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Abstract. There exist two principally different approaches to design the classification 
rule. In classical (parametric) approach one parametrizes conditional density functions of 
the pattern classes. In a second (nonparametric) approach one parametrizes a type of the 
discriminant function and minimizes an empirical classification error to find unknown 
coefficients of the discriminant function. There is a number of asymptotic expansions 
for an expected probability of misclassification of parametric classifiers. ,Error bounds 
exist for nonparametric classifiers so far. ,In this paper an exact analytical expression 
for the expected error' EPN of nonparametric linear zero empirical error classifier is 
derived for a case when the distributions of pattern classes are spherically Gaussian. 
The asymptotic expansion of EPN is obtained for a case when both the number of 
learning patterns N and their, dimensionality p increase infinitely. The tables for exact 
and approximate expected errors as functions of N, dimensionality p and the distance 
6 ,between pattern classes are presented and compared with the expected error of the 
Fisher's'linear classifier and indicate that the minimum empirical error classifier can be 
used even in cases where dimensionality exceeds the number of learning examples. 

, Key words: expected error, Fisher's discriminant function, zero empirical error clas­
sifier, dimensionality, learning set's size. 

1. Introduction. Let X = (Xl. X2, ••• , xp)' be px 1 observation vector of 

an individual from one or another of two p-variate classes (populations) 11'1 and 

11'2' Suppose we have two learning sets, of sizes N1 and N2, of p-dimensional 

data from populatioris 11'1 and 11"2 respectively. The problem is to utilize an 

information contained in the learning sets and to design a classification rule 

assigning vector X to one of the classes. 

In statistic-theoretical approach it is assumed vector X to be random one 

with class conditional probability density function fi(XI1I'i)' Let qi be a priori 

probability of class 11"; (q1 -t q2 = 1). Then an optimal (Bayes) classification 
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rule (which minimizes the probability of incorrect classification) will assign 

vector X to one of classes 7rj according a sign of the following discriminant 

function (DF): 

(1) 

Principally different approach is if one instead of parametrization of the 

probability density functions (p.d.f.) will parametrize the discriminant function 

itself. For example one can assume the DF has a linear form 

p 

g(X) = La;xi + a. 
;=1 

(2) 

To find unknown coefficients (weights of the DF) a, aI, a2, ... , ap one intro­
duces a certain loss function (empirical classification error, sum of squares error 

etc.) and minimizes it. Latter approch became very popular in recent years in 

an analysis and deVelopment of Artificial Neural Networks. 

In both classifier design approaches resulting DF depends on the learning 
set data. In finite learning set case the data does not represent tht< populations 

(probability density functions fi(XI7ri)) exactly. Therefore the resulting classi­

fication rule is not optimal. Its classification performance will differ from Bayes 
error, i.e., probability of misclassification PE of optimal Bayes classifier (1). 

A probability of misclassification PN of sample based classification rule will 
depend of particular learning sets. Therefore it is called a conditional probabil­

ity of misclassification (PMC). Its expectation EPN over all possible random 

learning sets of size NI and N2 is called an expected PMC. A theoretical limit 

lim EPN = Poo 
Nt ...... oo 
N2 ...... 00 

is called an asymptotic PMC. 

The expected PMC was studied in a number of research papers beginning 

from pionering work of John (1961) who obtained first exact and approximate 

formulae for the standard linear DF for the Gaussian classes for case when E, 

the covariance matrix, is known. Best known asymptotic expansion for case 

when E is known due to Okamoto (1963). Principal resuls were obtained by 
Deev (1970, 1972), Raudys (1967, 1972). Most of results on the subject are 

summarized in McLachlan's monograph (1992). Results of Soviet investigators 
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are reffered in Aivazian et al. 'monograph (1989), Raudys and Jain review 

(1991) and also in Wyman et al. (1990) experimental comparison of several 

asymptotic expansions for expected error of the standard Fisher linear OF. 

An objective of this paper is to obtain a formula for expected PMC of the 

linear zero empirical error classifier (a special case of minimal empirical error 

classifier) for a case when true densities f(XI1I"j) are multivariate spherically 

Gaussian. 

