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Abstract. Multidimensional scaling (MDS) is well known technique for analysis of 
multidimensional data. The most important part of implementation of MDS is minimiza
tion of STRESS function. The convergence rate of known local minimization algorithms 
of STRESS function is no better than superlinear. The regularization of the minimiza
tion problem is proposed which enables the minimization of STRESS by means of the 
conjugate gradient algoritm with quadratic rate of convergence. 
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1. Introduction. Multidimensional scaling (MDS) is a technique for anal
ysis of multidimensional data widely usable in different applications (Mathar, 
1995; Wish and Carrol, 1982). The theoretical and algorithmic aspects of 
MDS are considered, e.g., in (Groenen, 1993; Mathar, 1989; de Leeuw and 
Heiser, 1982; Mathar, 1995). Let us give a short formulation of the prob
lem. The pairwise dissimilarities between n objects are given by the matrix 

(6)ij, i,j = 1, ... ,n. The points Xi ERn, i = 1, ... ,n should be found 
which interpoint Euc1idean distances fit given dissimilarities. The embedding 

Euc1idean space Rm normally is two dimensional (m = 2), but the other di

mensionalities may be also interesting for some applications. To find the points 
Xi the STRESS function f(x) should be minimized, where 

n 

f(x) = L wij(dij(X) - 6ij)2, 
i<j 

(1) 

x = (xu, ... , X n 1, X12, ••. , Xnm) and dij(X) denotes the Euc1idean distance 
between the points x i and x j . It is supposed that the weights are positive: 
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Wij > 0, i, j = 1 ... n. On one hand, MDS is related to global optimization 

as a difficult problem (Mathar and Zilinskas, 1993, 1994) and on the other 

hand as a tool for visualization of the optimization process (Zilinskas, 1993). 

Even the local minimization of f(x) is not easy: normally the problems are 

of large dimensionality N = n x rn, the objective function is not everywhere 

differentiable. The known methods have the rate of convergence no better than 

superlinear (Mathar, 1989, 1995). In the present paper some new features of 

f(x) are proved and regularization of the minimization problem is proposed 

enabling the local minimization of f( x) with quadratic rate of convergence. 

2. Local descent trajectory escapes of nonditTerentiability. The following 

statement generalizes the well known result (de l..eeuw, 1984) that f(x) is 

differentiable at a local minimum point. 

Theorem 1. Let L(t), -00 < t < 00 be a line in RN, contailling point 

E at which f(· ) is differentiable. Then f(· ) is differentiable at any point 

L(t*) E RN where t* is local minimum point of <p(t) = f(L(t)). 

Proof. The function f(·) is differentiable everywhere except the points 

satisfying the condition dkl(X) = 0, i.e., Xkr = Xlr, r = 1, ... , m. If the 

point X is on the line L(t), then L(t) may be represented as 

L(t) = {X: Xir = Xir + t· (eir - Xir), 

i= 1, ... ,n, r= 1, ... ,rn}, 

and the function <p(t) = f(L(t» may be expressed as follows 

where Ikl is set of indexes {(i,j), i < j} without k,l, Wk/(t) is continously 

differentiable at the point t = 0 and akl > O. A point of local minimum of 

function Wkl(t)-ak/JtJ, never coincides with t = 0: if JW~,(t)J > akl then <p(t) 
is increasing or decreasing at t = 0, if JWkl(t)J ~ akl then <p(t) attains a local 

maximum at t = O. Therefore, the point X = L(O) at which function f(X) is 

not differentiable never coincides with a point of local minimum of f(X) on a 

line. 
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COLLORARY. Let a local descent method defined by the recurrent formula 

Xk+ 1 = X k +tkSk where f(Xk+l = mint f(X k +tSk) is started at the point 

of differentiability of f(X). Then no point of the sequence X k coincides with 

any point of non differentiability of f(X). 

3. Minimization of STRESS by an algorithm of conjugate gradients. 
Since a trajectory of local descent started at the point of differentiability of 

f( x) escapes of the points of nondifferentiability, then an algorithm with a 

high convergence rate may be applied to minimize f( x). The quasi Newton 

methods normally are not considered as the prospective candidates because of 

large dimensionality of the practical problem. For the test problems of modest 

dimensionality quasi Newton methods perform very well (Mathar and Zilinskas, 

1993). With respec~ to the convergence rate, quasi Newton and conjugate 
gradient methods are similar, but the later are more suited to solve problems of 

large dimensionality. The standard version of the conjugate gradients algorithm 

(Poliak, 1988) is as follows: 

Xk+l = Xk + tkSk, tk = argmin f(X k + tSk), (2) 
t>o 

For the one dimensional minimization of <p(t) = f(X k + tSk ) the Newton's 
method may be applied 

<p' (tv) 
tv+1 = tv - <p"(tv)' (3) 

However, we do not have a proof that <p" ( t) > 0 along all descent trajectories. 

Therefore, if during the one-dimensional minimization the condition <p"(t) :::; 0 
would be satisfied, then the Newton's method would be changed to the more 

sophisticated one dimensional algorithm. To simplify the formulas of deriva

tives in (3) let us denote the point in RN corresponding to tv by X and the 

descent direction by S. Then only the derivative values at point t = 0 are used 
in (3): 
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4. Rate of the convergence. It is well known (Poliak, 1988) that the method 

(2) converges to a local minimum with the quadratic rate if the following con
ditions are satisfied: 

1) the Hessian of f(X) is positively defined at the local minimum point, 

2) the Hessian of f(X) satisfies the Lipshits condition in the vicinity of 
local minimum point. 

