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Abstract. The equations describing the evolution of migrating populations com-
posed of two-sexes are derived taking into account the size, age structure, panmiction
mating of sexes, pregnancy of females, possible abortions as well as the females or-
ganism restoration periods after abortions and delivery. In partial case, which neglects
females organism restoration period, the unique solvability of the model is proved and
the condition for population to vanish is obtained.
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1. Introduction. Using integral operator Svirezhev (1987) proposed the de-
terministic model of migrating in unbounded area R, population without sexes
and age structure. He also derived and widely used diffusion approximation
of this model. Diffusion approximation of migration in biology as well as its
analogue in chemist kinetics are widely known (see Svirezhev, 1987; Murray,
1983; Kolmogorov et al., 1937; Fisher, 1937). Gurtin (1973) proposed another
diffusion approximation of migrating population taking into account age of in-
dividuals. The model developed by Skakauskas (1994) includes: age and sex of
individuals; pregnancy of females; possible destruction of the foetus (abortions);
organism restoration periods after abortions and delivery; panmiction mating of
sexes. In this paper we propose the model which in addition to Skakauskas
(1994) includes the migration of individuals. In the case, where abortions and
females restoration intervals are neglected, we prove the unique solvability of
our model.

2. Construction of the model. Suppose that:
t, 76,7y € I = (0,00), T = [0,00), s = (s1,52) € Ry = (—00,00) X
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(=00, 00), ds = ds1dss, € = (§1,&2) € Ra, df = dé1dé3, dsRy = 51,51 +
dsl] X [52, So+ d32], ngQ = [61;61 + dfl] X [ 9,&0 + d£2], where ¢ — time, 7,
and 7, are ages of males and females, respectively, R is populated area.

y(t, 7y, s)dryds is the expectation at the moment ¢ of the number of females
of age 7 € [ry, 7y + d7,] staying in the area d, Rj;

z(t, 75, s)dr,ds is the expectation at the moment ¢ of the number of single
females of age 7 € [r;, T, + dr,] staying in the area d, Ry;

z(t, 7y, Tz, Tz, §)d7y d7odT, ds is the expectation at the moment ¢ of the num-
ber of fecundated females of age 7 € [r,, 7, + dr;] staying in the area d, R,
whose embryou’s age is 7 € [r,, 7, + dr,] which were fecundated by males of
age 7 € [y, 7y + d7y];

u(t, Ty, Tz, Tu, 5)d7yd7.d7,ds is the expectation at the moment ¢ of the
number of females of age 7 € [, 7; + d7] staying in the area d, R for which
time 7 € [r,, 7y + d7,] after abortion has passed and which were fecundated
by males of age 7 € [ry, 7y +dry};

v(t, Ty, Tz, Tv, §)d7y d7. d7, ds is the expectation at the moment ¢ of the num-
ber of females of age 7 € [r,, 7, + d7] staying in the area d, R, for which
time r € [ry, 7y + d7,] after delivery has passed and which were fecundated by
males of age 7 € [1y, 7y + d7y);

Q(t, 1y, 7z, s)dr,d7,ds is the expectation at the moment ¢ of couples staying
in the area d, R, which are formed of females of age = € [r;, 7, + dr,;] and
males of age 7 € [y, 7y + d7y];

P(t, 1y, 7, s)dt is the probability to become pregnant in the time inter-
val [t,t + dt] for a female from the male-female pair with characteristics
(1y,9), (7z,5);

x(t, 7y, Tz, T, 8)dt is the probability that the abortion took place in the time
interval [t, ¢ + dt] for a female with characteristics (7, 7, 72, 5);

VvE(t, 1o, s)dt, VY(t, Ty, s)dt, Vi(t, Ty, Tp, Ty, 8)dE, VE(E, Ty, o, Ty, S)dt,
v¥(t, 7y, Tz, Tv, s)dt are the probabilities that individuals with respective char-
acteristics (7, s), (7y,5), (7y,Te, 72, 8)» (Ty, 7o, T, 8)s (7y, Tz, Ty, s) Will die
in time interval [t,t + dt];

q°(t, 7z, €, 8)dédt, ¢¥ (1, 7y, &, s)dEdt, ¢* (t, 7y, Te, T2, €, 5)dEdE, g (¢, Ty, Ts,
7w, &, s)dEdt, ¢V (t, 1y, Tz, Ty, €, s)d€dt are the probabilities that individuals with
respective characteristics (7, s), (7y,5), (Ty, 7o, T2, 8)s (Ty, T, Tu, 8)» (Ty,.Te,
Ty, s) due to migration from position s € R, will get into area d¢ R, in the
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time interval [t, ¢ + dt];

