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Abstract. The equations describing the evolution of migrating populations com­

posed of two-sexes are derived taking into account the size, age structure, panmiction 
mating of sexes, pregnancy of females, possible abortions as well as the females or­

ganism restoration periods after abortions and delivery. In partial case, which neglects 

females organism restoration period, the unique solvability of the model is proved and 
the condition for population to vanish is obtained. 
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1. Introduction. Using integral operator Svirezhev (1987) proposed the de­

terministic model of migrating in unbounded area R2 population without sexes 
and age structure. He also derived and widely used diffusion approximation 

of this model. Diffusion approximation of migration in biology as well as its 

analogue in chemist kinetics are widely known (see Svirezhev, 1987; Murray, 

1983; Kolmogorov et aI., 1937; Fisher, 1937). Gurtin (1973) proposed another 

diffusion approximation of migrating population taking into account age of in­

dividuals. The model developed by Skakauskas (1994) includes: age and sex of 

individuals; pregnancy of females; possible destruction of the foetus (abortions); 

organism restoration periods after abortions and delivery; panmiction mating of 

sexes. In this paper we propose the model which in addition to Skakauskas 

(1994) includes the migration of individuals. In the case, where abortions and 

females restoration intervals are neglected, we prove the unique solvability of 

our model. 

2. Construction of the model. Suppose that: 

t, T'x, T'y E I = (0,00), 1 = [0,00), 8 = (81,82) E R2 (-00,00) x 
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(-00,00), ds = ds1ds2, e = (6,6) E R2, de = d6d6, d,R2 = [Sl,Sl + 
ds1] x [S2,S2+ds2], d~R2 = [6,6 + del] x [6,6+d6], wheret -time, T:r; 
and Ty are ages of males and females, respectively, R2 is populated area. 

y( t, Ty, 8 )dTy ds is the expectation at the moment t of the number of females 

of age T E [Ty, Ty + dTy] staying in the area d,R2; 

x(t, T:r;, S)dT:r;d8 is the expectation at the moment t of the number of single 

females of age T E [T:r;, T:r; + dT:r;] staying in the area d,R2; 

z(t, Ty, T:r;, Tz , 8)dTydT:r;dTzds is the expectation at the momentt of the num­

ber of fecundated females of age T E [T:r;, T:r; + di:r;] staying in the area d,R2 
whose embryou's age is T E [Tz, Tz + dTz ] which were fecundated by males of 

age T E [Ty, Ty + dTy]; 
u(t, Ty, T:r;, Tu,s)dTydT:r;dTuds is the expectation at the moment t of the 

number of females of age T E [T:r;, T:r; + dT:c] staying in the area d, R2 for which 

time T E [TU, Tu + dTu] after abortion has passed and which were fecundated 

by males of age T Eh, Ty + dTy]; 
v(t, Ty, T:r;, Tv, S)dTydT:r;dTvds is the expectation at the moment t of the num­

ber of females of age T E [T:r;, T:r; + dT:c] staying in the area d,R2 for which 

time T E [Tv, Tv + dTv] after gelivery has passed and which were fecundated by 

males of age T E [Ty, Ty + dTy]; 

Q(t, Ty, T:r;, 8)dTydT:cds is the expectation at the moment t of couples staying 

in the area d,R2 which are formed of females of age T E [T:r;, T:r; + dT:r;] and 

males of age T E [Ty, Ty + dTy]; 
P(t, Ty, T:r;, s)dt is the probability to become pregnant in the time inter­

val [t, t + dt] for a female from the male-feIilale pair with characteristics 

(Ty, 8), (T:r;,8); 
x(t, Ty, T:r;, Tz , s)dt is the probability that the abortion took place in the time 

interval It, t + dt] for a female with characteristics (Ty, T:r;, Tz, 8); 

v:r;(t, T:r;, S )dt, vY(t, Ty, 8 )dt, VZ (t, Ty, T:c, Tz , S )dt, VU(t, Ty, T:c, Tu, 8 )dt, 
VV (t, Ty, T:r;, Tv, S )dt are the probabilities that individuals with respective char­

acteristics (T:r;, 8), (Ty, 8), (Ty,T:r;, Tz,S), (Ty, T:r;, Tu, 8), (Ty,T:r;, Tv, 8) will die 

in time interval It, t + dt]; 

q:r;(t, T:r;, e, s)dedt, qy (t, Ty, e, 8)dedt, qZ (t, Ty, T:c, Tz , e, 8)dedt, qU(t, Ty, T:r;, 
Tu, e, 8)dedt, qV (t, Ty, T:r;, Tv, e, 8)dedt are the probabilities that individuals with 

respective characteristics (T:r;, 8), (Ty,S), (Ty, T:r;, Tz , 8), (Ty,T:r;,Tu,8), (Ty"T:r;, 
Tv, 8) due to migration from position 8 E R2 will get into area d~ R2 in the 
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time interval It, t + dt]; 

