THE WEIGHT FUNCTION OF A SPACE-TIME AUTOREGRESSIVE FIELD IN SPACE \mathbf{R}^{2}

Aloyzas KAPUSTINSKAS
Institute for Physical and Engineering Problems of Energy Research Lithuanian Academy of Sciences, 233684 Kaunas, Metalo St.4, Lithuania

Abstract

The weight coefficients calculation algorithm for an autoregressive random field, existing in a two-dimensional space and time, is proposed.

Key words: random field, autoregressive field, weight function.

1. Introduction. The properties of a space-time autoregressive (AR) random field, existing in a one-dimensional space R^{1}, were considered in the papers (Kapustinskas 1985a, 1985b, 1986a, 1986b, 1987, 1988, 1989a, 1989b). The properties of the weight function (WF) of such a field were considered in these papers, weight coefficients calculation methods were proposed and it was shown that they were useful for stability analysis and calculation of theoretical autocovariations of the field. However, there exist more complicated space-time AR fields. They function not in a one-dimensional but in a two-dimensional space R^{2}, i.e. on a plane.

The aim of this paper is to determine the WF structure of the AR field, existing in space R^{2} and time, and to develop a weight coefficients calculation algorithm for such a field.
2. Statement of the problem. The space-time random AR field in space R^{2} is described by such a difference equation

$$
\begin{equation*}
\xi_{t}^{x y}=\sum_{k=1}^{n_{t}} \sum_{i_{x}=-n_{x}^{\prime}}^{n_{x}^{\prime \prime}} \sum_{i_{y}=-n_{y_{\infty}}^{\prime}}^{n_{y}^{\prime \prime}} a_{k}^{i_{x}, i_{y}} \xi_{t-k}^{x+i_{x}, y+i_{y}}+g_{t}^{x y} \tag{1}
\end{equation*}
$$

where t are discrete time moments $(t \in(-\infty, \infty)), x, y$ are discrete values of the space coordinates $(x, y \in(-\infty, \infty)), \xi_{t}^{x y}$ is the value of the field at point (x, y) and moment t, n_{t} is the order of the field with regard to coordinate $t,\left\{n_{x}^{\prime}, n_{x}^{\prime \prime}\right\}$, $\left\{n_{y}^{\prime}, n_{y}^{\prime \prime}\right\}$ is the order of the field with regard to the space coordinates x, y, respectively, $a_{k}^{i_{x}, i_{y}}$ are the parameters of the field, $\left\{g_{t}^{x y}\right\}$ is the sequence of independent normal random values with zero avarage and finite dispersion σ_{g}^{2}.

Let the order $\left\{n_{t}, n_{x}^{\prime}, n_{x}^{\prime \prime}, n_{y}^{\prime}, n_{y}^{\prime \prime}\right\}$ and parameters $a_{k}^{i_{x}, i_{y}}$ of field (1) be known. We shall determine the WF structure of the field, i.e. we shall consider at which points (x, y, t) the weight coefficients $h_{t}^{x y}$ differ from zero. We shall also develop an algorithm for the calculation of nonzero $h_{t}^{x y}$ at a certain time interval $(t=1,2, \ldots, T)$.
3. Equation of WF. By WF of any dynamic system a transient process of the system, caused by a unit pulse input signal under zero initial conditions is called (Voronov, 1965). The random field, described by difference (1), is also a dynamic system whose input signal is a white noise field $g_{t}^{x y}$. Therefore random field (1) has a WF comprehended as a reaction of model (1) to the unit pulse input signal $\delta_{t}^{x y}$ at the point $x, y=0$ and moment $t=1$, i.e.

$$
\delta_{t}^{x y}= \begin{cases}\delta_{1}^{00}=1 & (x, y=0, t=1) \tag{2}\\ 0 & (x, y \neq 0, t \neq 1)\end{cases}
$$

It is supposed that there exist such zero initial conditions

$$
\begin{equation*}
\xi_{t}^{x y}=0 \quad\left(x, y=0, \pm 1, \ldots, \quad t=0,-1, \ldots,-n_{t}+1\right) \tag{3}
\end{equation*}
$$

Therefore it is easy to get the equation of weight coefficients from (1) replacing $\xi_{t}^{x y}$ by $h_{t}^{x y}$ and $g_{t}^{x y}$ by $\delta_{t}^{x y}$, i.e.

$$
\begin{equation*}
h_{t}^{x y}=\sum_{k=1}^{n_{t}} \sum_{i_{x}=-n_{x}^{\prime}}^{n_{x}^{\prime \prime}} \sum_{i_{y}=-n_{y}^{\prime}}^{n_{y}^{\prime \prime}} a_{k}^{i_{x}, i_{y}} h_{t-k}^{x+i_{x}, y+i_{y}}+\delta_{t}^{x y} . \tag{4}
\end{equation*}
$$

Then the initial conditions are as folows:

$$
\begin{equation*}
h_{t}^{x y}=0 \quad\left(x, y=0, \pm 1, \ldots, \quad t=0,-1, \ldots,-n_{t}+1\right) \tag{5}
\end{equation*}
$$

