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PIPELINING OF HR DIGITAL FILTERS 
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Abstract. In this paper, we propose to present the direct fonn recursive digital filter 
as a state space filter. Then, we apply a look-ahead technique and derive a pipelined 
equation for block output computation. In addition, we study the stability and multi
plication complexity of the proposed pipelined-block implementation and compare with 
complexities of other methods. An algorithm is derived for the iterative computation of 
pipelined-block matrices. 
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1. Introduction. Digital filter transfer function theoretically can be realized 

in an infinite number of ways. From the standpoint of implementation, some 
structures may be of lower complexity, while others may be pipelinable, and yet 

some others may consist of regular modules that can save design time. Much 
research has been carried out in search of different realization structures with 

various desirable properties and enhanced performance. Achieving high speed 
in recursive direct-form filters is difficult because of the feedback loop (Chung 

and Parhi, 1994). 

High performance in very large scale integration (VLSI) circuits can be 

achieved by using high speed technologies without modifying the algorithm. 

On the other hand, we can use a low cost technology and gain an impressive 

performance by exploiting concurrency. Concurrent structures can be derived 

by implementing the existing algorithms in new ways. We do not change the 

transfer function of the filter, but we do change the internal structure of the 

filter (Parhi and Messerschmitt, 1989). Pipelining and block processing are two 

of several algorithmic transformation techniques that can be used to exploit the 

concurrency within a digital signal processing algorithm to improve its operat

ing speed or reduce the number of resources required in a parallel processing 
environment (Lucke and Parhi, 1994). Pipelining (Chung and Parhi, 1994; Parhi 
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and Messerschmitt, 1989b; Lucke and Parhi, 1994; Parhi and Messerschmitt, 

1989c; Jump and Ahuja, 1978; Cappello and Steiglitz, 1983; Lim and Bede 

Liu, 1992) increases the speed of a filter at the expense of latency. Block pro

cessing (Parhi and Messerschmitt, 1989a; Burros, 1971; Barnes and Shinnaka, 

1980; Azimi-Sadjadi and King, 1986; Azimi-Sadjadi and Rostampour, 1989; 

Nikias, 1984) is a form of parallel processing which transforms a single-input 

single-output filter into a multiple-input multiple-output filter. 

Rapid advances in VLSI technology have made a great impact on mod

em signal processing. One of the desirable properties for VLSI realization is 

pipelinability. In (Parhi and Messerschmitt, 1989b) pipelining in direct form 

recursive digital filters with constant coefficients have been considered using 

the clustered look-ahead technique and scattered look-ahead pipelining without 
a decomposition and with a decomposition. The clustered look-ahead pipelined 

realizations require a linear complexity in the number of loop pipeline stages, 
and are not guaranteed to be stable. The scattered look-ahead realizations 
are stable and require a linear complexity with respect to the number of loop 
pipeline stages. The decomposition technique enables us to obtain an imple

mentation with a logarithmic increase in hardware with respect to the number 
of loop pipeline stages. 

In this paper (Section 2), for pipelining in direct form recursive digital 

filters with constant coefficients, we propose to present the direct form recursive 
digital filter as a state space filter. In Section 3 we apply the clustered look

ahead technique to derive a pipelined equation for block output computation. 

The stability and multiplication complexity are analyzed. In Section 4 the 

algorithm for computing pipelined-block matrices is given. Finally, in Section 5 
conclusions are given. 

2. Preliminaries: representation of direct form recursive filters in a state 

space domain. The transfer function of a direct form recursive digital filter is 
described by 

M 
I: biz-i 

II ( z) = ---=-i =--=°N:-:----

1 - I: ai z- i 
i=l 

M~N. (1) 

Equivalently, the output sample y( k) can be described in terms of the input 
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sample v(k), and the past input and output samples, and is given by 

N 

y(k) = L aiy(k - i) + u(k), k = 0,1,2, ... , (2) 
i=l 

where 
M 

u(k) = Lbiv(k - i). (3) 
i=O 

Then direct fonn recursive digital filter (1) can be represented as a sequential 

connection of two filters: FIR filter, described by Eq. 3, and all-pole filter, 

described by Eq. 2. Block implementation of the FIR filter is simple (Lucke 

and Parhi, 1994), so we consider only pipelined-block implementation of the 

all-pole filter (2). 