X(t, Tx, S)dTxdsdt is a change due to conceiving, abortions and birth in the 

time interval It, t + dt] of the expectati~n of the number of single females of 

age T E [Tx, Tx + dTx]; 

m;t(t, Tx , S)dTxdsdt, mt(t, Ty, S)dTydsdt, mt(t, Ty, Tx , Tz , S)dTydTxdTz 
ds dt, m;.t(t, Ty, Tx , Tu, S)dTydTxdTuds dt, m;;(t, Ty, Tx , Tv, S)dTydTxdTvds dt 
are the expectations of the individuals with the respective characteristics (Tx, s), 

(Ty, s), (Ty, Tx , Tz, s), (Ty, Tx , Tu, s), (Ty, Tx, Tv, s) that due to migration will get 

into the area ds R2 in the time interval rt, t + dt]; 

m; (t, Tx, s)dTxds dt, mii (t, Ty, S)dTyds dt, m; (t, Ty, Tx , Tz , S)dTydTxdTz 
ds dt, m:;; (t, Ty, Tx , Tu, S)dTydTxdTUds dt, m;; (t, Ty, Tx, Tv, S)dTydTxdTvds dt 
are the expectations of the individuals with the respective characteristics (Tx, s), 

(Ty,S), (Ty,Tx,Tz,S), (Ty,Tx,Tu,S), (Ty,Tx,Tv,S) that due to migration will 

leave the area ds R2 in the time interval It, t + dt]; 

bX(t, Ty, Tx , s), bY(t, Ty, Tx, s) are numbers of female and male offsprings 

born at the moment t from a female with the characteristics (Ty, Tx , s); 

2- 1/2DYy, 2- 1/2Dxx, 3-1/2Dzz, 3- 1/ 2Duu, 3-1/2Dvv represent the 

directional derivatives along the positive direction of the characteristics of the 

operators LY = .2.. +....L LX = .2.. +....L LZ = LX +....L LU = LX + ....L &t lhy' &t &T., , &T. ' &Tu' 

LV = LX + -&& ,respectively; 
T. 

O'xz(Tz) = (Tlx + Tz , T2x + Tz]' O'xv(Tv) = (Tlx + Tv, T2x + Tv], O'xu(Tu) = 
(Tlx + Tu, T2x + Tu], where Tkx = Tkx + K,z, k = 1,2; O'y = (Tly, T2y] and 
0' X z (0) are reproductive intervals for males and females, respectively; 

O'z = (0, K,z]' O'u = (0, Ku], O'v = (0, Kv] are gestation and restoration 
intervals after the abortion and the delivery, respectively; 

0' = O'y X O'xz(Kz), EY = {(t, Ty, s) E I x I x R 2}; 

EX = {(t,Tx,S) E I x (1\.~ Ti) x R 2, Tk = Tkx, Tk+2 = '1ix+ Kv, k = ,=1 
1,2, T5 = Tlx + Ku , T6 = T2x + Ku}; 

EZ = '{ (t, Ty, Tx , Tz , s) E I x O'y x O'xz(Tz) x O'z x R 2}; 

EU = {(t, Ty, Tx, Tu, s) E I x O'y x O'xu(Tu) x O'u x R2}; 

EV = {(t,Ty,Tx,Tv,S) E I x O'y x O'xv(Tv) x O'v x R 2}; 

[x(t, Ti, s)] is a jump of the function x at the plane Tx = Ti; 
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{ 
[0, Tx - T1X], Tx E (T1x, 71x], 

W(Tx) = [0, Kz]' Tx E (71x, T2x], 

[Tx - T2x, Kz], Tx E (T2x, 72x], 

{ 
[0, Tx - T1x], Tx E (T1x, T2x] , 

w( Tx) = [Tx - T2x, Tx - T1x], Tx E (T2x, 71x], 

[Tx - T2x, Kz]' T:r; E (71:r;, 72:r;], 

for T2x - T1:r; < Kz. 

Upon using the balance relation, we obtain the system 

DYy = -Y/lY + m; - m; in EY, 

D:r;x = _X/I:r; + X + m; - m;; in E:r;, 

DZ Z = _z(/lz + X) + m; - m; in EZ , 

D"u - -U/I" + m+ - m- in EIJ., - "IJ. 