X (t, 1z, s)dr;dsdt is a change due to conceiving, abortions and birth in the
time interval [¢,t + d¢] of the expectation of the number of single females of
age 7 € [y, 7 + d7];

m}(t, 1z, s)dr,dsdt, m;“ (t,1y,s)drydsdt, m}(t, 1y, 7z,7s,s)drydr,dr,
dsdt, m}(t, 7y, 7c, Tu, s)drydrodrydsdt, m} (¢, 1y, 70,7y, s)dTydT,dT,ds dt
are the expectations of the individuals with the respective characteristics (7, 5),
(1y,8), (Ty, T2, T2, 8)s (Ty, Te, Tu, S), (Ty, Tz, Tv, s) that due to migration will get
into the area d; R, in the time interval [¢, + dt];

mg (t, Tz, 8)dTeds dt, my (t, 7y, s)drydsdt, m; (1, 7y, Tz, Tz, s)dTydrodT,
dsdt, my(t, 7y, Tz, Tu, s)drydredrydsdt, my (t, 7y, 7z, Ty, s)drydrodr,ds dt
are the expectations of the individuals with the respective characteristics (7, s),
(1y,8), (7y,7Tz,72,8), (Ty, T, Tu,8), (Ty, Tz, Ty, s) that due to migration will
leave the area d, R, in the time interval [¢,t + dt];

b (t, 7y, 7z, 8), b¥(t, 7y, Tr, s) are numbers of female and male offsprings
born at the moment ¢ from a female with the characteristics (7y, 7, s);

2-1/2pvy 92-1/2pey 3-1/2D7, 3-1/2D%y, 3-1/2D%y represent the
directional derivatives along the positive direction of the characteristics of the
operators LY .—:-‘%+%,L”= 3%+%,L" =L’+%, L“=L1+867”,
LY =1% + %, respectively;

O':cz(Tz) = (le + Tz, T2z + Tz]; Uz-v(Tv) = (7:1:0 + Ty, Toz + Tv]; Uz‘u(Tu) =
(T1e + Tu, Foz + Tu), Where Tpy = Top + K2, k = 1,2; 0y = (114, T2y] and
0z.(0) are reproductive intervals for males and females, respectively;

o, = (0,k;], ou = (0,k4], 0y = (0,k,] are gestation and restoration
intervals after the abortion and the delivery, respectively;

0 =0y X 05;(k;), EY ={(t,7y,5) €I x I x Ry};

E* ={(t,7s,s) €I (I\i__f_Jsz‘) X Ry, Tk = Tz, Tht2 = Tho + Ko, k=
1,2, 75 = Tiz + Ku, Te = 2o + Ku }3

E* ={(t, 7y, 72, 72,8) €I X 0y X 02,(7:) X 0, X Ra};

B¥ = {(t, 7y, 7oy Tu, 8) € I X 0y X 0zu(Tu) X 0y X Ra};

EY = {(t, 7y, T, T,8) € I X 0y X 024(T0) X 0y X R}

[z(t, 7i,5)] is a jump of the function z at the plane 7, = 7;;
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[Oa Tz — Tl:v]; Tz € (Tlm ;lx]a
w(Tx) = [Or K'Z]) Tz € ("Flza T2z],
[Tx — T2z, Kz], Tr € (7'2x,’7‘;24:];

for 75, — 11, 2 K, and

[0; Te — Tlx]; Tz € (le; TZz]a
LIJ(T;,;) = [T.’L‘ — T2z, Tp — Tl:c], Te € (1'21?,?11:];
[Tx — T2z, ’fz]: Tz € (ﬁxﬁzx],

for 7oy — T1x < K.
Upon using the balance relation, we obtain the system

D¥y = —y¥ + m} —m; inEY,
Dz = —zv® + X +m} —m in E?,
D*z = —z2(v* +x)+m} —m; in E?,
D%y = —uv* +m} —m7 in E¥,

D’v = -’ +m} —m; inE",
s & 022(0),

0,

X=- /z(- 0,8)dry, T € 0as(0),
Ty
[

Tz ¢ azu(nu):

+ /u('a’cu)s)dTy) Tz Egzu(’cu);
(0, Tz ¢0'xv(/iv),
+ /v('»’ivas) dTy’ Tz € U'xv(’cu);
\ Ty
m; = a/q“(-,f,s)d{,
R

