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ON ADAPTIVE THRESHOLD INTERVALS 
FOR STOPPING RECURSIVE LEAST SQUARES 
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Abstract. In the papers (Kaminskas, 1973; Kaminskas and Nemura, 1975) the 
stopping rule of recursive least squares (RLS) is worked out using the length of the 
confidence interval for the respective current meaning of the true output signal of a 
linear dynamic system. The aim of the given paper is the development of techniques 
for calculating threshold intervals of respective criteria, used in such a stopping rule. 
In this connection adaptive threshold intervals based on the Cramer-Rao lower bound 
according to Pupeikis (1995) are proposed here, too. The results of numerical simulation 
by mM PC/AT are given. 
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1. Stopping rule of RLS. Consider a single input :r: k and output U k of a 

linear discrete-time system, described by the difference equation 

where Yk is the current meaning of the true output signal of the initial linear 

dynamic system; ai, i = 1,p and bj , j = o,q are unknown parameters to be 

estimated by processing some input-output observations Xk and Uk; p, q are 

known positive integers; N k is a sequence of independent Gaussian variables 

with zero mean and CT'j... 
To calculate the estimate c'+1 of the parameter vector eT = (al,"" ap , 

bo, ... , bq) we use ordinary RLS of the form 

(2) 

(3) 
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1'0 = ,1, ,» 1. 

Here 

~T (~T ~bT) (~ ~ ~b ~b ) 
Cs = a, s = al,···,ap , 0,···, q s 

(4) 

(5) 

(6) 

(7) 

are the vectors of unknown parameter estimates obtained by recursive processing 

of s+1 samples and s samples ofxk and Uk, k = 1,2, ... , s, s+l, respectively; 

is a vector of p and q + 1 most recent observations of input Xk and output Uk; 

I's is an m x m positive definite matrix; lis a m x m unit matrix; m = p+ q + 1-
According to Kaminskas and Nemura (1975) the stopping rule for RLS in 

the space of signals is based on the statistic 

(9) 

where t denotes Student's statistic with t-distribution and s - m degrees of 

freedom; 

(10) 

is the value of an output signal of the statical mathematical model of system 
(1) according to Cypkin (1984); 

(11) 

is a vector of p and q + 1 most recent observations of input x k" and output 

U k ; u7v. is the estimate of variance 0';1f' that can be calculated recursively 
(Kaminskas, 1973). 

Then, two criteria 

I?P) = 2u'fv. tex/'VI e.I'. 'il ce., (12) 

d2)=mlu{2u'fv.texV'ilIesI's'ilces}, i=n;B (13) 
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are elaborated in Kaminskas and Nemura (1975). 

The first criterion defines the length of the confidence interval of such a 

form 

(14) 

where t a is such that 

(15) 

and it is tabulated, dependent on the significance level 0: and s - m degrees of 

freedom. 

The second criterion defines the. maximal length of confidence regions 

obtained for the true meaning of system output y •. 

Recursive calculations by RLS are stopped when 

( i) e. ~ eo, i = 1,2, (16) 

where eo is the threshold to be chosen beforehand. 

2. Calculation of adaptive thresholds. Just like in Karninskas (1972) 

there exist five main uncertainties while using the stopping rule proposed in 
Kaminskas (1973), Kaminskas and Nemura (1975). First, for both criteria 

(12) and (13) the same threshold eo is c~osen; second, there are no suggestions 

whatsoever as to the choice of eo; third, the efficiency of different e~i), i = 1,2 
is shown not so clearly; fourth, the stopping criteria are worked out only for the 

case of additive Gaussian noise; fifth, the ability of stopping criteria (12), (13) 

to terminate the recursive computation for more complex noise model structures 

(for example, the ARMAX model) is not investigated there. Therefore, we try 

to obtain here the threshold values using the Cramer-Rao lower bound (Rao, 

1968; Pupeikis, 1988; Pupeikis, 1995). Then according to Cypkin (1984), for 

the asymptotically optimal algorithm (2) - (5) the asymptotic covariance matrix 

of errors (ACME) is 

(17) 

because in such a case the Cramer..:.Rao inequality 

(18) 
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turns into an equality. 