2. Main assumptions. Let us assume we have the linear classifier with 

discriminant function g(X): 

p 

g(X) = A'X+ a = L: ajXj + a. 
j=I 

To find weights a, aI, a2, ... ,ap we'll use following hypothetical procedure 
(Raudys, 1993). 

According to some chosen prior density fprior( a, A) of weight vector (a, A) 
one generates a set of random weights a, aI, a2, ... , ap • We will say that 

training is sucessful if conditions S are satisfied, where 

s. {for all training pattern vectors from 11"1 g(Xla, A) > 0, (3) 
. for all training pattern vectors from 11"2 g(Xla, A) ::>:;; O. 

We shall compute the expected PMC EPN of successfully trained linear dis­

criminant function. 

In order to obtain an analytical expression for the expected PMC suitable for 

numerical evalution of the error rate we need to specify prior density f prior( a, A) 

and true probability density functions of the pattern classes f(XI1I"I), f(XI1I"2)' 
Thus we shall analyze a case of simple distributions: 

- two multivariate. spherically Gaussian classes 11"1,11"2 with densities 

N(X, Cl, I) and N(X, C2, I) accordingly, equal prior probabilities qI = q2 = 
1/2 and equal number of training vectors from each class: N2 = NI = N; 

. . (1) (1) ~,.(I) X(2) ~,.(2) X(2) . . 
- the trammg vectors Xl , X2 , ... , AN' I' Ail , ... , N are statlstl-

cally independent and identically distributed in their own classes; 

- we assume that Cl + C2 = 0 (this assumption enables us further to 

simplify the calculations); 

- the components of the vector (a, A) are chosen random from Gaussian 

distribution with zero mean and variance 1: aj '" N(O, 1). 
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We shall analyze a limit case when N -+ 00, p -+ 00 and piN -+ const. 

3. Integral representation of the expected error. A derivation of the mean 

expected error E PN is based on calculation of the conditional probability of 

misclassification of the linear classifier conditioned on the set of weights (a , A), 
on representations of conditional error rates in terms of two independent scalar 

random variables and subsequent averaging of these error rates over aposteriori 

distribution of weights (a, A) (Raudys, 1993): 

f ( AIS)_Pr(S=truel.a,A)!Prior(a,A) 
apost a, - Pr(S = true) 

Pr (S = true I a, A) !prior( a, A) 

= f f Pr (S = true I a, A) !prior( a, A) da dA' 
(4) 

EPN = Pr(MCIS) = J J Pr(MCla,A)!apost(a,AIS)dadA, (5) 

where Pr(MCla, A) is a conditional probability of misclassification given the 

set of weights (a, A) and !apost( a, A I S = true) is aposteriori density function 

of the weights if the training was successful, i.e., ,(onditions S were satisfied. 

Due to our assumptions the distribution of discriminant function g(X) will 

be Gaussian and the conditional probability of misclassification 

1 
Pr(MCIA, a) =2 Pr (A'X+ a ~ 0 I X E 'lT1) 

1 
+ 2 Pr (A'X + a > 0 I X E 'lT2) 

=! ~ (_ A'C1 + a) +!~ (A'C2 + a) 
2 v'A'A 2 v'A.'A' (6) 

where 
u 

~(u) = J <p(t)dt and 

-00 

Conditional PMC (6) depends on (p+l)-variate vector (a, A)'. For spherical 

case we can show this PMC depends only on two independent scalar variables. 
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Let us perform a transformation 

and 

where T is p x p orthogonal matrix with a first row vector 

(7) 

A'CI + a _ (TA)'(T(CI - C2) + T(CI + C2» + 2a 

~A'A - 2 y'(TA)' (TA) 

VIC + Wo C ----:r====== = u2" + w, (8) 
p . 