Following lsermann (1981), Eq. 2 can be written in state space recursive 

fonn: 

x(k + 1) = Ax(k) + bu(k), 

where band x(k) are N x 1 vectors defined by 

in which 
xl(k) = y(k - N), 

x2(k) = y(k - N + 1) = xl(k + 1), 

xN(k) = y(k - 1) = XN-l(k + 1), 

y(k) = xN(k + 1). 

The N x N state update matrix A is defined by 

0 1 0 0 

0 

A= 

0 
1 

aN Ql 

(4) 

(5) 

(6) 
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3. Pipelined-block implementation ofllR digital filter. Define k = mL + 
n, where L is the block size, m = 0,1,2, ... is a block variable, and n = 
0,1, ... , L -1 is a variable inside the block. Then, varying n from 0 to L -1, 
and substituting x(mL + 1) into x(mL + 2), x(mL + 2) into x(mL + 3), and 

so on, we have from Eq. 4 

x(mL + L) = Ax(mL) + BU(mL), m = 0,1,2,... (7) 

where the state update matrix A = A L , 

- [L-l ] B = A b, ... ,Ab,b, 

x(mL) = [y(mL - N), y(mL - N + 1), ... , y(mL - l)f , 

U(mL) = [u(mL), u(mL + 1), ... , u(mL + L - l)f . 

In the case L ~ N, using only L last values of x( mL + L) we find from Eqs. 5 
and 7 

where A L is an L x N matrix, whose L rows are equal to L last rows of 

the matrix A L; B L is an L x L matrix; y L (mL) is an L x 1 column vector 

YL(mL) = [y(mL), ... , y(mL + L - l)f, and YN(mL - N) is an N x 1 
column vector YN(mL - N) = [y(mL - N), ... , y(mL -l)f. 

It follows from Eq. 8 that the block of output values y L (mL), m = 0, 1, ... 

is computed in a parallel manner. Note that the output value y( mL + 1) is 2-

stage pipelined, y(mL+2) is 3-stage pipelined, and so on, finally, y(mL+L-1) 
is L-stage pipelined. If L = 1, then Eq. 8 is equal to Eq. 4, and AL = 
A, BL = b. 

For the case when the block size L is greater than the filter order N, from 

Eq. 5 and 7, we get 

where an N x N matrix AN = AL; the matrix BN is of dimension N x 

L; YN(mL - N) is an N x 1 column vector YN(mL - N) = [y(mL -
N), ... , y(mL - l)]T. The block of the output values YN(mL + L - N) is 
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computed in a parallel manner. 1ne output value y(mL+L-N) is (L-N +1)
stage pipelined, y(mL+ L - N + 1) is (L - N + 2)-stage pipelined, and, finally, 

y( mL + L - 1) is L-stage pipelined. 

If L/ N = Ml =const, then from Eq. 9, we have 

YN(mL + L - N) = ANYN(mL - N) + B NU(mL), 

YN(mL + L) = ANYN(mL) + BNU(mL + N), 

YN [mL + L + (Ml - 2)N)] = ANYN [mL+ (A-h - 2)N)] 

+ B NU [mL + (Ml - I)NJ, 

m = 0,1,2, ... , 

(10) 

where YN(i) is an N x 1 column vector, AN is an N x N matrix, and BN is 
an N x L matrix. 

We can use Eqs. 10 to compute L output values in a parallel manner. 

S tab i lit y. It is clear that since A = A L the eigenvalues of A are the 

L-th power of the eigenvalues of A, i.e., Aei = ..\i ej, and Ae; = A L ej = ..\f ej, 
where ..\j is an eigenvalue and ej is an associated eigenvector of the matrix A. 
Since every pole is an eigenvalue, this implies that the poles of filter (7) are the 

L-th power of the poles of filter (4), i.e., I..\f I < 1..\;1 if I..\j I < 1. Thus, filter 
(7) is stable if filter (4) or filter (2) are stable. 

M u I tip I i cat ion c 0 m pIe x i t y. For the case L :::; N, the 

number of multiplications required for computing one output value due to A L 

is N and due to B L is (L - 1)/2. Thus, the average multiplication complexity 

required for computing one output value of filter (8) is (L + 2N - 1)/2. The 

computation of one output value of filter (3) requires M + 1 multiplications. 

Then the average total multiplication complexity required for computing one 

output value of pipelined-block filter (1) is (L + 2N - 1)/2 + M + 1. 
For the case L > N, the number of multiplications required for computing 

one output value due to AN is N and due to B N is L - (N + 1)/2. Thus, 

the average multiplication complexity required for computing one output value 

of filter (9) is (N + 2L - 1)/2. The average total multiplication complexity 

required for computing one output value of pipelined-block filter (1) is (N + 
2L - 1)/2 + M + 1. 