The first of these conditions can not be satisfied for the function f(X) be

cause it is invariant with respect of translation: f(X) = f(X + C) for every 

C = (Cl, ... , Cl, ... , Cm, ... , Cm). The equality <p(t) = f(X + tC) = const 
implies the equality <p"(t) = -c\72 f(X)C = 0 and C\72 f(X)C = 0, which 
hold also for a local minimum point. Let us regularise the minimization prob

lem supposing X11 = X12 = ... = X1m = O. Then the dimensionality of 
minimization problem is decreased by m and the invariance in respect of trans

lation is excluded. We will show that the Hessian becomes positively defined 
at the local minimum point X, satisfying the condition of non degeneracy of 

embedding: for each h there exist the pair (i,j) such that Xih =f:. Xjh' This 
condition means that the embedding, defined by the local minimum point X, 

can not be arranged in the subspace of lower dimentionality than m. 

Let X be a local minimum point of fO in respect of X with X11 = 
X12 = ... = X1m = 0, and let S be a direction in RN satisfying the condition 

S11 = S12 = ... = Slm = O. Since X is a local minimum point of fO then 0 
is local minimum point of <p(t) = f(X + tS) implying: 

<p'(O) = 2 L (1 - d. ~(ii») f)Xih - Xjh)(Sih - Sjh) = O. (6) 
i<j 'J h=l 

On the other hand 
m 

<p"(0) =2 L (1 - bijdij(X») L:(Sih - Sjh)2+ 
i<j h=l 
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" 6ij ~( )2( )2 + 2 L....t d~.(X) L....t Sih - Sjh Xih - Xjh . 
i<j SJ h=l 

(7) 

Since (6) is valid for any direction S, it is valid also for S = X. Therefore 

the first sumrnand in (7) is equal to O. The second sumrnand is non negative 

implying tp"(O) ~ o. Let us suppose tp"(O) = 0, then 

Since d 1j f. 0, j = 2, ... , n then for each j there exists h such that Sjh = 
Slh = O. Let us include into the list Ih the indexes j such that Sjh = O. It was 

supposed that for each h there exist such a pair (i, j) that Xi h f. x j h, implying 

the existence of Xi(h),h f. 0, h = 1, ... , rn, and i(h) E Ih' Therefore, each 
list h contains at least two elements: 1, i( h) Eh, h = 1, ... , rn. Let us 

suppose i(h) = 2, i.e. X2h f. Xlh' Then for i ~ Ih there holds the inequality 

Xih f. X2h· However, the equality (S2h - Sih)2(X2h - Xih)2 = 0 should be 

satisfied for all i = 3, ... , n, and Xih f. X2h implies S2h = Sih = 0, and finally 

Sih = 0, i = 1, ... , n. 

If i(h) = n then (Snh - Sih)2(xnh - Xih)2 = 0, i = 2, ... , n - 1 implies 

Sih = 0, i ~ h, and finally Sih = 0, i = 1, ... , n. A bit more long but similar 
analysis of the case 2 < i(h) < n completes the proof that the assumption 

tp"(O) = o implies the equality IISII = O. Sincetp"(O) = S\72(X) > 0, IISII > 
0, then the Hessian of regularised STRESS function is positively defined. 

To show that the Hessian of STRESS satisfies Lipshitz condition in the vicin

ity of local minimum point it is sufficient to show that the second derivatives of 

the function satisfy Lipshitz condition under the same assumption. At the local 

minimum point X the inequality dij > 0 holds implying that all the following 

functions 

{)2 f~X) = 2(n _ 1) + 2 2: bkj((Xkh - :jh)2 - d~j(X)) , 
{)xkh i# dkj(X) 

{)2 f(X) _ -2 26k3(-(Xkh - X3h? + d~8(X)) 
-:----'-~ - + 3 ' 
{)Xkh X3h dk3 (X) 

{)2 f(X) _ _ 26k.(Xkh - X.h)(Xkr - x sr ) 

{)l:khl:3r - d~s(X) 



A. Zilinskas 273 

are Lipshitzian. Summarazing the conclusions, the following theorem may be 

formulated. 

Theorem 2. The conjugate gradient algorithm (2) converges to a non 

degenerated local minimum of regularised STRESS with the quadratic rate 
of convergence. 
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KVADRATINIO GREICIO DAUGIAMACIQ SKALIQ 

SUDARYMO ALGORITMAS 

Antanas ZILINSKAS 

Vienu i§ reik§mingiausi1.l daugiamal!i1.l duomen1.l analizes metod1.l yra daugiamal!i1.l 

skalitt metodas, kuri realizuojant reikia minimizuoti STRESS funkcijll. Zinomtt lokalios 
minimizacijos algoritm1.l STRESS funkcijai minimizuoti konvergavimo greitis yra ne 

geresnis negu supertiesinis. Siame straipsnyje pasiUlyta reguliacija, leid~ianti sujungtini1.l 

gradienut metodll pritaikyti STRESS minimizavimui, pasiekiant kvadratini konvergavimo 
greiti. 