2 v~ + E v? 
;=2 

where 

as Cl + C2 = 0 by our assumption, and 

VI 
U = --;===== 

Wo 
W=-r===== 

p p 

V~ +E V? '2 v~ + E v? 
i=2 i=2 

Analogously 

(10) 

Therefore, conditional error rate can be represented in terms of two independent 

scalar variables, u and w: 

Pr(MCla,A) = Pr(MClu,w) = ~ ~( -u~-w) +~ ~( -u~+w). (11) 

As aj "" N(O, 1) are independent then it is not difficult to show that random 

variables u and ware independent and have Beta Be((p-I)/2, (p-I)/2) and 
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Student St(p) distributions accordingly. Their density functions h(u) and p(w) 
accordingly are 

(12) 

and 

(13) 

Here K 1 and K 2 are positive terms which depend only on p. 

For independent identically distributed training pattern vectors the condi­

tional probability 

N N 
Pr(S = true I a, A) = IT Pr {A'x)1) + a> O} IT Pr {A'x)2) + a ~ O} 

;=1 ;=1 

=[Pr{A'X+ a> 0 I X E 1rdt[Pr{A'X+ a ~ 0 I X E 1r2}t 

=[1- Pr{A'X+ a ~ 0 I X E 1rdt 

x [1-Pr{A'X+a>OIXE1r2}t 

=[1-~( _ A~a)]N x [l_~(AJfia)]N. 
Taking into account (8) and (10) the above equation can be rewriten in a 

form 

Pr(S = true I a, A) = Pr(S = true I u, w) 

= [1 - ~(-ufJ/2 - w)]N[l- ~(-ufJ/2 + w)]N 

= [~(ufJ/2 + w)~(ufJi2 - w)]N. (14) 

Noticing that !prior(U, w) = h(u)p(w) and inserting (11)-(14) into (4), (5) 
we obtain 

(15) 

where 
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001 N 

12= J JF(-U'W)[~(-U~+W)~(-U~-W)]h(U)P(W)dUdw,(17) 
-000 

001 N 

h= J J[~(U~+W)~(U~-W)] h(u)p(w)dudw, (18) 
-000 . 

00.1 N 

J2= J J[~( -U~+W)~( -U~-W)] h(u)p(w)dudw, (19) 
-000 

1 
F(u, w) = 2(~(-Ub/2 + w) + ~(-ub/2 - w»). 

4. Asymptotic expansion for the expected error. Let us denote 

S1(U, w) = In ~(ub/2 + w) + In ~(ub/2 - w) - A1In(1 + w2), 
p+l 

where A1 = 2N ' 

S2(U, w) = In ~(-ub/2 + w) + In ~(-ub/2 - w) - A2In(1 - u2), 
p-3 

where A2 = 2N . 

Then the integrals (16) - (19) we can write in the following form: 

1 

h = J h(u)(1 - u2 )NA2 du, 
o 

00 

h = J 12(w)(1 + w2)-NA t dw, 
-00 

where 

00 

h(u) = J F(u, w)eNSt(u,w) dw, 
-00 

1 

1 

J1 = J h(u)(1 - u2)NA2 du, 
o 

00 

h = J h(w)(1 + w2)-NA t dw, 
-00 

00 

J1(u) = J eNSx(u,w) dw, 

-00 

1 

h(w) =;: J F( -u, w)eNS2 (U,w)du, 

o 

h(w) = J eNS2 (u,w) duo 

o 

First at all let us deal with integrals 11 ( u) and J 1 ( U ). It is not difficult to see 
that these integrals are Laplace integrals with parameter N increacing to infinity 
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and phase function SI(U, w). In order to compute h(u) and Jl (u) we shall use 

the methods contained in Fedorchuk monograph (1987). Therefore we have to 

find the maximal point of phase function SI ( u, w) by w E R. As 

~(ufJ/2 + w) + ~(ufJ/2 - w) ~ 2~(ufJ/2), wE R, u E [0,1]' (20) 

then 

SI (u, w) = In (~( ufJ /2 + w)~( ufJ /2 - w)(1 + W2)-Al) 

~ In (~(ufJ/2 - w)(2~(ufJ/2) - ~(ufJ/2 - w))) 

= In (~2(u8/2) - (~(u8/2 - w) - ~(u8/2))2) 

~ In~2(u8/2) = SI(U,O). (21) 

Inequality (20) holds because point w = 0 for function R( w) = ~(u8/2 + w) + 
~(u8/2 - w) is its stationary point and R'(w) > 0 as w < 0 and R'(w) < 0 
as w > o. 

