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Abstract. This paper discusses the inversion of linear peri
odically time-varying (LPTV) digital filters using the idea of con
verting the LPTV filter to the block time-invariant filter. Explicit 
expressions are given to determine the inversion of LPTV filters. 
Controllability, observability and stability of the inversion of LPTV 
filters are discussed. 
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Introduction. Most of the analysis methods for a disc
rete-time signal processing assume that the filter is time in
variant or close enough to neglect the effects. In fact, there 
is a large number of important applications, where the fil
ter is time-varying. LPTV filters form an important class of 
time-variant filters. Many mechanical and chemical processes 
exhibit a periodical behavior. This has motivated the devel
opment of the methods for the analysis of LPTV filters (Acha, 
1989; AI-Rachmani and Franklin, 1989; Barnes and Shinnaka, 
1980; Bolzern, Colaneri and Scattolini, 1986; Critchley and 
Rayner, 1988; Gnanasekaran, 1988; Nikias, 1985; Vaidyanat
han and Mitra, 1988). 
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LPTV filters are difficult to analyze like the general time
varying case. Most of the analysis of LPTV filters has been 
based on the idea of converting a LPTV filter to a block time
invariant filter (Friedland, 1961; Jury and Mullin, 1958; Meyer 
and Burrus,1976). One type of LPTV filters is commonly re
ferred to as multirate digital filters. Efficient realizations of 
multirate digital filters have been studied by Crochiere and 
Rabiner (1983). Miyawaki and Barnes (1983) developed block
state time-invariant structures. Meyer and Burrus (1975) 
used the idea of block processing to analyze multirate and 
LPTV filters. Liu and Franaszek (1969) considered time-vary
ing filters as mapping filters. 

In this paper the idea of converting a LPTV filter to a 
block time-invariant filter is used for the determination of the 
inversion of LPTV filters. Controllability, observability and 
inversion of LPTV filters are analyzed. 

Block model of LPTV filters. A linear N -th order 
time-varying filter can be described by a set of state equations 

x(k + 1) = A(k)x(k) + B(k)v(k), (la) 

y(k) = CT(k)x(k) + d(k)v(k), k = 0,1,2, ... , (lb) 

where x(k) is of dimension N x 1, A(,l,~) is of dimension 
N x N, B(k) and C(k) are of dimension N x 1, d(k), v(k) 
and y( k) are scalars. 

The filter has single-input sequence {v(O), v(l), ... , 
v(k), .. . }, single-output sequence {yeO), y(l), ... , y(k), ... } 
and zero initial conditions. 

Let k = "mL + n, where L- denotes the size of the block, m 
is a variable of the block and n is a variable inside the block. 
From (1) we have 

x(mL + n + 1) = A(mL + n)x(rnL + n)+ 
+B(mL+n)v(mL+n), m = 0,1,2, ... , 

(2a) 



K.Kazlauskas 77 

y(mL + n) = CT(mL + n)x(mL + n)+ 

+ d(mL + n)v(mL + n), n = 0,1, ... , L - 1. 
(2b) 

LPTV filter in the state space is described by (1) and 
is a partial case of the time-varying ,filter. For LPTV filter 
A(mL + n) = A(n), B(mL + n) = B(n), CT(mL + n) = 
= CT(n), d(mL + n) = den), where L Clenotes the period of 
the coefficients variation. Therefore 

x(mL + n + 1) =A(n)x(mL + n)+ 

+B(~)v(mL + n), m = 0,1,2, ... , 
(3a) 

y(mL + n) =CT(n)x(mL + n)+ 

+d(n)v(mL + n), n = o~ 1, ... , L - 1. 
(3b) 

In this paper we shall refer to (3) as the canonical form 
of LPTV filters. 

From (3), it can be easily obtained 

x(mL + L) = A(L -1)··· A(O)x(mL) + A(L)··· 

... A(l)B(O)v(mL) + ... + B(L - l)v(mL + L - 1). 
(4) 

Define x(mL + L) = v(m + 1), x(mL) = v(m), 

V(m) = [v(mL), ... , v(mL + n), ... , v(mL + L _ 1)] T, 

Y(m) = [y(mL), ... , y(mL + n), ... , y(mL + L _ 1)] T, 

m =0,1,2, ... , 

where V(m) is the input block sequence and Y(m) is the out
put block sequence. 