This recurrent equation (4) together with initial conditions (5) is basic for determination of weight coefficients. The WF structure may be determined from this equation, too.
4. Structure of WF. It is easy to see from (3), (4), that $h_{1}^{x y}=\delta_{1}^{x y}$ as $t=1$. Since $\delta_{1}^{x y} \neq 0$ only at the point $x, y=0$, then

$$
h_{1}^{x y}= \begin{cases}h_{1}^{00}=\delta_{1}^{00}=1 & (x, y=0) \tag{6}\\ 0 & (x, y \neq 0)\end{cases}
$$

i.e. at the moment $t=1$ there exists a single nonzero weight coefficient at the point $x, y=0$ (point D_{1} in Fig. 1). The others are equal to zero.

At the moment $t=2$

$$
\begin{equation*}
h_{2}^{x y}=\sum_{k=1}^{n_{t}} \sum_{i_{x}=-n_{x}^{\prime}}^{n_{x}^{\prime \prime}} \sum_{i_{y}=-n_{y}^{\prime}}^{n_{y}^{\prime \prime}} a_{k}^{i_{x}, i_{y}} h_{t-k}^{x+i_{x}, y+i_{y}}, \tag{7}
\end{equation*}
$$

because $\delta_{2}^{x y}=0$.
All members $h_{2-k}^{x+i_{x}, y+i_{y}} \quad\left(k=1,2, \ldots, n_{t}\right)$ in (7) are equal to zero except for $h_{1}^{(\cdot)}$, which differs form zero, as $\dot{x}+i_{x}=$ $=0$ and $y+i_{y}=0$. Indeed, according to the initial conditions (5), the weight coefficients $h_{2-k}^{(\cdot)}=0$ for any x, y, as
$2-k \neq 1,-n_{x}^{\prime} \leqslant i_{x} \leqslant n_{x}^{\prime \prime}$ and $-n_{y}^{\prime} \leqslant i_{y} \leqslant n_{y}^{\prime \prime}$. The weight coefficients $h_{2-k}^{(\cdot)}=h_{1}^{00}=1$, as $2-k=1$ (i.e. as $k=1$), $x+i_{x}=0$ and $y+i_{y}=0$. Therefore

$$
h_{2}^{x y}= \begin{cases}h_{2}^{x y} \neq 0 & \left(-n_{x}^{\prime \prime} \leqslant x \leqslant n_{x}^{\prime},-n_{y}^{\prime \prime} \leqslant y \leqslant n_{y}^{\prime}\right) \tag{8}\\ 0 & \text { (in other cases), }\end{cases}
$$

i.e. the nonzero values $h_{2}^{x y}$ are inside the rectangle D_{2} (Fig. 1). In a similar way it can be shown that at moments $t=3,4$

$$
\begin{align*}
& h_{3}^{x y}= \begin{cases}h_{3}^{x y} \neq 0 & \left(-2 n_{x}^{\prime \prime} \leqslant x \leqslant 2 n_{x}^{\prime},-2 n_{y}^{\prime \prime} \leqslant y \leqslant 2 n_{y}^{\prime}\right), \\
0 & \text { (in other cases), }\end{cases} \tag{9}\\
& h_{4}^{x y}= \begin{cases}h_{4}^{x y} \neq 0 & \left(-3 n_{x}^{\prime \prime} \leqslant x \leqslant 3 n_{x}^{\prime},-3 n_{y}^{\prime \prime} \leqslant y \leqslant 3 n_{y}^{\prime}\right), \\
0 & \text { (in other cases) }\end{cases} \tag{10}
\end{align*}
$$

i.e. the nonzero values $h_{3}^{x y}, h_{4}^{x y}$ at moments $t=3,4$ are inside the rectangles D_{3}, D_{4}, respectively (Fig. 1).

At whichever moment t

$$
h_{t}^{x y}= \begin{cases}h_{t}^{x y} \neq 0 & \left(-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant n_{x}^{\prime}(t-1)\right. \tag{11}\\ 0 & \left.-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)\right) \\ 0 & \text { (in other cases })\end{cases}
$$

i.e. the nonzero values $h_{t}^{x y}$ at moment t are inside the rectangle D_{t} (Fig. 1).

Hence it follows that the structure of WF of the field (1) is defined by (11), i.e. the nonzero weight coefficients are inside a polyhedral angle in a space (x, y, t). The edges of the angle are four straight lines, starting from the point $(x, y, t)=(0,0,1)$ and crossing the tops of rectangles $D_{2}, D_{3}, \ldots, D_{t}$ (Fig. 1). The coefficients $h_{t}^{x y}$ outside this angle are equal to zero.