Here 

V(c) = M {(cs - c)(cs - cf} (19) 

is the covariance matrix of errors (CME); 

I(po) = M {:~~~} (20) 

is Fisher's information; po(N) and Po(N) are the probability density function 
and its first derivative, respectively; A(c, u 2(po)) is the normed information 
matrix (NIM); u 2 (po) is the variance of noise Nk; 

(21) 

M {. } is the average value. 
The estimate of ACME can be calculated by 

Vs = SIT~.(~;~s)-l (22) 

in an off-line operation and 

~ ~2 

Vk=kuekrk , k=1,2, ... ,s,s+1, ... , (23) 

in the on-line one. 

Here IT~. is the estimate of variance of u~ after processing s pairs of 
input-output observations; e = (e1"'" esf is the vector of residuals (4); 

[ -u 
-Ui-p+l Xi+1 ... 

X;~"11 -U:;~l -Ui-p+2 Xi+2 ... Xi-q+2 

~$ = (24) 
-Us -2 -U.-p _1 X s -1 ... X s -1 

-u.-l -us - p Xs .. . X • 

is the matrix of input-output observations; i = max(p, q). 
Hence, taking into account (17), (23) it follows for minimal values of 

thresholds that 

(25) 

(26) 

k=s+1,s+2, ... ,s+I, ... , i=n,k. 
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The maximal values of thresholds could be calculated by the same formu­
las supposing k = S In (25), (26). Then 

{!~~x = 2;ifv.to (V'Ie.T\c)V'ce.) S-l u ;,2, (27) 

{!(2) = m?tx {2U~ ta (V'I e.T\ c) V' ce.) S-l u ;,2} , (28) 
ma.x 'Z • 

i = n,s, 

respectively. 

It might be mentioned that the respective minimal and the maximal value 

of thresholds are time varying not only because of current s, k, ;;:fv,k> u~,. 
and V' cek, V' ce., but also because of the values of some parameters whose 
current estimates ought to be substituted into I(c) of the form (21). 

Then, recursive calculations by RLS are stopped if one of the conditions 

(1) ~ (1) ~ (1) 
{!, 9' {!k 9' {! k , 

ma.x min 

(2) ~ (2) ~ (2) 
{!. 9' {!k 9' {! k , 

ma.x min 

k = s + 1, S + 2, ... , s + I, ... 

is satisfied or even both the conditions are satisfied at the same time. 

Here 

according to Karninskas and Nemura (1975). 

(29) 

(30) 

(31) 

3. Time varying threshold intervals for the first order object. Anolo­

gously as'in Pupeikis (1995), we consider here a discrete-time object of the 

form 

(33) 

as an example, where a and bo are the coefficients of difference equation. 

In such a case ACME and NIM are 
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(34) 

and 

l/~l ' (35) 

respectively, where 

(36) 

is the residual; Kx (. ), Ku (- ), Kux (- ) are the estimates of input-output auto­
covariance and crosscovariance function values, respectively; U;k and U;k are 

variances of residuals and input signal, respectively. 
'Then inequality (18) can be rewritten in such a way 

tl (37) 

since Fisher's information 

[(po) = l/u~. (38) 

In view of the mentioned expressions time varying thresholds (25) - (28) 

can be obtained for object (33) by the formulas: 

i = n,s, 

8- 1! ('\7 e' [V1. 
S C I 0 

i = n,s, 

(39) 

(40) 

( 41) 

(42) 



R. Pupeikis 33 

1 ~2 1 -ak 
(43) Vl k = ~2 ~ 2 , V2k = ~2 , 

iTNk + bOkiT:Ck iT:Ck 

1-a~ 1 
(44) V2, = ~2 ~ ~2 , V2, = ~2 ' 

iTN, + bO.iT:c. ' iT :c. 
~2 ~2 

iTNk f - iTN. (45) fk=~' 8 - ~2 • 
iT ek " iT e. 