Hence from (4) we get the first block equation of LPTV 
filter in the state space 

v(m+1) = Fv(m) + GV(m), m=0,1,2, ... , (5a) 
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where matrix F is of dimension N x N: F = A( L - 1) 
A(l) .. · A(O), matrix G is of dimension N x L: G = [GI , ... , 

Gj , ... , GL], where Gj = A(L - l)A(L - 2) .. · A(j)B(j - 1), 
j = 1,2,.:.,L -1, GL = B(L -1). 

We find the second block equation of LPTV filter 
in the state space from (3). A substitution of the values 
x(mL + 1), ... , x(mL + L - 1) from (3a) to (3b) leads to the 
expression 

Y(m) = Hv(m) + RV(m), m = 0,1,2, ... , (5b) 

where matrix H is of dimension L x N: H = [HI"'" Hj, 
... , HdT, Hj = CT(j - l)A(j - 2) .. · A(O), j = 1,2, ... , L. 
Matrix R is of dimension L x L: R = {rij}, where Tij = 0, 
if i < j; Tij = d(i - 1), if i = j; Tij = CT(i - l)B(j - 1), if 
i =j+1; Tij = CT(i-1)A(i-2)· .. A(j)B(j -1), ifi > j+1. 

The matrices in (5) are with the coristant elements. Hen
ce for the analysis of LPTV filter we can use ordinary methods 
and find the inversion of LPTV filter and the conditions of 
controllability and observability. 

Corollary 1: If L = 1, for (5) we have F = A, G = B, 
H = CT, R = d. The class of filters with constant parameters 
is a subclass of LPTV filters. 

Corollary 2: If A(k) = A, B(k) = B, CT(k) = eT, 
d( k) = d and L > 1, we have block-state model (5) of filters 
with constant parameters, where F = A L , G = [A L - 1 B, ... , 
AB,B], H = [CT,CTA, ... ,CTAL-l]T, R = {Tij}, where 
Tii. = 0, if i < j; Tij = d, if i = j; Tij = eTB, if i = j + 1; 
Tij = eT Ai-j-l B, if i > j + 1. 

Definition and design of inversion of LPTV filters. 
Consider another filter which is described by the equations 
(Jaksoo, 1980) 

v(m + 1) = Pv(m) + GV(m), (6a) 
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Y(m) =,fIv(m) + RV(m), m = 0,1,2, ... , (6b) 

where F, G, ii, R are matrices of dimension N x N, N x L, 
Lx Nand L x L, respectively. 

The transfer function of filter (6) is described by 
equation (7) 

(7) 

The transfer function of LPTV filter (5.) is described by 
equation (8) 

K(z) = H(zL 1 - F)-IG + R. (8) 
J 

Filter (6) is the inversion of LPTV filter (5), if R ( z) = 
= [K(Z)]-I. 

From (5) we obtain 

v(m + 1) ~ GV(m) = Fv(m), 

RV(m) = Hv(m) - Y(m). 

Hence it follows 

Thus 

( v( m + 1)) = (I 
V(m) 0 

)
-1 ( ) -G Fv(m) 

R Hv(m) -Y(m) . 
(9) 

The solution of (9) exists and is unique respectively of 

the pair vectors v(m + 1), V(m) iff the matrix (~ -X) is 

nonsingular. As shown in the book (Graybill, 1969) 

( 1 -G) -1 _ (1 GR- 1 ) 
o R - 0 R-1 . 
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Hence the inversion of LPTV filter exists iff the matrix R is 
nonsingular. From (9) we obtain 

F=F+GR-1H, G=-GR-1, 
(10) 

Controllability and observability of inversion of 
LPTV filters. The pair (1', G) is said to be controllable iff 
rank ( AJ - I' G) = N for all eigenvalues Ai of the matrix 
1', where I is the N x N identity matrix (Zadeh and Desoer, 
1970). 

With respect to (10)- we have the condition of controlla
bility of the inversion of LPTV filter (6) 

rank ( Ail - I' G) = rank( AJ - F - GR- 1 H -GR-1 ) = 

= rank ( AJ - F G) (-R~l H _~-l). 

If the matrix (-R~l H _~-l) is nonsingular, then 

rank( Ail - I' G) = rank( AJ - F G) 

and the pair (1', G) of the inversion of LPTV filter (6) is con
trollable iff the pair (F, G) of LPTV filter (5) is controllable, 
i.e., when rank( AJ - F G) = N for all Ai. 

The pair (1', fI) is said to be observable iff 

rank (Ail ~ F) - N fI -

for all eigenvalues Ai of the matrix F. With consideration to 
(10), we have 
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( l -GR-1 ) If the matrix 0 R-1 is nonsingular, then 

k ( Ail ~ F) _ k (AJ - F ) ran H - ran H . 