Fig. 1. Rectangle areas $D_{1}, D_{2}, \ldots, D_{t}$, inside of which the nonzero weight coefficients $h_{t}^{x y}$ at the moments $1,2, \ldots, t$ exist
5. Weight coefficient calculation algorithm. Above the structure of WF of the field (1) was determined, i.e. the area in the space (x, y, t), inside of which coefficients $h_{t}^{x y}$ have nonzero values. Now we shall consider the weight coefficients calculation problem, i.e. we shall develop the algorithm for the calculation of nonzero $h_{t}^{x y}$ at moments $t=$ $=1,2, \ldots, T$. The basis of the algorithm is a recurrent (4) with initial conditions (5). The nonzero coefficients at moments $t=$ $=1,2, \ldots, T$, in accordance with the WF structure, are inside rectangles $D_{1}, D_{2}, \ldots, D_{T}$ (Fig. 1), the area of which insreases with time. The greatest area has rectangle D_{T}, where $-n_{x}^{\prime \prime}(T-1) \leqslant x \leqslant n_{x}^{\prime}(T-1),-n_{y}^{\prime \prime}(T-1) \leqslant y \leqslant n_{y}^{\prime}(T-1)$. According to (4) the coefficient $h_{t}^{x y}$ at the point (x,y) and moment t is composed of some number of weight coefficients, surrounding the considered point (x, y) at past time moments. Therefore for the calculation of $h_{t}^{x y}$ it is necessary to form a certain three-dimensional (in accordance with coordinates $\left.x, y, i_{t}\right)$ array $D_{x, y, i_{t}}$ in the main memory of a
computer for every moment $t=1,2, \ldots, T$ and to store in it values $h_{t}^{x y}$, necessary for weight coefficients calculation at a current time moment for every point (x, y) of intervals $-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant n_{x}^{\prime}(t-1),-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$. This array can be represented as a parallelepiped in space $\left(x, y, i_{t}\right)$ (Fig. 2a), at every discrete point of which the value of the corresponding coefficient $h_{t}^{x y}$ is disposed. We shall determine the volume of this parallelepiped. Since being the greatest among the rectangles $D_{1}, D_{2}, \ldots, D_{T}$ is rectangle D_{T} (Fig. 1), it should be put as the base of parallelepiped D. However, at first the edges of D_{t} must be extended by a value of model order alongside axis x and y. This extension is necessary for the following reasons. While calculating by (4) the coefficients $h_{t}^{x y}$ at the points lying on the left-side edge of rectangles $D_{t}(t=T)$, it is necessary to know the weight coefficients at moments $T-1, T-2, \ldots, T-n_{t}$ at points $(x-1, y),(x-2, y), \ldots,\left(x-n_{x}^{\prime}, y\right)$. Hence, it is necessary to extend rectangle D_{T} by a value n_{x}^{\prime} in the direction of the negative x-axis. In the same way it can be shown that the rectangle D_{T} must be extended by values $n_{x}^{\prime \prime}, n_{y}^{\prime}, n_{y}^{\prime \prime}$ in the direction of the positive x-asis, negative and positive y-asis, respectively. Therefore the base of parallelepiped D occupies such an area: $-n_{x}^{\prime \prime}(T-1)-n_{x}^{\prime} \leqslant x \leqslant n_{x}^{\prime}(T-1)+n_{x}^{\prime \prime},-n_{y}^{\prime \prime}(T-1)-n_{y}^{\prime} \leqslant$ $\leqslant x \leqslant n_{y}^{\prime}(T-1)+n_{y}^{\prime \prime}$. The hight of the parallelepiped occupies an interval $1 \leqslant i_{t} \leqslant n_{t}+1$. It is convenient to represent the parallelepiped D in the form of a number of layers $i_{t}=1$, $2, \ldots, n_{t}+1$ (Fig. 2b). The values of weight coefficients at a current moment t are stored into the first layer, those at a moment $t-1$ - into the second layer, ect.

Calculation of the weight coefficients $h_{t}^{x y}$ is realized by such an algorithm.

Step 0. The array D is cleaned, i.e. to all layers of parallelepiped D zeroes are stored.

Step 1. Variable t is assigned a unit value. The value

Fig. 2. Representation of array D as a parallelepiped not divided (a) or divided (b) into layers
$h_{1}^{00}=1$ is stored to the point $x, y=0$ of the first layer and is led out to the printer of a computer.

Step 2. Variable t is incremented by one.
Step 3. The n_{t}-layer is transferred to the $\left(n_{t}+1\right)$-layer, the $\left(n_{t}-1\right)$-layer - to the n_{t}-layer, ect. The first layer is cleaned.

Step 4. The values $h_{t}^{x y}$ at a current time moment in the area $-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant n_{x}^{\prime}(t-1),-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are calculated by (4) and transferred to the corresponding points of the first layer of array D.

Step 5. The weight coefficients from the above area of the first layer are led out to the printer of a computer.

Step 6. If $t<T$, then we return to step 2. In other cases calculations are ended.