Equations (56) - (67) could be realized in an on-line operation, if the 

estimatesak, bOk , K:c(O,k), Ku(1',k), Ku:c(1',k), l' = o,r, U;k" U~k' U~k 
are substituted into the above mentioned expressions instead of their unknown 

values, respectively. They may be calculated in such a way: 

[ 
-K:c(O, k) Ku(1, k) + Ku:c(1, k) K:cu(O, k)] 

[~h] = -Ku:c(1,~) Ku~, k) + Ku~, k) Ku:c(O, k), (46) 
bOk K:c(O, k) Ku(O, k) - K~A1, k) 

~ ~ 1[ ~ ] -K:c(O, k) = K:c(O, k - 1) + 1 + k XkXk - K:c(O, k - 1), l' = 0, 1, 

1 
Xk =Xk-l + k (Xk - Xk-l) , 

1 ( Uk - bOkXk + akUk-l) 2 
~2 ~2 

iTek =iTek _ 1 + k - 1 1 + TJk 
~ 2 ~ 

K:c(O, k - 1)Uk_l - Ku:c(1, k - 1)XkUk-l 

TJk (k _ 1) [K:c(O, k)Ku(O, k) - K~:c(1,'k)] 

~ 2 ~ 2 
Ku:c(1, k - 1)Uk_1 + Ku(O, k -1)Xk 

+ (k -1) [K:c(O,k)Ku(O,k) - K~A1,k)]' 



34 On adaptive threshold intervals 

where G" is the estimate of y". 
For higher order objects the stopping conditions are considerably more 

complicated, but not so much that their determination were impossible. Rec­

ommendations referring to the information matrix can be found in (Cypkin, 

1984; Klein and Melard, 1994). 

5. Simulation results. The stopping rule (16) with adaptive thresholds 

(25) - (28) for discrete-time objects with a = 0.7, bo = 1 and a = 0.985, bo = 
1 in (33) was investigated by numerical simulation using IBM PC/AT. Realiza­

tions of independent Gaussian variables e" with zero mean and unitary variance 

and a sequence of the second order AR model of the form 

(47) 

were used as an input sequence X". Ten experiments with different realizations 

of noise N" at the noise level CTJv / CT~ = 0.5 were carried out. In each i-th ex­

periment, first, the estimates of parameters of equation (33), the criterion f!~1), 
of the shape (31), and its maximal threshold values (40) were obtained. After­

wards, the same values and the minimal threshold value (39) were calculated 

recursively, using the above mentioned on-line procedure. 

In Table 1 we present the estimates, averaged by 10 experiments, 

the criterion 

::::::: 1 10 ~(') 
a=-Ea' 

10 ;=1 ' 

;:: _ 1 10 ~(i) 
b - 10 .E b , ,=1 

_(1) 1. 10 (1) 
f!k = 10 i~ f!k,i' 

( 48) 

(49) 

(50) 
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and its maximal threshold value 

(1) _ 1 10 (1) e. -Ee· mu - 10 i=l ';'~·x' 

35 

(51) 

with their confidence intervals ~, calculated in each i-th experiment after pro­

cessing s = 15 values of observations (Xk, Uk). 

Table 1. Estimates (48), (49), criterion (50) and its maximal threshold val­

ues (51), averaged by 10 experiments, with confidence intervals 

~ after processing 15 values' of observations 

a b ..,,(1) e k 
-(1) ek 

Parameters a = 0.7, bo = 1 in (33) 

Input - Gaussian process 

0.39 ± 0.03 0.84± 0.07 0.64 ± 0.19 2.14 ± 0.37 

Input - AR process 

0.24± 0.04 1.17±0.12 0.513 ± 0.21 3.73± 0.72 

Parameters a = 0.985, bo = 1 in (33) 

Input - Gaussian process 

0.92 ± 0.01 0.81 ± 0.02 4.41 ± 1.08 9.87 ± 1.73 

Input - AR process 

0.95 ± 0.01 0.89 ± 0.04 10.15 ± 3.45 16.1 ± 2.79 

Table 2 illustrate the same estimates, the respective crit€?rion and its min­

imal threshold value 

(52) 

averaged by 10 experiments and calculated in each experiment after processing 

different number of observations (Xk, Uk)' The first line of each k corresponds 

to the meanings calculated using a Gaussian process as input, and the second 

line shows the meanings obtained by applying a sequence of the form (47) as 

input. It follows from the simulation and estimation results, presented here, that 
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Table 2. Estimates (48), (49), criterion (50) and its minimal threshold val-

ues (52), averaged by 10 experiments, with confidence intervals 

depending on k 

k a b 
_(1) 
(} k 

..,,(1) 
(}k 

min 

Parameters a = 0.7, ba = 1 in (33) 

