = ~ I:(n - i)(n + 1 _ i) = (n - 1)(n + 1). (5) 
n ;=1 3 

For p processors we obtain 

I' n-:i 1 
T(p) =- ~(n + 1- i) +-

n-rL... n 
;=1 i=n-r+1 

n-1 

L (n-i)(n+l-i) 

l' 2 = 2n ((n - r')(n + I' + 1) + 3'(1'2 - 1)). 



R. Ciegis et al. 289 

Hence, the speed-up of the parallel sgetrf algorithm with a block row distribu-
tion is given by . 

If p is fixed and we choose n sufficiently large then 

2p 2p 
Sp --+ --1- ~-. 

3- - 3 p2 

We can see that the efficiency of the sgetrf operation is 2/3. It is 4/3 times 
larger then the efficiency of the algorithm from Sect. 3.1. 

3.3. Homogeneous cluster. Scattered row decomposition. In general 
scattered row distribution a block of consecutive p rows is allocated to different 
p processors. For example, if a wraparound approach is adopted then row k is 
assigned to processor (k -1) mod p. There, for conveniece, we have numbered 
processors 0, 1, ... ,p - 1. For the scattered row distribution the difference 
between numbers of rows allocated to different processors remains not greater 
than one during all the stages of computations. Hence we have a satisfactory 
load balance and processors begin to become idle only after n - p stages. 

First we assume that computational complexity of all subtasks is constant. 
It is easy to see that each of the first p - 1 stages will be accomplished in r 

time units, each of the next p stages will finish after r - 1 time units, and so 
on. Hence the time required to execute the program on p processors is given 
by 

r-l () . n l' + 1 
T(p) = (p - l)r + I>(1' - z) = - r. 

. 2 
1=1 

The time T(l) is calculated as in Sect. 3.1 (see (4». Then the speed-up of the 
parallel algorithm with a scattered row distribution is given by 

n(n-1) 71-1 1._ 1 
S- - -p p 

P - n(r' + 1) - 2r - r' + 1 - £. - 7' + 1- £ . 
p p 

We observe that if p is fixed and we choose n sufficiently large then Sp - p. 
In Table 2 the efficiency values Ep are presented for p = 10 and increasing 
values of r. 



290 Load balancing problem for parallel computers 

Table 2. Effenciency E10 for a scattered row distribution 

Similarly we can estimate the efficiency of the parallel sgetrf operation 
with a scattered row distribution. Execution time for one processor T( 1) is 
given in Sect. 3.2 by formula (5). For p processors we obtain 

n 1 r-l (n+1-jp) 
T(p) =;; 2: i + ~ 2.) r - j) 2: i 

i=n+2-p j=l i=n+2-(j+l)p 

In Table 3 we present efficiency values Ep for p = 10 and increasing values 
of r. 

Table 3. Effenciency El 0 for sgetif with a scattered row distribution 

4. Heterogeneous cluster. LV decomposition. Let's assume that proces­
sors are numbered in order of increasing perfomance rates, i.e., 

In the case of a block row distribution we use the algorithm proposed in 
Sect. 2.2. for sgemv operation. In order to illustrate the efficiency of such 
distribution method we will investigate the example of two processors with 
the performance rates Wl = 1, W2 = s. Then we assign to each processor the 
following number of rows 

n 
Ml = -"-, 

1+8 
n8 

M2 = -1-" +8 

Suppose, for convenience, that Ml and lvh are integer numbers. The time 
required to execute sgetif operation on one processor is given by formula (5). 



R. Ciegis et al. 291 

For p = 2 processors we obtain 

T(2) = t (n + 1 - i)M2 + I: (n + 1 - i)(n - 1) 

;=1 ns ;=M, +1 ns 

n2 (2s2 + 6s + 3) n 1 
= 6(1+s)3 + 2(1+s)2 3(1+s)" 

Hence, the speed-up of the parallel sgetrf algorithm is given by 

S 1 2(n 2 - 1)(1 + s)2 
2 = ( + s) n2(2s2 + 6s + 3) + 3n(1 + s) - 2(1 + s)2' 

If we choose n sufficiently large then 

In Table 4 the efficiency values E2 are presented for n = 10,100 and increasing 
values of s. 

Table 4. Effenciency E2 for heterogeneous computer with a block row 
distribution 

s 0.5 1.0 1.5 2 4 
E2 , n = 10 0.645 0.688 0.723 0.751 0.825 

E 2 , n = 100 0.688 0.723 0.754 0.780 0.845 

We conclude that processors numbering order is important for the efficiency 
of distribution algorithm. 

Next we consider the scattered row distribution algorithm for heterogeneous 
workstation cluster. In this case we must define not only the total number of 
rows assigned to each processor but also specify which rows are assigned. The 
algorithm for solving the load balancing problem (1) is given in Fig. 3. 

EXAlViPLE 2. Suppose we have p = 6 processors and Tt = 100 rows. Let's 
a<;sume that the relative performance rates of the processors are 

U'l = 1, U'2 = 1.5, W:3 = 2.5, W4 = 3.11, U'5 = 3.6, W6 = 4.3. 