Thus the above algorithm enables us to calculate the values of nonzero weight coefficients $h_{t}^{x y}$. However, it can be used only for relatively small values of T. Indeded, the volume of array D is determined as follows:

$$
\begin{equation*}
V^{\prime}=\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right]\left(n_{t}+1\right) . \tag{12}
\end{equation*}
$$

$V^{\prime}=10^{7}$ as $n_{x}^{\prime}, n_{x}^{\prime \prime}, n_{y}^{\prime}, n_{y}^{\prime \prime}=5, n_{t}=9$ and $T=100$, i.e. this algorithm requires a significant amount of the main memory.

Therefore it is worthwhile developing such modifications of the algorithm, which would require a smaller amount of the main memory for the same values of the field order and parameter T.

It is possible to solve this problem when storing array D (all or part of it) in the external computer memory and forming an array W (smaller than D) in the main memory. This can be realized by variuos methods. We shall consider some of them.
6. The first modification of the algorithm. The equation (4) can be rewritten in the following way

$$
\begin{align*}
& h_{t k}^{x y}=\sum_{i_{x}=-n_{x}^{\prime}}^{n_{x}^{\prime \prime}} \sum_{i_{y}=-n_{y}^{\prime}}^{n_{y}^{\prime \prime}} a_{k}^{i_{x}, i_{y}} h_{t-k}^{x+i_{x}, y+i_{y}}+\delta_{t}^{x y}, \tag{13}\\
& \quad \quad\left(k=1,2, \ldots, n_{t}\right), \\
& h_{t}^{x y}=\sum_{k=1}^{n_{t}} h_{t k}^{x y} . \tag{14}
\end{align*}
$$

When k is fixed, at first the intermediate values $h_{t k}^{x y}$ in the area $-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant n_{x}^{\prime}(t-1),-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are calculated and then these values are summed according to (14). As a result, we get the weight coefficients $h_{t}^{x y}$ at a current moment t. Under this approach it is necessary to form a threedimensional array $W_{1}\left(x, y, i_{t}\right)$ in the main memory. The volume of W_{1} is equal to that of the first two layers $\left(i_{t}=1,2\right)$ of array D (Fig. 3). The volume W_{1} is

$$
\begin{equation*}
V^{\prime}=\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right] \tag{15}
\end{equation*}
$$

In the external memory an array $D_{1}\left(x, y, i_{t}\right)$, consisting
of the second, third, etc. $\left(i_{t}=2,3, \ldots, n_{t}+1\right)$ layers of array D (Fig. 3), is stored. The volume of D_{1} is

$$
\begin{equation*}
V^{\prime \prime}=\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right] n_{t} . \tag{16}
\end{equation*}
$$

Fig. 3. Division of array D in to array D_{1} and W_{1} in the first modification of $W F$ calculation algorithm

Calculations of the nonzero weight coefficients $h_{t}^{x y}(t=$ $=1,2, \ldots, T)$ are realised by such a scheme.

Step 0. Arrays W_{1} and D_{1} are cleaned.
Step 1. Variable t is assigned a unit value. The value $h_{1}^{00}=1$ is stored to the point $x, y=0$ of the first layer of W_{1} and is led out to the printer.

Step 2. The first layer of W_{1} is transferred to the second layer of array D_{1}, stored in the external memory.

Step 3. Variable t is incremented by one. A variable i_{t} is assigned a unit value.

Step 4. Variable i_{t} is incremented by one. The first layer of W_{1} is cleaned.

Step 5. The i_{t}-layer of D_{1} is transferred from the external memory to the second layer of W_{1}.

Step 6. By (13) the intermediate values $h_{t k}^{x y}$ in the area $-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant n_{x}^{\prime}(t-1),-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are calculated. They are summed with the values from the first layer of W_{1} according to (14). The results are transferred to the corresponding points of this layer.

Step 7. If $i_{t}<n_{t}+1$, we return to step 4 , in other cases to step 8.

Step 8. The values of the weight coefficients from the area $-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant n_{x}^{\prime}(t-1),-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ of the first layer of W_{1} are led out to the printer.

Step 9. The n_{t}-layer of D_{1} is transferred to the $\left(n_{t}+1\right)$ layer, the $\left(n_{t}-1\right)$-layer - to the n_{t}-layer. etc.

Step 10. The first layer of W_{1} is stored in the external memory, i.e. in the second layer of D_{1}.

Step 11. If $t<T$, we return to step 5 . In other cases calculations are ended.