Tn: = /qa('7s:£) a(':f) dE» ax =Yy, zuv

Ry

(1)
(2)
(3)
(4)
(5)

(6)

(7)
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subject to conditions

a(-,0,s) = /baz(-,n,,s)dTyd‘rz, a=y,z, (8)
Z(',0,8)= QP, (9)
'U(',O,S) = Z(',RZ,S), (10)
u(',O,s) = / X zds, (11)
w(Te)

1?(0,') = l‘o(Tx,S), y(oy): yo('ry,s), Z(O,-): Zo(Ty,TI,TZ,S),

u(O!') = uo(TyaTx:Tu;s)) 0(07 ) = ’UO(Ty,T,,Tv,S), (12)
[x('vTx:s)] =0,
T = Tiz, T2z,T1z + K:ua:;:Z.‘l: + Ky, Tz + 'fva;;:Zz' + Ky, (13)

which governs the evolution of the population. If in (7) and (8) the letter o
is not an index, then it denote the respective function. The point-argument
of functions in the (6) — (13) denotes respective obvious arguments. We sup-
pose that the non-negative demographic functions v%, ¥, v*,v¥%, ¥, Q, P, b*,
bY,q%,¢¥,¢%, q%, q° and non-negative initial functions z°, y°, 2°, u°, v° as well
as bounded reproductive intervals are given. In the case of limited population
demographic functions depend on densities z, y, z, u, v. It is also assumed, that
initial functions z°, y°, 2°, u°, v° satisfy reconcilable conditions, i.e., conditions
(8)—(11), (13) for ¢t = 0. In the case of the panmiction mating (see Svirezhev
and Pasekov, 1982) the function Q = zyn;!, ny, = [ y(, 7y, s)d7,. Functions

, U

z,y, z,u and v define the solution of the problem (1;— (13).

3. Solvability of the model. We consider the particular case of nonlimited
population, when the abortions and the restoration periods are neglected. Then
from (1)-(13) we obtain the following system

D¥y=—yd +m} in B, (14)
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D°z = —zd® +m} + X, in E®,
DPz=—zd +m} in E?,

0,

Tr ¢ o'z'z('cz):

X = / 2(- Kz, 8)dTy, To € 05.(k2),

Oy

da =Va+/ qa(',f;s)dﬁ:

Rz

d° =V’+/qz(-,£,s)d§
R
0,

+ ny‘I/dery,

Ty

m: =/q°‘(-,s,§)a(-,§)d§,

R,

subject to conditions

a=Yyz,
Tr ¢ O'.cz(o)y
ny = /ydry, e € 022(0),
Ty
a=2,yz

a(-,0,s) = /b"z(-,fcz,s)drydrx, a=y,z,

z(-,0,s) = zyPn; 1,
[23(-,7‘1-,3)] =0, 7

z(0,-) = 2, ¥(0,-)

= Tiz; T2z, Tiz; T2z,
_,0 — 0.
=Y, 2(0’ ) =z

(15)
(16)

(17)

(18)

(19)

(20)

(21)
(22)
(23)

here T, = Tis + K., k = 1,2; non-negative functions z°, 3%, 2%, 6% b¥, P,
Ve VY VE g%, ¢Y, ¢f are given as the non-negative functions z,y,z should
be found. If in the (19) and (20) the letter o is not index, then it denotes the
respective function. The functions z°, 3°, 20 should satisfy the conditions (20) —
(22) for t = 0. Sets (¢, 7y,s), (t, 1y, s, 7z, 5) and (t, 7z, §) are the arguments
of the functions d¥,d? and d*, respectively. The following theorem is valid.

Theorem. Let b”, bY be non-negative continuous functions in t as well

as bounded and piecewise continuous functions in 7 = (7,,7;) and let
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z0,4°, 2% P,v® 1Y, 1%, ¢%, ¢¥, ¢* be non-negative continuous functions, such
that:

1)

noz/yodry, sup P = P*, maxsupa® =a,

a=z,y
Ty
inf (v"‘ +/q°‘(-,£,s) df) =d?,
Ry
[etsnd<sm<a, a=ausz
R2
max / sup b®dr, = B*,
a=z,y t,7y,8

ACH)

/ sup 2°dr, = aq (B*)7!,
Tx,Tz,38
Ty

P*B" exp {—£, (d] — §°)} < ¢ < min(1, B* (d} — §%));

here n°, P* a,dY,d?,d%, B*, 3%, 3Y,3* and sup dY are positive bounded
constants; operators sup and inf, if they are not specified, are taken on
the entire domain of definition;

2) k; < Tig, Tog — Tip > Kz, and integrals

[etesd [etnod a=z:

Ry R

converge uniformly.