The inversion of LPTV filter is observable iff the pair (F, H) 
of LPTV filter (5) is observable, i.e., when 

for all Ai. 

Example. Consider the LPTV filter with the matrices 

A(O) = (0~1 0\) ,A(I) = (~:~ ~) ,A(2) = (~:~ ~), 

BT(O) = (-1 O),BT(1) = (0 2),BT(2) = (2 1), 

CT(O)=(3 2),CT(1)=(0.1 0),CT(2)=(0 1), 

d(O) = -2, d('I) = 1, d(2) = 2. 

The matrices of block LPTV filter are 

F = A(2)A(I)A(0) = (002 0\36), 

G = (G1 G2 G3 ) = (-=-~136 ~ ~), 
where 

( -03) (2) G1 = A(2)A(1)B(0) = -0.i6 ,G2 = A(2)B(I) = 0 ' 
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where 

HI = CT(O) = (3 2),H2 = CT(l)A(O) = (0 0.1), 

H3 = CT (2)A(1)A(0) = (0.2 1.1), 

( d(O) 0 

)2J = 
R = CT(l)B(O) d(l) 

CT(2)A(1)B(0) CT(2)B(1) 

( -2 o 0) = -0.1 1 0 .. 
-0.1 2 2 

An LPTV filter is stable iff all the eigenvalues of F have 
a modulus less than 1. The eigenvalues of the matrix Fare 
equal to 0.2 and 0.16. Hence the LPTV filter is stable. 

The condition of controllability of the pair (F, G) is 

( -1.3 -0.3 22)_? 
rank ( 0.21 - F .a) = rank 0.04 -0.16 0 1 - ~, 

rank(0.161-F G)= 

_ k (-0.04 -1.3-0.3 2 2) _ ? 
- ran 0 0 -0.16 0 1 -~. 

Hence the LPTV filter is controllable. 



K.Kazlauskas 83 

The condition of observability of the pair (F, G) is 

0 -1.3 

(0.21 - F) 0 -0.04 
rank H = rank 3 2. = 2, 

0 0.1 
0.2 1.1 

(
-0.04 -1.3) 

0.161 - F . 3 2 
rank ( H ) = rank 0 0.1 = 2. 

0.2 1.1 

Hence the LPTV filter is observable. 
The matrices of the inversion of the LPTV filter are 

- -1 (-0.1 0 -1) 
G = -GR = -0.105 1 -0.5 ' 

( 
-1.5 -1) 

fI = R-I H = -0.15 0 , 
0.175 0.5 

( 
0.5 0 

R = _R-I = 0.05 -1 
-0.025 1 

o ) o . 
-0.5 

The eigenvalues of the matrix F are Al = 0.776 and 
A2 = -0.624. Since the eigenvalues of the matrix F are inside 
the unit circle, the inversion of the LPTV filter is stable. 

Now consider the conditions of controllability and obser
vability of the inversion of the LPTV filter .. From the condition 
of controllability of the pair (P, G) 
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rank ( 0.7761 - I' G) = 

k ( 0.076 -2.6 -0.1 0 
= ran' -0.415 -0.044 -0.105 1 

-1 ) -') 
-0.5 -~, 

rank ( ~0.6241 - I' G) = 

( -1.324 -2.6 -0.1 0 
= rank -0.415 -1.444 -0.105 1 

-1 ) 
-0.5 = 2 

we obtain that the inversion of the LPTV filter is controllable. 
It was expected, since the pair (F, G) is controllable. 

From the condition of observability of the pair (I', if) 

0.076 -2.6 

k (0.7761 - 1') - k 
-0.415 -0.044 

ran H - ran -1.5 -1 
-0.15 ° 

= 2, 

0.175 0.5 

-1.324 -2.6 

( -0.6241 - I' ) 
-0.415 -1.444 

rank H = rank -1.5 -1 
-0.15 0 

=2 

0.175 0.5 

we obtain that the inversion of the LPTV filter is observable. 
It was expected, since the pair (F, H) is observable. 

Conclusions. An approach to the design of the inversion 
of LPTV digital filters has been introduced. It is based on the 
concept of converting a LPTV filter to a block time-invariant 
filter. The conditions of controllability, observability and sta
bility of the inversion of LPTV filters are given. It is believed 
that this approach can be usefully applied to the analysis of 
LPTV filters. A further research is required to extend the re
sults of this paper to more general filters such as multivariable 
ones. 
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