The computation complexity of one output value of direct form N -th order 

recursive digital filter (1) is 2N + L multiplications using scattered look-ahead 
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pipelining, N L + N + 1 multiplications using clustered look-ahead pipelining, 

and 2N + N log2 L + 1 multiplications using clustered look-ahead pipelining 

with decomposition (Parhi and Messerschmitt, 1989b). 

Table 1. Comparison of multiplication complexity of direct form recursive 

filters 

Speedup Clustered Scattered Scattered Pipelined-
L look-ahead look-ahead look-ahead block 

pipelining pipelining pipelining implementation 
with 

decomposition 

M=N=2 

1 5 5 5 5.0 
2 6 7 7 5.5 
4 8 11 9 8.5 
8 12 19 11 12.5 

16 20 35 13 20.5 
32 36 67 15 36.5 
64 68 131 17 68.5 

M = N = 10 

2 22 31 31 21.5 
4 24 51 41 22.5 
8 28 91 51 24.5 

16 36 171 61 32.5 
32 52 331 71 48.5 
64 84 651 81 80.5 

M=N=L 

2 6 7 7 5.5 
4 12 21 17 10.5 
8 24 73 41 20.5 

16 48 273 97 40.5 
32 96 1057 225 80.5 
64 192 4061 513 160.5 

Table 1 compares the number of multiplication operations for direct form re

cursive filters, for clustered look-ahead pipelining, scattered look-ahead pipelin-
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ing with and without decomposition, and pipelined-block implementation, for 

typical factors of speedup L. 

4. Computation of matrices A and B. The structures of matrices A, 
A2, ... , AN and vectors Ab, A 2b, ... , AN-lb are of the form: 

.--
0 1 0 0 . I 0 
0 0 1 0 . I 0 

A= 0 0 0 1 0 =Ab 

A2 = = A 2b 

I 1 

aN aN-l 
'---

I al 

a2l an I a2,N 

AN = 

aN-l,l aN-l,2 I aN-l,N 
aN,i aN,2 

Since b = [0, ... ,0, If, vectors AL-lb, ... , Ab are the last column vectors of 

the matrices AL-l, ... , A, respectively. 

C 0 m put a t ion 0 f m a t r i x A. For the case L ~ N the elements 

of an L x N matrix A L = {aij} are computed iteratively using (12) 

aij = ai-l,j-l + aN+l-j" ai-l,N, i = 2, L, j = 1, N, (12) 

where all = aN"'" al,N = ab and ai-I,D = 0, for all i. 
For the case L > N, the elements of an N x N matrix A L = {aij} are 

computed iteratively using (13) 

(L) _ (L-l) . (L-l) 
aij - ai,j_l + aN+l-J' ai,N , i,j=I,N, (13) 

where ai,O = 0 for all i. 
The impulse response in a state space is computed using Eq. 14 

h(k) = eT Ak-lb, k> 0, h(O) = 1. (14) 
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In our case, the 1 x N vector eT = [0, ... ,0,1], and N x 1 vector b = 
[0, ... ,0, IV. Then it follows from Eq. 14 that h(l) = a1,N = aI, h(2) = 
a2,N, h(3) = a3,N, .... On the other hand, the impulse response of filter (2) 

can be computed from Eq. 15 

N 

h(k) = I>jh(k - j), k > 0; h(O) = 1. (15) 
j=l 

Thus, (12) can be rewritten in the form 

j 

aij = L aN-/+1 h{i - j + 1- 1), i = 1, L, j = 1, N. (16) 
/=1 

And (13) can be rewritten as 

j 

aij=LaN-/+1h(i-j+l-l+L-N), i=I,N, j=I,N. (17) 
/=1 

Corn put a t ion 0 f m at r i x B. B = [AL- 1b, ... , Ab, b]. Since 

b = [0, ... ,0, I]T, vectors AL-1b, ... , Ab are the last column vectors of the 

matrices AL-l, ... , A, respectively. As h(k) = ak,N, it follows from (11) that 

[B1;j = h(i -j), i,j = I,L, if L ~ N and 

[BLj=h(i-j+L-N), i=I,N, j=I,L, ifL>N. 
(18) 

The matrix B is formed from the values of the impulse response of filter (2) 

h(L - N) h(O) 
o 

(19) 

h(O) 
h(L - 1) h(N -1) h(I) h(O) 