{ 
0, T:r; ~ O":r;z(O), 

X = - J z(-, 0, s) dTy, T:r; E O":r;z(O), 

Cl y 

{ 
0, 

+ ! u(-, Ku, s) dTy, T:r; E O":r;u(Ku), 

m;; = a J qa(.,~,s)d~, 
R2 

mt = J qa(.,s,~)a(·,~)d~, a = y,X,Z,U,V 

R2 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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subject to conditions 

a(·,O,s) = J baz(-,~z,s)dTydTx, a = y,x, 
(7 

z(·, 0, s) = QP, 
v(·,O,s) = z(-,~z,s), 
u(-,O,s) = J XZdTz, 

W(T.,) 

x(O,·) = XO(Tx , s), y(O,.) = yO(Ty, s), z(O,·) = ZO(Ty, Tx, Tz , s), 

u(O,·) = UO(Ty, Tx, Tu, s), v(O,·) = VO(Ty, Tx, Tv, s), 

[X(·,TX'S)] = 0, 
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(8) 

(9) 

(10) 

(11) 

(12) 

which governs the evolution of the population. If in (7) and (8) the letter a 

is not an index, then it denote the respective function. The point-argument 
of functions in the (6) - (13) denotes respective obvious arguments. We sup­

pose that the non-negative demographic functions v X , vY , V Z , vu, VV , Q, P, bX , 

bY, qX, qy, qZ, qU, qV and non-negative initial functions xO, yO, zO, uO, vO as well 

as bounded reproductive intervals are given. In the case of limited population 

demographic functions depend on densities x, y, z, u, v. It is also assumed, that 
initial functions xO, yO, zO, uO, vO satisfy reconcilable conditions, i.e., conditions 

(8) - (11), (13) for t = 0. In the case of the panmiction mating (see Svirezhev 

and Pasekov, 1982) the function Q = xyn;l, ny = f y(t, Ty, s )dTy. Functions 
"y 

x, y, z, u and v define the solution of the problem (1) - (13). 

3. Solvability of the model. We consider the particular case of nonlimited 

population, when the abortions and the restoration periods are neglected. Then 

from (1) - (13) we obtain the following system 

(14) 
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DXx = -xdx + m~ + Xb in EX, 

DZz = -zdz + mt in EZ, 

{ 
0, Tx rt ITxz(Kz), 

Xb = J z(.,Kz,s)dTy, Tx E ITxz(Kz), 

Uy 

dQ =yQ + J qQ(·,e, s) de, 0 = y, z, 

R2 

dX =yX + J qX(-, e, s) de 

R2 

{ 

0, 

+ n;l J yPdTy, 
U II 

ny = j ydTy, 
U II 

mt= jqQ(.,s,e)o(.,e)de , o=x,y,z 

R2 

subject to conditions 

o(',O,s) = j bQz(.,Kz,s)dTydTx, 0 = y,x, 

z(·, 0, s) = xyPn;l, 

[x(-, Tx, s)] = 0, Tx = Tlx, T2x, Tlx, T2x, 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

here 11:x = Tkx + Kz, k = 1,2; non-negative functions xo, yO, zO, bX, bY, P, 
yX, yy, yZ, qX, qy, qZ are given as the non-negative functions x, y, z should 

be found. If in the (19) and (20) the letter 0 is not index, then it denotes the 

respective function. The functions XO , yO, zO should sa~sfy the conditions (20) -

(22) for t = 0. Sets (t, Ty, s), (t, Ty, Tz , Tz , s) and (t, Tz , s) are the arguments 
of the functions dY, dZ and dX , respectively. The following theorem is valid. 

Theorem. Let bZ , bY be non-negative continuous functions in t as well 
as bounded and piece wise continuous functions in T = (Ty, Tx) and let 



V. Skakauskas 89 

XO, yO, zO, P, vX, vY , vZ, qX, qY , qZ be non-negative continuous functions, such 
that: 

1) 

no = J yO dTy, sup P = P*, max sup aO = a, 
a=x,Y 

inf (va + J qa(-, e, s) de) = d~, 
R2 

J qa(-,s,e)de ~ f3" < d~, a = X,y,Z, 

R2 

max J sup ba dTx = B* , 
et=x,Y t,Ty,3 

<1.(11:.) 

J sup ZO dTy = aq (B*)-l , 
Tz:,Tz,,3 

<1y 

P* B* exp {-Kz (d! - ,BZ)} ~ q ~ min(1, B* (d! - ,BX»; 

here nO, P*, a, d~, d;, d;, B* , ,Bx, ,BY ,,Bz and sup dY are positive bounded 
constants; operators sup and inf, if they are not specified, are taken on 

the entire domain of definition; 

2) Kz < Tl x , T2x - Tlx > Kz, and integrals 

a=x,y,z 

converge uniformly. 