100 
0.69 ± 0.01 0.99 ± 0.01 0.27 ± 0.06 4.03± 0.93 
0.70 ± 0.01 1.00 ± 0.01 0.31 ± 0.06 5.19 ± 1.05 

200 
0.70 ± 0.01 0.99 ± 0.01 0.20 ± 0.03 4.63 ± 0.62 
0.69 ± 0.01 1.00 ± 0.01 0.23 ± 0.03 5.84 ± 0.97 

300 
0.70 ± 0.01 0.99 ± 0.01 0.24± 0.02 7.03 ± 0.56 
0.70 ± 0.01 1.01 ± 0.02 0.17± 0.02 6.32 ± 0.54 

400 
0.70 ± 0.01 1.00 ± 0.01 O.ll ± 0.02 3.68 ± 0 .. 76 
0.70 ± 0.01 0.99 ± 0.01 0.14 ± 0.02 6.17 ± 0.94 

500 
0.70 ± 0.01 0.99 ± 0.01 0.14 ± 0.01 5.08 ± 0.72 
0.70 ± 0.01 0.98 ± 0.01 0.14 ± 0.01 7.41 ± 0.97 

Parameters a = 0.985, ba = 1 in (33) 

100 
0.95 ± 0.01 0.98 ± 0.01 11.77±2.89 64.73 ± 11.70 
0.95 ± 0.01 0.97 ± 0.01 21.26 ± 5.43 ll9.30 ± 18.67 

200 
0.98 ± 0.01 0.99 ± 0.01 13.60 ± 3.15 91.41 ± 20.30 
0.98 ± 0.01 1.00 ± 0.01 19.03 ± 4.21 138.81 ± 30.71 

300. 
0.97 ± 0.01 0.97 ± 0.01 44.87 ± 17.30 223.39 ± 51.84 
0.97 ± 0.01 1.00 ± 0.01 58.30 ± 24.07 283.44 ± 63.91 

400 
0.98 ± 0.01 1.01 ± 0.01 21.82 ± 4.79 184.32 ± 35.07 
0.98 ± 0.01 1.00 ± 0.01 28.30 ± 6.95 278.68 ± 51.03 

500 
0.98 ± 0.01 0.99 ± 0.01 49.37 ± 6.71 423.11 ± 36.00 
0.98 ± 0.01 1.00 ± 0.01 51.12 ± 8.72 542.28 ± 46.15 
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for both inputs there is no decrease in criterion (31) for an increased number 

of observations k even in a mean sense. Therefore, condition (29) for averaged 
measures (51), (52) will not be satisfied even for k = 500. In that situation we 

have no opportunity to use the adaptive threshold intervals proposed above. 

6. Conclusions. The results of numerical simulations carried out by com­

puter even for the first order system (33) prove the inapplicability of crite­

rion (12) to RLS stopping. On the other hand, the appUcability of criterion 
(13) is restricted beforehand, because it is necessary to store all the vectors 

V' cej, i = n,s, in computer memory. Therefore, there still remains a problem 
to work out effective criteria, that could be successfully used for RLS stopping 
in the space of signals. 
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APIE ADAPTYVIUS SLENKSCIQ INTERVALUS, 
STABDANT REKURENTINI MAZIAUSIQJQ KVADRATQ 

ALGORITMi\ SIGNALQ ERDvEJE 

Rimanlas PUPEIKIS 

Analitinio tyrimo bUdu, taikant Kramerio-Rao nelygy~, sudaryti adap­

tyviis slenksciq intervalai prof. V. Kaminsko ir prof. A. Nemuros kriterijams, 

kuriuos jie pasiiile parametrq iverciq skaiciavimams stabdyti, pasiekus pagei­

daujaIrul siq iverciq tiksluDUl. Net ir riboti modeliavimo rezultatai, gauti PCI AT 

pagalba (Lenteles 1, 2), parode, kad siq autoriq kriterijai aplamai negali bfiti 

taikomi rekurentiniam maZiausiqjq kvadratq algoritmui stabdyti. 