292 Load balancing problem for parallel computers 

For j = 1 to P 
Mj = 0 

1 
tj =-

Wj 

For i = n to 1 
tk = I min {f i } 

l~j~l' . 

Alk : = l'vh + 1 
ith row is assigned to kth processor 

Jlh + 1 
tk = ---

Wk 

Fig. 3. The scattered row distribution algorithm for heterogeneous 
workstation cluster. 

After scattered row distribution the following rows are assigned to each of 
processors 

RI ={9, 24, 40, 56, 72, 87}, 

R2 ={8, 18, 29, 39,49,61,71,82, 93}, 

R3 ={1, 7, 13,20,27,34,38,46,53,58,65,70, 

79,84,91, 97}, 

R4 ={4, 12, 16,21,26,31,35,43,47,52,57,62,67, 

74, 78, 83, 88, 94, 98}, 

Rs ={2, 5, 15, 19, 23, 28, 32, 37, 42, 45, 50, 54, 60, 64, 

68,73,76,81,86,90,95,99}, 

R6 ={3, 6,11,14,17,22,2.5,30,33,36,41,44,48,51, 

55,63,66,69,75,80,89,96, lOO}. 

Let's compare different distribution algorithm ... TIle total performance rate 
of the given workstation cluster is ~V6 = 16. Suppose that the time required to 
execute sgetrjopcration with n = 100 rows on the first processor is TJ = 160 
time units. Let's denote nl,d, Tbl,i, Tsc t~e times required to execute the same 
program on p = 6 processors for a block row distribution with processors 
numbered in order of decreasing performance rates, for a block row distribution 
with reversed processor numbering order, and for the scattered row distribution, 
respectively. 'Then the following execution time and speed-up results for our 



model problem are obtained 

nl,d = 16.93, 

Sbl,d = 9.4.5, 

R. Cieg is et al. 

nl,; = 14.73, 

Sbl,; = 10.86, 

REFERENCES 

Tsc = 10.38, 

Ssc = 15.42. 

293 

Demmel, J.w., M.T. Heath and H.A. van der Vorst (1993). Parallel numerical linear 
algebra. Acta Numerica, 7, 111-197. 

Freeman, T.L., and C. Phillips (1991). Parallel Numerical Algorithms. Prentice Hall. 
237pp. 

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam (1993). 
PVM 3.0 User's Guide and Reference Manual. Tenessee. 278pp. 

Golub, G.H., and Ch. F. Van Loan (1991). Matrix Computations. The Johns Hopkins 
University Press, Baltmore and London. 636pp. 

Ortega, J.M. (1988). Introduction to Parallel and Vector Solution of Linear Systems. 
Plenum Press, New York and London. 

Received May 1996 



294 Load balancing problem for parallel computers 

R. Ciegis has graduated from the Vilnius University (Faculty of Mathemat­

ics) in 1982, received the Degree of Candidate of Physical and Mathematical 

Sciences from the Institute of Mathematics of Byelorussian Academy of Sci­

ences in 1985 and the Degree of Habil. Doctor of Mathematics from the 

Institute of Mathematics and Informatics, Vilnius in 1993. He is a senior re­

searcher at the Numerical Analysis Department, Institute of Mathematics and 

Informatics. R. Ciegis is also a Professor at the Kaunas Vytautas Magnus Uni­

versity and a Professor and a head of Mathematical Modelling Department of 

Vilnius Technical University. His research interests include numerical meth­

ods for nonlinear PDE, parallel numerical methods and numerical modelling 

in physics, biophysics, ecology. 

R. Sablinskas wa~ born in 1971. After having received his master's degree 

in VMU he ha~ been admited as an engineer in telecommunications company 

Omnitel. In 1995 he has been admited as a visit graduate student in Kau­

nas Vytautas Magnus University. His research interest covers distributed and 
parallel computing, optimization, neutral network models. 

J. Simkevicius is a researcher at the Department of Mathematics and Statis­

tics of Vytautas Magnus University, Kaunas, Lithuania. Scientific interest in­

clude parallel computing, wavelet transform, digital signal processing. 

J. WaSniewski is a senior researcher at the Danish Computer Center for 

Research and Education. He has the Degree of Doctor of Mathematics. His 

scientific interests include parallel computing, mathematical modelling in ecol­

ogy. 

LYGIAGRECIll KOMPIUTERIQ SU PASKIRSTYTA 

ATMINTIMI TOLYGAUS APKROVIMO KLAUSIMU 

Raimondas CIEGIS, Raml1nas SABLINSKAS, 

]uozas SIMKEVICIUS, ]erzzy WASNIEWSKI 

Sis darbas skirtas Iygiagrecill algoritmll, realizuojamll kompiuteriais su paskirstyta 

atmintimi, tolygaus apkrovimo analizei. ISnagrineti BLAS bibliotekos paprogramill 
sgemv ir sgetif lygiagretUs variantai. Analizuojami du duomenll paskirstymo algorit­

mai, t.y. blokinis ir ciklinis paskirstymas, ir apskaiciuoti jll pagreitejimo koeficientai. 

Pateikti ~ill duomenll paskirstymo algoritmll apibendrinimai heterogeniskiems Iygia­
gretiesiems kompiuteriams. Teorine analize iliustruojama skaitiniais rezultatais. 