Then problem (14) — (23) has unique positive continuous solution, such
that DYy, D?z, D*z are continuous functions and following estimates are
valid:

aexp {—t (& — B¥)}, 0<t< 1y <oo,

YS o agtttexp{-m (dl — BY)}, kr<t-r <(k+1)my, (24)
7y € (0, 00),
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(aexp {—t(df — 5)},
ag*+l exp {—7; (df — 7)},
aexp {—t (% - A%},
aexp {~(7s — 1) (df — B°)},
a,
aexp {—t(d? — %)},

agb*l exp {—(7p — m) (d — %)},

aqk+1

?

ag**t! exp {—(7z — 1) (&% — 6°)},

here k =0,1,2,....

Proof. Let’s define:
z(t, s) = z(t,0, s),
g(t,s) = y(t,0,5),

0<tg 7,
Tz € (07T1],

kg <t =715 < (k4 1)74,
Tz € (OaTI];

Ogthx_Tla
T € (TlaT2]’ )

Te—T1 <1< 7,
7z € (11, T2),

0t 7,
Tz € (72)T4];

(25)
0 S t < Te — T4,
Tz € (T4,00),

kry <t —1p < (k+ 1)74,
Tx € (TI:T2])

krg <t —7p < (k+ 1)1,
Tr € (T27T4]’

(k=17 <t—7; < k7y,
Tz € [14,00);

(26a — ¢)

E(t7Ty:Tx’5) = z(' ,0,5),

Fi(y) =v(r]) exp { -

Jewf-

0

Q\N o\“

a1y dn}

() dn} {m*(2) + Xo(r1)} da, (264)
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Pt =) exo { - [ gy an}
"

+ ]exp { - ]’d"(hg) dﬂ} (m3 (h]) + Xs(hY)) da, (26e)
u e

where X;(r)) = 0, X3(hY) = 0 for ¥ = y, 2. If in (26a-€) the letter v is not
index, then it denote the respective function. From (14) - (16), (22), (23) and
(26a-€) we obtain the formal integral representation of the functions z, y, z:

Z=F1(Z), Z(T‘g):ZO(Ty,Tz—t,Tz——t,s), 0<t<7'z, (27)

z = Fy(z2,0), z(h}) - (= Toy Ty, To = T2,8), 0K T <t, (28)

y = Fi(y), y(rg)zyo(‘ry—t,s), 0t my, (29)
y = F(y,0), y(hy) =9(t~1,s), 0< 1<t (30)
z = Fi(z), z(rg) = :1:0(7'5 —t,s), 0Kt —m, (31)

Tz € (TiaTi+1])
z = Fo(z, 1), t>1,—7, T € (7 Ti+1); (32)

here: i = 0,4, 70 =0, 71 = Tig, T2 = Tig, T3 = Tog, Ta = Tog, T5 =
oo; = Ty,n+ T —tn+ T —ts), ki =(n+t—1,my,n+ 1 -
T2, 1, 8), ry = (mn+my—t,s), h’rl; =(n+t—1y,m,59), ry = (sn+7s =1, 5)
and A7 = (n+1t— 1y, 17, s) are sets of arguments written in brackets. By adding
to (26) — (32) the formulas (17) - (21), we obtain a system of integral equations.
We shall prove the unique solvability of this system in the space of non-negative
continuous functions.

Conditions of our theorem allow us to solve (19), (26d) and (27) by method
of iterations and to get the estimate

z< exp {~t(d? — )} sup 2°, 0Kt ™ <k, (33)
Tz, Tz
Therefore
/zdry < / sup 2°dry, = ag(B*)"!, 0<t< 7 <k, (34)
Ty,Tx,S

Ty Ty
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By using condition (20) and inequalities (33), (34) we obtain the estimate
max(sup Z,supy) € ag, 0<t <k, (35)

Acting in the same way we prove the existence of unique non-negative contin-
uous solution of (29) and obtain the estimate

y<Saexp{-t(di -p)}, 0<t<. (36)

Now we consider (28), (30) —(32) using step by step method with respect to
the argument ¢.