Therefore (21) yields that w = 0 is maximal point of SI ( u, w) by w E R. 
Moreover, 

d2S1(~,w)1 #0. 
dw w:o 

Now by Th.1.3 from Fedorchuk (1987, p.66) we obtain that as N ~ 00 

(22) 

(23) 

where 

ao(u) =F(u, O).Lh -1/2(u), bo(u) = f31- 1/2(u), 

al(u) = - ~ (f32(U)~( -u8/2)f3;5/2(u) + ~f3;3/2(u)~II(X)lx=uC/2) and 

bl (u) = - ~f32(u)f3;5/2(u). 

In formulae (22), (23) and further symbol VN ,.... UN as N ~ 00 means that 
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Also the terms following after a 1 ( U ) / N and b 1 ( U ) / N as N -+ 00 are of order 

1/N2 and 

/3'( ) = __ 1_d2i Sl (u,W)1 
) U (2j)! dw 2i W=O 

. 1 Al 2 (2') = (-1))- - - -In ) 4>(x)1 - </2 j (2j)! X_Uo , 
j = 1,2. 

Let us denote 

Then 

(24) 

(25) 

In order to calculate the integrals (24), (25) we have to explore the behaviour 

9f the function Z ( u) in interval [0,1). For this purpose we calculate two first 
derivaties of Z ( u ): 

It is not difficult to see that Z" ( u) in the interval [0,1) is negative and the first 

derivative Z'(u) in the same interval is changing it's sign from + to -. This 

means that in this interval there is point Uo in which function Z ( u) has its 

maximal value Z(uo) and Z(uo) > Z(O) = -ln2. We may find this point by 

solving equation Z' (u) = 0 or 

(26) 
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Again, as Z'(uo) = 0 and ZI/(uo) #- 0, applying the same theorem from 

Fedorchuk monograph we obtain that 

where 

aiD =aj(Uo)v- ZII~UO)' biO = bj(UO)V- ZI/~UO)' (29) 

1 ( 2 )3/2 ( 11 , ZIII(UO) 
ail =4 - ZI/(uo) aj (uo) - aj(uo) ZI/(uo) 

( 5 (ZIII( UO)) 2 • Z(IV)( UO))) 
+ ai(uO) 12 ZI/(uo) - 4ZI/(uo) , (30) 

1 ( 2 )3/2 ( 1/ , ZIII(UO) 
bi1 =4 - ZI/(uo) . bj (uo) - bj(uo) Z"(uo) 

( 5 (ZIII(uo))2 Z(IV)(UO))) 
+ b;(uo) 12 Z"(uo) - 4ZI/(uo) . (31) 

Inserting (27), (28) into (24) and (25) we obtain 

. 71' fl 2NZ(u ) [( aOI ) 1 ( all ) ] h '" N V 2e 0 aOO + 2N + . . . + N alO + 2N + . . . + ... 

7l'A 2NZ(U)[ 1 (aOI ) ] = - -e 0 aOO + - - + alO + ... 
N 2 N 2' 

(32) 

Analogously obtain 

71' ff 2NZ(u ) [( bOI ) 1 ( bll ) ] h '" N V 2e 0 boo + 2N + .. . + N. blO + 2N + ... + ... 