In the basic algorithm it is necessary to store the whole array D, whose size is determined by (12), in the main memory. For the first modification of the algorithm it is necessary to store in the main memory array W_{1} of the volume, determined by (15). It is evident from (15) and (12) that this modification enables to decrease the required amount of the main memory $\left(n_{t}+1\right) / 2$ times.
7. The second modification of the algorithm. A still less amount of the main memory is needed, when using an algorithm, based on the replacement of (4) by the two following equations:

$$
\begin{gather*}
h_{t, i_{x}}^{x y}=\sum_{k=1}^{n_{t}} \sum_{i_{y}=-n_{y}^{\prime}}^{n_{y}^{\prime \prime}} a_{k}^{i_{x}, i_{y}} h_{t-k}^{x+i_{x}, y+i_{y}}+\delta_{t}^{x y} \tag{17}\\
\left(i_{x}=\overline{-n_{x}^{\prime}, n_{x}^{\prime \prime}}\right),
\end{gather*}
$$

$$
\begin{equation*}
h_{t}^{x y}=\sum_{i_{x}=-n_{x}^{\prime}}^{n_{x}^{\prime \prime}} h_{t, i_{x}}^{x y} . \tag{18}
\end{equation*}
$$

This means that for every current moment $t(t=1$, $2, \ldots, T)$ and every x, y from the area $-n_{x}^{\prime \prime}(t-1) \leqslant x \leqslant$ $\leqslant n_{x}^{\prime}(t-1),-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ the intermediate values $h_{t, i_{x}}^{x y}$ are calculated for a fixed i_{x} by (17). Then these values are summed by (18) and, as a result, we get the weight coefficients $h_{t}^{x y}$. For the realization of this, it is necessary to divide array D not into layers but into cuts, represented in Fig. 4a. The array D, divided into cuts, will be denoted by D_{2}. In the array D_{2} there are $\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1$ cuts with numbers $l_{x}=l_{x}^{\prime}, l_{x}^{\prime}+1, \ldots, l_{x}^{\prime \prime}$, where $l_{x}^{\prime}=-n_{x}^{\prime \prime}(T-1)-n_{x}^{\prime}, l_{x}^{\prime \prime}=$ $=n_{x}^{\prime}(T-1)+n_{x}^{\prime \prime}$. These cuts are stored in the external memory of a computer. In the main memory a two - dimensional array $W_{2}\left(y, i_{t}\right)$ is formed, divided into zero, first, $\ldots,\left(n_{t}+1\right)-$ st layers ($i_{t}=0,1, \ldots, n_{t}+1$), i.e. into $n_{t}+2$ layers (Fig. 4b). Array W_{2} is equal to whichever cut of array D_{2}, extended by one 0 - layer.

Therefore the volume of the array is

$$
\begin{equation*}
V^{\prime}=\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right]\left(n_{t}+2\right) \tag{19}
\end{equation*}
$$

Calculations of the nonzero weight coefficients $h_{t}^{x y}$ are realized in such a way.

Step 0. Arrays W_{2} and D_{2} are cleaned.
Step 1. Variable t is assigned a unit value. The value h_{1}^{00} is stored to the point $x, y=0$ of the first layer of array W_{1} and is led out to the printer.

Step 2. Array W_{2} (without 0-layer) is transferred to the 0 -cut ($l_{x}=0$) of array D_{2}, in the external memory.

Step 3. Variable t is incremented by one. Variable x is assigned value $-n_{x}^{\prime \prime}(t-1)-1$.

Step 4. Variable x is incremented by one. The 0 -layer of W_{2} is cleaned. Variable i_{x} is assigned a value $-n_{x}^{\prime}-1$.

Step 5. Variable i_{x} is incremented by one.
Step 6. The $\left(x+i_{x}\right)$-cut of array \dot{D}_{2} is transferred from the external memory to array W_{2}, starting from the first layer.

Step 7. Intermediate values $h_{t, i_{x}}^{x y}$ from the interval $-n_{y}^{\prime \prime}$ $(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are calculated by (17). They are summed with the values from the first layer of W_{2} according to(18). The results are transferred to the corresponding points of this layer.

Fig. 4. a, b - arrays D_{2} and W_{2} in the second modification of the $W F$ calculation algorithm, respectively

Step 8. If $i_{x}<n_{x}^{\prime \prime}$, we return to step 5 , in other cases to step 9 .

Step 9. The values of the 0-layer of W_{2} are led out to the printer, i.e. the values of weight coefficients for current t, x and for all y from the interval $-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are printed. The 0 -layer of W_{2} is transferred to the first layer. Array W_{2} (without the 0-layer) is transferred to the x-cut of D_{2} into the external memory.

Step 10. If $x<n_{x}^{\prime}(t-1)$, we return to step 4 , in other cases-to step 11.

Step 11. Variable x is assigned value $-n_{x}^{\prime \prime}(t-1)-1$.
Step 12. The x-cut of D_{2} is transferred to array W_{2}, starting from the first layer. The n_{t}-layer of W_{2} is transferred to the $\left(n_{t}+1\right)$-layer, the $\left(n_{t}-1\right)$-layer to the n_{t}-layer, etc. Array W_{2} (without the 0 -layer) is transferred to the x-cut of D_{2} in the external memory.

Step 13. If $x<n_{x}^{\prime}(t-1)$, we return to step 11 , in other cases calculations are ended.