Then problem (14) - (23) has unique positive continuous solution, such 
that DY y, DZ z, DX x are continuous functions and following estimates are 

valid: 

o ~ t ~ Ty < 00, 

kr4 < t - Ty ~ (k + 1 )Ty, 

Ty E (0,00), 

(24) 
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a exp {-t (d; - ,B*)} , 

a, 

o ~ t ~ Tx, 
Tx E (0, Tl], 

kT4 < t - Tx ~ (k + 1)T4, 
Tx E (0, Tl], 

O~t~Tx-Tl, 

Tx E (Tl,T2], , 

Tx - Tl < t ~ Tx, 
Tx E (Tl, T2], 

O~t~Tx, 
Tx E (T2,T4], 

o ~ t ~ Tx - T4, 
T:c E (T4, 00), 

(25) 

aqk+1 exp {-(Tx - Td (d; - ,BX)}, kr4 < t - Tx ::::;; (k + 1)T4, 
Tx E (Tl, T2], 

kr4 < t - Tx ~ (k + 1)T4, 
Tx E (T2, T4], 

aqk+l exp {-(Tx - T4) (d; - ,BX)}, (k -l)Ty < t - Tx ~ /cry, 
Tx E [T4, 00); 

here k = 0, 1,2, .... 

Proof Let's define: 

x(t, s) = x(t, 0, s), 

y(t,s) = y(t,O,s), 

z(t, Ty, T:c, s) = z(·, 0, s), 

t 

Fl(r) =,(rJ)exp { - J ar(r~) dry} 
o 

t t 

(26a - c) 

+ J exp { - J ar(r~) dry} {m~(r~) + Xb(r~)} da, (26d) 

o ex 
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T-y 

F2(-y' f-L) =I'(h1) exp { - J d'Y(h;) d7]} 
jJ 

T-y T"'( 

+ J exp { - J d'Y(h;) d7]} (mt(h~) + Xb(h~)) da, (26e) 
jJ a 

where Xb(r~) = 0, Xb(hl,,) = 0 for l' = y, z. If in (26a-e) the letter l' is not 
index, then it denote the respective function. From (14) - (16), (22), (23) and 

(26a-e) we obtain the formal integral representation of the functions z, y, x: 

z = F1(z), z(rg) = ZO(Ty, Tx - t, Tz - t, s), 0 ~ t ~ Tz, (27) 

z = F2(Z, 0), z(h~) = z(t - Tz, Ty, Tx:'" Tz, s), 0 ~ Tz < t, (28) 

y = F1(y), y(rg) = yO(Ty - t, s), 0 ~ t ~ Ty, (29) 

y = F2(y, 0), y(hg) = yet - Ty, s), 0 ~ Ty < t, (30) 

(32) 

here: i = 0,4, TO = 0, T1 = T1x, T2 = 71x, T3 = T2x, T4 = 72x, T5 = 
00; r~ = (7],Ty,7]+Tx -t,7]+Tz -t,S), h~ = (7]+t-Tz,Ty,7]+Tx -
Tz, 7], s), r~ = (7],7] + Ty - t, s), h~ = (7] + t - Ty, 7], s), r~ = (7],7] + Tx - t, s) 
and h~ = (7] +t - Tx, 7], s) are sets of arguments written in brackets. By adding 

to (26) - (32) the formulas (17) - (21), we obtain a system of integral equations. 

We shall prove the unique solvability of this system in the space of non-negative 

continuous functions. 

Conditions of our theorem allow us to solve (19), (26d) and (27) by method 

of iterations and to get the estimate 

z~exp{-t(d!-,BZ)} sup zO, O~t~Tz~Kz. (33) 
T:z:,T=,S 

Therefore 

J ZdTy ~ J sup zO dTy = aq(B*)-l, 0 ~ t ~ Tz ~ Kz. (34) 
T y ,1':c,S 

U y U y 
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By using condition (20) and inequalities (33), (34) we obtain the estimate 

max( sup z, sup y) " aq, 0 " t " K.z . (35) 

Acting in the same way we prove the existence of unique non-negative contin­

uous solution of (29) and obtain the estimate 

y" aexp {-t(~ - ,BY)}, 0" t " Ty. (36) 