5. Example. Consider the example of an all-pole second order stable HR 

filter with poles at the points ~ and ~ (Parhi and Messerschmitt, 1989b). This 

filter is described by the transfer function 
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The values of the impulse response are computed from Eq. 15 

5 19 
h(O) = 1, h(1) = 4' h(2) = 16' 

h(3) = 65 h(4) = 211 
64' 256' 

(21) 

State space recursive form of (20) is 

x(k + 1) = Ax(k) + bu(k) 

or 

[Y(:(~)l)] ~ [_O§ i] [:::=:;] + [:] u(k). (22) 

A 2-stage pipelined equivalent recursive digital filter in state space is 

x(k + 2) = A2x(k) + BU(k), 

or 

[ Y(k)] [a2 a1 ] [Y(k - 2)] 
y(k + 1) - a21 a22 y(k - 1) 

(23) 

[ h(O) 0] [ u(k) ] 
+ h(l) h(O) u(k + 1) . 

Using Eq. 16, we get 

Then 
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We compute the eigenvalues of matrix A 2 

-i - A ~ 2 13 18 
15 19 ,= A - 16 A + 128 = O. (25) 

-32 TI> - 1\ 

From Eq. 25 we have A1 = 196 and A2 = i. 2-stage pipelined equivalent state 

space recursive digital filter (24) is stable, because IA11 < 1 and IA21 < 1. 

or 

A 3-stage pipelined equivalent recursive digital filter in state space is 

x(k + 3) = ASx(k) + [A2b, Ab, b] [u(k), u(k': 1), u(k + 2)]T (26) 

[ Y(k + 2)] = [all a12 ] [Y(k - 2)] 
y(k + 3) a21 a22 y(k - 1) 

+ [h(2) h(1) 0] T 
[u(k), u(k + 1), u(k + 2)] . 

h(3) h(2) h(l) 

(27) 

We find from Eq. 17 that 

~ 35 ~ all = L..i as_lh(l) = a2h(1) = -8' 4" = - 32' 
1=1 

1 3 19 57 
a21 = L: as-lh(l + 1) = a2h(2) = -8'16 = -128' 

1=1 

2 3 5 5 19 
a12 = L: as_lh(l- 1) = a2h(O) + a1h(1) = -- + -. - = - = h(2), 

1=1 8 4 4 16 

~ 3 5 5 19 65 
a22 = L..i as_lh(l) = a2h(1) + a1h(2) = -_. - + -. - = - = h(3). 

1=1 8 4 4 16 64 

Then 

[ Y(k + 2)] = [-~ M] [Y(k - 2)] 
y( k + 3) - fig ~ y( k - i) 

+ [~ ~ : 1 [u(k), u(H 1), u(H 2)f . 

(28) 
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We compute the eigenvalues of matrix A 3 

(29) 

From Eq. 29 we get Al = ~~ and A2 = k. 3-stage pipelined equivalent state 
space recursive digital filter (28) is stable, because IAII < 1 and IA21 < 1. 

6. Concluding remarks. Pipelined equations for output computation are 
derived. The stability of a filter, described by a pipelined-block equation, is 
studied. The expressions of computing mUltiplication complexity for one out
put value are presented. The formulas for computing matrices A and B in a 
pipelined-block equation are given. 

The pipelined-block implementation of a direct form recursive digital filter 
is more stable than that of the direct form recursive digital filter. This im
plementation requires a linear complexity with respect to the number of loop 
pipeline stages and filter order. For small filter orders and for large speedups, it 
is preferable to use scattered look-ahead pipelining with a decomposition. For 
large filter orders and for small speedups, it is preferable to use the pipelined
block implementation. In the case when the filter order is equal to the number 
of pipelined stages, it is preferable to use the pipelined-block implementation. 
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REKURSINIQ SKAITMENINIQ FILTRQ 

KONVEJERIZAVIMAS 

Kazys KAZLAUSKAS 

Straipsnyje nagrinejamas rekursinill skaitmeninill fillrJl konvejerizavimo metodas. 
Rekursinis filtras apra~omas biisenlllygtimi. ~ jos gaunama konvejerinio rekursinio filtro 
lygtis. Analizuojamas konvejerinio filtro stabilumas bei sudetingumas ir palyginama su 
kitll metodu sudetingumais. PasiUlytas konvejerinill matricll iteratyvus apskaiciavimo 
algoritmas. 