71' fl 2NZ(U)[ 1 (bOI ) ] = NV 2e 0 boo + N 2 + blO + .... (33) 
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Let us now deal with integrals 12(w), h(w): 

1 

12(w) = J F(-u,w)eNS2 (U'W)du, 
o 

1 

h(w) = J eNS2 (u,w)du. 

o 

It is easy to see that 

Since 

max S2(U,W) = S2(0,w) = In <p(w) + In <p(-w). 
uE[O,l) 

dS2(u, w) / # 0, 
du u=o 

then by Theorem 1.1 from Fedorchuk (1987, p.62) monograph 

() 1 NS (oW)[ C1(W) ] 12 W '" Ne 2, CO(w)+~+ ... , 

() 1 NS (0 w) [ d1(w) ] J2 W '" Ne ~, do(w)+~+ ... , 

where 

( dS2(U,w)/ )-1 2 1.tn= 
CO(w) = - du u=O F(O,w) = eW 6- v 21r<P(w)<P(-w), 

( dS2(U'W)/ )-1 21tn= do(w) = - d = 2eW 6- v 21r<P(w)<P(-w), 
u u=o 

147 

(34) 

(35) 

since F(O,w) = ~(<P(w) + <p(-w» = ~. The expresions of the terms 

Cl ( w), d 1 ( w) will be not usefull for us and we omit them. It is easy to see that 

the first derivative of function 

is positive for w < 0, negative for w > 0 and equals zero when w = O. 
Therefore, 

1 
max<l>(w)<I>(-w) = <1>2(0) = -4 and 
wER 
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dS2(0, w) I = 0 
dw w=O 

and 

then by Theorem 1.3 from Fedorchuk (1987, p.66) we have 

00 

J NS (ow) ( ) NS (00) 0[ COl ] e 2 , Co w dw '" e 2 , V N COO + N + . .. , (36) 
-00 

00 J eNS2 (0,w)do(w)dw '" eNS2(0'0)~[doo + d~l + ... ], (37) 

-00 

where 

1~ 1~ 
coo=48V~' dOO=28V~' 

Inserting (36), (37) into (34), (35) and observing that S2(0, 0) = 2Z(0) we 

obtain 

e2NZ(O).ji [ hI ] 
12 '" ho + - + ... 

N.fN N ' 
(38) 

(39) 

(40) 
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since Z(uo) - Z(O) > const> 0 and e2N(Z(0)-Z(uo)) '" e-constN. 

Here 

1 (b01 ) HI = boo + N 2"" + b10 + ... 
gl 

H2 = go + - + ... 
N 

149 

Inserting into (42), (43) the expressions of the bo( uo), bti (uo), Z"( uo), Zlll( uo) 
and (31 (uo) we finally obtain 

where 

(31(UO) = Al + m(uo)m1(uo), 

(3~(uo) = ~m(uo)(l- m1(uo)(m1(uo) + m(uo»), 

" A2(1 + u5) p z (uo) = - (1- u5)2 - 4"m(uo)m1(uo), 

Z ll/( ) - _ 2uoA2(3 + u5) _ 62 (3' ( ) 
Uo - (1 _ u5)3 4 1 Uo , 
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Table 1. The values of E PN as a function of learning sample size N and 

dimensionality p for 6 = 1 (Poo = 0.308538) 

p= 10 
N 6 10 20 50 100 

Integral 0.418703 0.397796 0.364124 0.332233 0.322517 
Fonnula 0.429074 0.401674 0.367643 0.336833 0.323717 
Main tenn 0.410828 0.385036 0.355329 0.330168 0.319955 
Fisher 0.46502 0.42058 0.37967 0.34321 0.32723 

p= 50 
N 30 50 100 250 500 

Integral 0.426664 0.401198 0.368473 0.335025 0.322911 
Fonnula 0.428475 0.40247 0.369079 0.337830 0.324307 
Main tenn 0.425718 0.399755 0.366908 0.336580· 0.323581 
Fisher 0.46186 0.41944 0.37972 0.34405 0.32802 

p = 200 
N 120 200 400 1000 2000 

Integral 0.426589 0.402039 0.369032 0.337458 0.324232 
Fonnula 0.428667 0.402800 0.369429 0.338043 0.324426 
Main tenn 0.428011 0.402144 0.368898 0.337734 0.324246 
Fisher 0.460943 0.419128 0.379731 0.344250 0.328204 

and Uo is found by solving Eq. (26). 

For Uo we propose the following analytic fonnula : 

where 

e- 62 / 8 A2 (6 1) 
B = V27riJ!(6/2) +"2 4 -"8 . 