The volume of array $W_{2}\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left(n_{t}+1\right) /\left(n_{t}+\right.$ +2) times smaller than that of array D. Therefore the second modification of the algorithm enables to decrease the required amount of the main memory the same number of times.
8. The third modification of the algorithm. It is possible to make one more step towards decreasing the necessary resources of the main memory. The equation (4) can be replaced by the following three equations

$$
\begin{gather*}
h_{t, i_{x}, k}^{x y}=\sum_{i_{y}=-n_{y}^{\prime}}^{n_{y}^{\prime \prime}} a_{t-k}^{i_{x}, i_{y}} h_{t-k}^{x+i_{x}, y+i_{y}}+\delta_{t}^{x y} \tag{20}\\
\left(i_{x}=\overline{-n_{x}^{\prime}, n_{x}^{\prime \prime}}, k=\overline{1, n_{t}}\right), \\
h_{t, i_{x}}^{x y}=\sum_{k=1}^{n_{t}} h_{t, i_{x}, k}^{x y} \tag{21}\\
\left(i_{x}=\overline{-n_{x}^{\prime}, n_{x}^{\prime \prime}}\right), \\
h_{t}^{x y}=\sum_{i_{x}=-n_{x}^{\prime}}^{n_{x}^{\prime \prime}} h_{t, i_{x}}^{x y} . \tag{22}
\end{gather*}
$$

Then array D_{3} must be stored in the external memory. Array D_{3} is the same array D but it is divided into layers and
cuts (Fig.5a). The number of cuts in array D_{3} is the same as in D_{2}, i.e. $\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\left(l_{x}=l_{x}^{\prime}, l_{x}^{\prime}+1, \ldots, l_{x}^{\prime \prime}\right.$, where $\left.l_{x}^{\prime}=-n_{x}^{\prime \prime}(T-1)-n_{x}^{\prime}, l_{x}^{\prime \prime}=n_{x}^{\prime}(T-1)+n_{x}^{\prime \prime}\right)$. The number of layers in every cut of array D_{3} is the same as in array D, i.e. $n_{t}+1\left(i_{t}=1,2, \ldots, n_{t}+1\right)$. The total number of layers in array D_{3} is equal to $\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left(n_{t}+1\right)$.

For this modification of the algorithm it is necessary to store the two-dimensional array $W_{3}\left(y, i_{t}\right)$ in the main memory. This array is equal to the two neighbouring layers of whichever cut of array D_{3} (Fig.5b).

Calculations of the nonzero weight coefficients $h_{t}^{x y}$ are realized by the following scheme.

Step 0. Arrays W_{3}, D_{3} are cleaned.
Step 1. Variable t is assigned an unit value. The value $h_{1}^{00}=1$ is stored to the point $x, y=0$ of the first layer of W_{3} and is led out to the printer.

Step 2. The first layer of W_{3} is transferred to the second layer of the 0-layer of the 0 -cut $\left(l_{x}=0\right)$ of D_{3}.

Step 3. Variable t is incremented by one. Variable x is assigned value $-n_{x}^{\prime \prime}(t-1)-1$.

Step 4. Variable x is incremented by one. The first layer of W_{3} is cleaned. Variable i_{x} is assigned value $-n_{x}^{\prime}-1$.

Step 5. Variable i_{x} is incremented by one. Variable i_{t} is assigned an unit value.

Step 6. Variable i_{t} is incremented by one.
Step 7. The i_{t}-layer of the $\left(x+i_{x}\right)$-cut of D_{3} is called from the external memory to the second layer.

Step 8. The intermediate values $h_{t, i_{x}, k}^{x y}$ at the interval $-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are calculated by (20). They are summed with the values from the first layer of W_{3} in according to (21) and (22). The results are stored to the corresponding points of this layer.

Step 9. If $i_{t}<n_{t}+1$, we return to step 6 , in other cases - to step 10.

Fig. 5. a, b - arrays D_{3} and W_{3} of the third modification of the WF calculation algorithm, respectively

Step 10. If $i_{x}<n_{x}^{\prime \prime}$, we return to step 5 , in other cases to step 11.

Step 11. The values of the first layer of W_{3} are led out to the printer, i.e. the values of the weight coefficients for current t, x and for every y from the internal $-n_{y}^{\prime \prime}(t-1) \leqslant y \leqslant n_{y}^{\prime}(t-1)$ are printed. The first layer of W_{3} is transferred to the first layer of the x-cut of D_{3} in the external memory.

Step 12. If $x<n_{x}^{\prime}(t-1)$, we return to step 4 , in other cases-to step 13.

Step 13. Variable x is assigned value $-n_{x}^{\prime \prime}(t-1)-1$.
Step 14. Variable x is incremented by one. Variable i_{t} is assigned value $n_{t}+1$.

Step 15. Variable i_{t} is incremented by one. The i_{t}-layer of the x-cut of D_{3} is transferred to the second layer of W_{3}. The second layer of W_{3} is transferred to the ($i_{t}+1$)-layer of the x-cut of D_{3}.

Step 16. If $i_{t}>1$, we return to step 15 , in other cases to step 17.

Step 17. If $x<n_{x}^{\prime \prime}(t-1)$, we return to step 14 , in other cases - to step 18.