Let t € (0, x,]. Taking into account the estimate (35), as in the case of (27),
we prove unique solvability of (30) and (31), (32) for 7, € (0,71] U (71, 2] and

obtain the inequalities

y<agexp{—my(dl — BY)}, 0< 7 <t, 37)

{exp{—t(df -89}, 0<t<,
a

for . € (0, 7], 38
exp{—7-(df - f%)}, 0< 7 <t = €(0n] (38)

exp{—t(df — %)}, 0<t< 71 —n,
{ = ) SET forr € (myml. (39)

exp{—(7z —n)(dZ - B%)}, t>1, -1,

Let 7, € (72, 73] U (73, 74]. Assume that Kz is the right-hand side of (31)
and (32). Suppose that A is the class of non-negative continuous and bounded
by constant a functions g(¢, 7, s) with the norm || g ||= sup | ¢ |- By using
the conditions of our theorem we prove that the operator K acts in the class A
and is contractive. Hence (31) and (32) have unique solutions in the class 4
and

r<a

,  To € (12, 73] U (73, 74]. (40)

Let 7, € (74, 00). Using inequalities (4 + 7, —¢,74,5) < @, 2° < a and
acting as in the case 7, € (0, 71] we prove the unique solvability of (31) and
(32) in the space of non- negative continuous functions and obtain the estimate

exp {—t(d? — 5°)}, 0t 7 —7a,
<a{ -tz - ) S

exp {—(1z — Ta)(d% — B%)}, t> 71 — T4
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Knowing the functions y and z for ¢ € (0, x,], we consider (28) for ¢ €
(72, Tz +&;]. Acting in the same way as in the case of (27) we prove the unique
solvability of (28) and obtain the estimate

2z < P*exp {—7,(d — §*)} sup yny‘1 sup z. (42)
t,s

3Tz

From (28) we derive the inequality

p(t,rx,rz,s)d=ef/zdry KP*exp {—T,d:} sup z
1,Tz,8
Ty

Tz

+ ﬁz/exp {-m — a)d2} sup pda,

1,7z,8
0
which allows us to obtain the estimate

/zdry < sup p < P*exp {—7,(d% — %)} sup = < ag(B*)™}, (43)
1,7x,8

yTx,$ ) Txy
Ty
fort € (r,, 7, + K]
Let t € (k;,2k,]. Using inequality (43) for -, = k., from (20) we get

max (sup Z,supy) < ag. (44)

The estimate (43) for 7, = «, and inequality (44) are the estimates (34) and
(35) but for interval (x;, 2«,].

Using the same method as for ¢ € (0, «,] we can prove the unique solvabulity
of (28), (30)-(32). The estimates (37), (38), (40), (41) and (42) are valid for
t € (sz,2k;], as the estimate (39) should be replaced by

oyy 4 1 PSS Te
¢ < aexp{—(r. —m)(di — 8°)} {q, t>'r,}’ (45)
for 7, € (11, 72].
Continuing our argumentatios we prove the unique solvability of (28), (30) -
(32) and that the estimates (37), (38), (40), (41) and (45) remain valid for
i < T2.
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Let t € (72, 74). Acting as above we can prove the solvability of (28),
(30)-(32) and that the estimates (37), (38)2, (41), (45)2 remain valid. Using
inequality

1)1, t< 7,
/z(.,nz,s) dry < agB {q, <t

Ty

(46)

and acting in the same way as in the case of derivation of inequality (40) we

obtain the estimate
1) t < T.’L‘y
<
:c\a{q, T < 1. (47)

Therefore the estimate (40) remains valid for ¢ € (72, 74].
Let t € (74,274). Acting as above we can prove the unique solvability of
(28), (30) - (32) and obtain the estimates

/z(',rc,,s) dry < ag®(B*)~! for 7, € (12, 74),
Oy
max (sup Z, sup §) < ag’.
Proceeding our argumentations we prove the unique solvability of the prob-
lem (14) — (23), obtain the estimates (24), (25) and the inequalities

max (sup %, sup g) < agt*?,

]CT4<t<(k+1)T4, k=0,1,2,.... (48)

The estimate (48) completes the proof of our theorem. From this estimate we
conclude that the population vanishes if ¢ < 1.

Note. We considered the case k, < 7, Tor — Tz > K,. The other cases
can be considered by the same method.
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MIGRUOJANCIU DVILYCIY POPULIACLJ{ EVOLIUCLJA
Vladas SKAKAUSKAS

Gautos lygtys, aprafantios dvilytés migruojan¥ios populiacijos evoliucija, iskaitant
individy amZiy, pateliu né¥tuma, galima vaisiaus Zuvimg ir organizmo reabilitacija po
gimdymo bei vaisiaus Zuvimo. Kai nepaisoma vaisiaus ¥uvimo ir reabilitacijos intervaly,
irodytas vienintelis modelio i¥sprendZiamumas.