Now we consider (28), (30) - (32) using step by step method with respect to 

the argument t. 
Let t E (0, K.z ]. Taking into account the estimate (35), as in the case of (27), 

we prove unique solvability of (30) and (31), (32) for Ta: E (0, Tl] u h, T2] and 

obtain the inequalities 

y" aqexp{-Ty(d~ - ,BY)}, 

{ 
exp {-t(d; - ,Ba:)} , 

z~a 
exp {-Ta:(d; .,.... ,Ba:)} , 

0" Ty "t, (37) 

(38) 

{ 
exp {-t(d; - P)}, 0" t" Ta: - Tl, 

z" a for Ta: E (Tl,T:!]. (39) 
exp {-(Ta: - TI)(d; - ,Ba:)} , t > Ta: - Tl, 

Let Ta: E (T2' T3] U (T3, T4]. Assume that Kz is the right-hand side of (31) 

and S32). Suppose that A is the class of non-negative continuous and bounded 

by constant a functions g(t, Ta:, s) with the norm 11 9 11= sup 1 9 I. By using 
the conditions of our theorem we prove that the operator K acts in the class A 
and is contractive. Hence (31) and (32) have unique solutions in the class A 
and 

(40) 

Let Ta: E (T4' 00). Using inequalities Z(T4 + Ta: - t, T4, s) " a, zO" a and 
acting as in the case Ta: E (0, Tl] we prove the unique solvability of (31) and 
(32) in the space of non- negative continuous functions and obtain the estimate 

(41) 
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Knowing the functions y and x for t E (0, Kz], we consider (28) for t E 

( 7z , 7z + Kz]. Acting in the same way as in the case of (27) we prove the unique 

solvability of (28) and obtain the estimate 

z ~ P* exp {-7z (d! - ,BZ)} sup yn;l sup x. (42) 
t,3 t,T:&,8 

From (28) we derive the inequality 

P(t'7x'7Z,S)~fjZd7y ~P*exp{-7zd!} sup x 
t,Tz,s 

T. 

+,BzjexP {-7z -a)d!} sup pda, 
t,T:e,S 

o 

which allows us to obtain the estimate 

for t E (7z , 7z + Kz]. 
Let t E (Kz, 2Kz]. Using ineqUality (43) for 7z = Kz from (20) we get 

max (sup x, sup Y) ~ aq. (44) 

The estimate (43) for 7z = Kz and inequality (44) are the estimates (34) and 

(35) but for interval (Kz, 2Kz]. 
Using the same method as fort E (0, Kz] we can prove the uniquesolvabulity 

of (28), (30)-(32). The estimates (37), (38), (40), (41) and (42) are valid for 

t E (Kz, 2Kz], as the estimate (39) should be replaced by 

for 7x E (71, 72]. 

Continuing our argumentatios we prove the unique solvability of (28), (30)­

(32) and that the estimates (37), (38), (40), (41) and (45) remain valid for 

t ~ 72' 
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Let t E (72, 74]' Acting as above we can prove the solvability of (28), 

(30)-(32) and that the estimates (37), (38h, (41), (45h remain valid. Using 

inequality 

J ( ) d B*-l {I, t::; 7 x , 
Z ',Kz,S 7y::; aq t q, 7 x < , (46) 

and acting in the same way as in the case of derivation of inequality (40) we 

obtain the estimate 

(47) 

Therefore the estimate (40) remains valid for t E (72, 74J. 

Let t. E (74,274]' Acting as above we can prove the unique solvability of 
(28), (30) - (32) and obtain the estimates 

max (sup x, sup y) ::; aq2. 

Proceeding our argumentations we prove the unique solvability of the prob­
lem (14) - (23), obtain the estimates (24), (25) and the inequalities 

max (sup x, sup 17) ::; aqk+l, 

kr4 < t::; (k+ 1)74, k = 0, 1,2, .... (48) 

The estimate (48) completes the proof of our theorem. From this estimate we 

conclude that the population vanishes if q < 1. 

Note. We considered the case Kz < 71x, 72x - 71x > Kz. The other cases 
can be considered by the same method. 
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MIGRUOJANCIQ DVILYCIQ POPULIACIJQ EVOLIUCIJA 

Vladas SKAKAUSKAS 

Gautos lygtys, apra!lan~ios dvilyles migruojan~ios populiacijos evoliucijll, jskaitanl 
individll amill, patelill ne!itullUl, galillUl vaisiaus 2uvillUl ir organizmo reabilitacijll po 
gimdymo bei vaisiaus 2uvimo. Kai nepaisoma vaisiaus 2uvimo ir reabilitacijos intervalll, 
jrodytas vienintelis modelio i!lsprend2iamumas. 