Step 18. If $t<T$, we return to step 3 , in other cases calculations are ended.

The volume W_{3} is

$$
\begin{equation*}
V^{\prime}=2\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right] \tag{23}
\end{equation*}
$$

It is easily seen from (12) and (13) that the volume of W_{3} is $\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left(n_{t}+1\right) / 2$ times smaller than that of arraay D. Therefore the above modification of the algorithm requires the same number of times smaller volume of the main memory than the basic algorithm.
9. Analysis of the algorithms. It is necessary to refer to the external memory for arrays D_{1}, D_{2} or D_{3} when calculations are realized by the first-third modifications of the algorithm. The number of these references can be determined from the analysis of the shemes of the algorithms. It is easily seen that one is obliged to refer to the external memory in such cases: 1) for cleaning array D, i.e. D_{1}, D_{2} or $D_{3}, 2$) for calling separate layers or cut of arrays D in the process of weight coefficients calculation, 3) for storing weight coefficients to array $D, 4$) for regrouping the layers of array D. Thus the total number of references is

$$
\begin{equation*}
K=K_{v}+K_{s}+K_{h}+\Pi_{p} \tag{24}
\end{equation*}
$$

where $K_{v}, K_{s}, K_{h}, K_{p}$ is the number of references in the above cases.

Deteremination of $K_{v}, K_{s}, K_{h}, K_{p}$ will not be considered in detail because of a restricted volume of the paper. The total number of references for the first-third modifications of the algorithm is

$$
\begin{equation*}
K_{1}=\left(3 n_{t}+1\right) T-2 n_{t}, \tag{25}
\end{equation*}
$$

$$
\begin{align*}
& K_{2}=c_{2}^{\prime} T^{2}+c_{1}^{\prime} T+c_{0}^{\prime} \tag{26}\\
& K_{3}=c_{2}^{\prime \prime} T^{2}+c_{1}^{\prime \prime} T+c_{0}^{\prime \prime} \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
& c_{0}^{\prime}=1-\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right)^{2} \tag{28}\\
& c_{1}^{\prime}=\left(n_{x}^{\prime}+n_{x}^{\prime \prime}+1\right)\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) / 2+1 \tag{29}\\
& c_{2}^{\prime}=\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right)\left(n_{x}^{\prime}+n_{x}^{\prime \prime}+3\right) / 2 \tag{30}\\
& c_{0}^{\prime \prime}=1-n_{t}\left(n_{x}^{\prime}+n_{x}^{\prime \prime}+2\right) \tag{31}\\
& c_{1}^{\prime \prime}=\left\{1+4 n_{t}+\left(n_{x}^{\prime}+n_{x}^{\prime \prime}+1\right)\left[1-n_{t}\left(n_{x}^{\prime}+n_{x}^{\prime \prime}-2\right)\right]\right\} / 2, \tag{32}\\
& c_{2}^{\prime \prime}=\left\{\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right)\left[1+n_{t}\left(n_{x}^{\prime}+n_{x}^{\prime \prime}+3\right)\right]\right\} / 2 . \tag{33}
\end{align*}
$$

$K_{0}=0$, since the basic algorithm does not use the external memory.

It is evident from (25)-(33) that the number of references to the external memory depends both on the duration of time interval T and on the order of the field. The number K increases by the linear law for the first modification and by the quadratic law for other modifications of the algorithm with an increase of T. Also K increases with an increase of the field order. For the first modification this dependence is straightline, for the second-quadratic and for the third-cubic. In the case when

$$
\begin{equation*}
n_{x}^{\prime}+n_{x}^{\prime \prime}=n_{y}^{\prime}+n_{y}^{\prime \prime}=n_{t}+1=n \tag{34}
\end{equation*}
$$

these dependences are represented in Fig.6. It can be seen that the third modification of the algorithm riequires the greatest number of references to the external memory, and the first modification - the smallest number (the second modification takes the intermediate place), i.e.

$$
\begin{equation*}
K_{3}>K_{2}>K_{1}>K_{0}=0 \tag{35}
\end{equation*}
$$

Fig. 6 Dependence of the number of references to the external memory $K=f(T)$ as $n=2,5,10(a$, $b, c) .1-3$ - for the first, second and third modifications of the algorithm, respectively

This means that the basic algorithm requires the smallest, and the third modification - the greatest amount of computer time, i.e. the basic algorithm is the most fast and the third modification - the slowest algorithm.