Numerical calculations show this fonnula is usefull for small 6 (6 = 1) or when 

pi N -+ O. In other cases it works bad. 

5. Numerical results. Let us now compare the zero empirical error and 

Fisher's linear classifiers (this comparison was done by Diciunas (1996». Look­

ing at fonnula (44) of expected error EPN for the zero empirical error classifier 

we see that for N -+ 00 the main contribution to sum is determined by the first 
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Table 2. The values of E PN as a function of learning sample size N and 

dimensionality p for 6 = 4 (Poo = 0.022850) 

p= 10 
N 6 10 20 50 100 

Integral 0.155296 0.117827 0.081907 0.052822 0.040051 
Formula 0.130178 0.101495 0.073414 0.049963 0.039132 
Main term 0.129269 0.098716 0.069374 0.046084 0.036065 
Fisher 0.26349 0.099509 0.047685 0.030520 0.026336 

p= 50 
N 30 50 100 250 500 

Integral 0.154316 0.118291 0.082491 0.053347 0.039701 
Formula 0.151101 0.115802 0.080259 0.052741 0.040262 
Main term 0.150904 0.115312 0.080351 0.052076 0.039723 
Fisher 0.23684 0.093015 0.046723 0.030479 0.026356 

p = 200 
N 120 200 400 1000 2000 

Integral 0.154087 0.118378 0.082721 0.053379 0.040376 
Formula 0.154667 0.118316 0.082450 0.053306 0.040511 
Main term 0.154614 0.118201 0.082286 0.053143 0.040379 
Fisher 0.228807 0.091211 0.046446 0.030459 0.026355 

term. Therefore, for large N we obtain 

(45) 

We will call (45) the main term. 

Pikelis (1976) gives the Table of exact values of the expected error EPN 

for the Fisher linear DF with different values of parameters p, N and 6. We 

carried out numerical calculation of E PN for the zero empirical error classifier 

with the same values of parameters as in Pikelis (1976). Moreover, we used 

three different formulae for EPN : 

1) numerically calculated integral (15), 

2) asymptotic formula (44) and 

3) main term (45). 

Numerical results are presented in Tables 1 and 2. 
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Inspection of these tables leads to the following two conclusions: 

1. In almost all observed cases both formulae, (44) and even (45), are very 

accurate (matches with (15». Only for very small values of p and N 

(p ~ 10, N ~ 20), integral (15) is more preferable. 

2. The Fisher's classifier outperforms the zero empirical error classifier for 

a big distance between the classes (8 = 4) when N ~ p, while for a 

small distance (15 = 1) and for cases when N < p the zero empirical 

error classifier is preferable. It means, the linear zero empirical error 

classifier can be used in cases when the number of dimensions is higher 

than number of learning samples. 
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NULINES EMPIRINES KLAIDOS TIESINIO KLASIFIKATORIAUS 

PIRMOS RUSIES KLAIDOS TIKIMYBE 
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Siame straipsnyje pateikiama tiksli analizine nulines empirines klaidos tiesinio klasi­

fikatoriaus pinnos rimes klaidos tikimybes i~rai~ka. Asimptotinis ~ios klaidos skleidinys 

gautas tuo atveju kai abi duomen-q klases turi sferini Gauso pasiskirstymll ir kai mokymo 

imties tiiris N ir matavim-q skai~ius p auga i begalyb~ taip, kad p/N-+const Pateiki­
amos lenteles kur lyginamos tikslios ir apytiksles (asimptotinio skleidinio pagrindinio 
nario) ~ios klaidos reik~mes priklausomai nuo p, N ir atstumo tarp klasi\\ 0. Be to, 
§io klasifikatoriaus klaidos tikimybe yra palyginama su Fi~erio tiesiniu klasifikatoriumi 
ir nustatoma, kad mils-q nagrinejamas klasifikatorius gall bilti sekmingai naudojamas ir 
tada kai mataviml.\ skail5ius virsija mokymo imties tiiri. 