It is easy to see from (12), (16), (19), (23) that the volume of the required main memory increases with increase of interval T. It increases by qudratic dependence for the basic
algorithm and the first modification, and by the linear dependence - for other modifications. Also V^{\prime} increases with an increase of the field order. For the basic algorithm this dependence is cubic, for the first and second modifications quadratic, and for the third-straight-line. In the case (34) these dependences are represented in Fig. 7. Above it was determined (it can be seen from Fig. 7, too) that the basic algorithm uses the greatest and the third modification-the smallest amount of the main memory, i.e.

$$
\begin{equation*}
V_{0}^{\prime}>V_{1}^{\prime}>V_{2}^{\prime}>V_{3}^{\prime}, \tag{36}
\end{equation*}
$$

where V_{i}^{\prime} is the volume V^{\prime} of an i - algorithm.
Any computer has a limited main memory. Let us use a computer with volume V of the main memory. Let T and the model order be such that $V_{0}^{\prime} \leqslant V$. In this case we can use any algorithm for weight coefficients calculation. However, it is no use using the first-third modifications of the algorithm, because they are less fast than the basic algorithm. Let $V_{0}^{\prime}>$ $>V$. In this case the basic algorithm cannot be used since its main memory is too small. In the case $V_{0}^{\prime}>V$ and $V_{1}^{\prime} \leqslant V$ we can use the first modification of the algorithm, etc. Therefore we can formulate such a rule for choosing an algorithm:

$$
i= \begin{cases}0 & \left(V_{0}^{\prime} \leqslant V\right), \tag{3}\\ 1 & \left(V_{0}^{\prime}>V, V_{1}^{\prime} \leqslant V\right) \\ 2 & \left(V_{0}^{\prime}, V_{1}^{\prime}>V, V_{2}^{\prime} \leqslant V\right), \\ 3 & \left(V_{0}^{\prime},-V_{1}^{\prime}, V_{2}^{\prime}>V, V_{3}^{\prime} \leqslant V\right),\end{cases}
$$

where i is the number of the algorithm ($i=0$ - basic algorithm, $i=1 \div 3$ - its first-third modifications).

If $V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}>V$, then no algorithm can be used. In this case interval T should be decreased.

Fig. 7 Dependence of the necessary volume of the main memory of a computer $V^{\prime}=f(T)$ as $n=2,5,10$ ($\mathrm{a}, \mathrm{b}, \mathrm{c}$). 1-4-for the basic algorithm and the first, second and third modifications, respectively

The volume of the necessary external memory for first modification of the algorithm is

$$
\begin{equation*}
V^{\prime \prime}=\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right] n_{t} \tag{38}
\end{equation*}
$$

and for the second and third modifications

$$
\begin{equation*}
V^{\prime \prime}=\left[\left(n_{x}^{\prime}+n_{x}^{\prime \prime}\right) T+1\right]\left[\left(n_{y}^{\prime}+n_{y}^{\prime \prime}\right) T+1\right]\left(n_{t}+1\right) \tag{39}
\end{equation*}
$$

10. Conclusions. The weight cofficients of a space time AR field in space R^{2}, described by (1), are determined by a recurrent equation (4) and zero initial conditions (5). The WF structure of this field is described by (11), i.e. nonzero weight coefficients are inside a certain polyhedral angle in a space (x, y, t). The edges of this angle are four straight lines, starting from the point $(x, y, t)=(0,0,1)$. The developed basic algorithm and its three modifications can be used for weight coefficients calculation at a certain time interval T. The greatest volume of computer main memory is required by the basic algorithm, the smallest - by the third modification (the others are in the intermediate place). The most fast is the basic algorithm, the slowest is its third modification. The rule (37) can be used for choosing of the most fast algorithm for a certain interval T and the field order.

REFERENCES

Voronov, A.A. (1965). Automatic control. Part 1. Energia, Moscow. 396pp. (in Russian).
Kapustinskas, A.J. (1985 a). Identification of autoregressive random fields (1. The change of a first order autoregressive field to a moving average field). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 2(147), 63-72 (in Russian).
Kapustinskas, A.J. (1985 b). The same, (2. Covariation equations for first order models). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 3(148), 81-90 (in Russian).
Kapustinskas, A.J. (1986 a). The same, (3. Structure of autocovariations for a first order model. Works of the Academy of Sciences of the Lithuanian SSR, Ser.B 4(155), 125-133 (in Russian).

Kapustinskas, A.J. (1986 b). The same, (4. Stability conditions for a first order model). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 5(156), 83-94 (in Russian).
Kapustinskas, A.J. (1987). The same, (5. Parameter estimation of models). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 6(163), 117-124 (in Russian).
Kapustinskas, A.J. (1988). The same, (6. Determination of the type of first order models). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 1(164), 131-137 (in Russian).
Kapustinskas, A.J. (1989 a). The same, (7. Formulae of theoretical autocovariances of one-and two-parametric models). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 1(170), (in Russian).
Kapustinskas, A.J. (1989 b). The same, (8.A Theoretical autocovariances calculation algorithm for n -order models). Works of the Academy of Sciences of the Lithuanian SSR, Ser. B 3(172), (in Russian).

Received January 1990
A. Kapustinskas in 1972 maintained a candidate thesis. at the Kaunas Polytechnic Institute. At present he is a senior researcher of Adaptive System Department at the Institute for Physical and Engineering Problems of Energy Research, Lithuanian Acad. of Sci. His research interests are identification of random processes and fields.

