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Abstract. We present two methods for expressing computations based on recurrence 
relations and discuss their relative merits. One method, the structural blanks approach, 
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program reuse and bases a certain architecture of software packages. The other method, 
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1. Introduction. Recurrence relations play an important role in the formu

lation of many problems, such as partial differential equations in mathematical 

physics or dynamic progranuning in operations research. A recurrence may be 

viewed as composed from three parts: a structural part, an expression part, and 

an initialization part. In this paper we discuss two progranuning methods for 

solving generalized recurrences: the structural blanks approach and the con-

* This paper extends the comparison of two approaches first contributed to the 6th NWPT 

in Aarhus, Denmark (Cyras and Haveraaen, 1994). The research was supported in part 

by the Research Council of Norway under the Nordic-Baltic scholarship programme, 

and in part by the University of Bergen. 
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structive recursive approach. Both approaches rely on the separation between 

the structural part describing the data dependency pattern of the recurrence, the 

definition of the expressions to be computed as the computational aspect, and 

the initialization and definition of outputs. 

The structural blanks approach was first presented by Cyras (1983), then 

by Greshnev, Lyubimskii and Cyras (1985), and later by Cyras (1986, 1988). 

The approach was inspired by the computation of finite difference solutions 

of partial differential equations (PDE), where driver routines for sets of mu

tually dependent recurrences were needed. One of the aims was to develop 

a framework where the correctness of the driver routine need only be proved 
once, while the scheduling it defines may be reused for different problems with 

the same basic dependency stuctures. The solution to this was to define driver 

routines (S-modules) based on the structure of the recurrence, and requiring 
that the routines (F-modules) for solving each reccurence included a declara

tion of its dependency structure. The driver routine could then be applied to all 
recurrences with a compatible structure. Compatibility was shown by exibiting 
an injective function from the S-module to the global arrays underlying the 

F-modules. 

The constructive recursive approach was developed by Haveraaen (1990, 
1993) from a programming perspective. Traditionally a recursive program im
plicity defines an exponentially growing tree-structured graph. In the construc

tive recursive case the graph is explicitly defined by the user, allowing linear 
solution time for recurrences, even for higer order recurrences. The infonnation 

in the graph also allows the translation of the recursive program to recursion 
free loop programs. 

This paper is structured as follows. First we discuss some basic properties 

of recurrences. Then we present the structural blanks approach followed by a 

presentation of the constructive recursion case in Section 4. In Section 5 we 

show similarities and differences of the two approaches by comparing them on 

some examples. Finally we discuss the relative merits of the approaches. 

2. Generalized recurrences. An order k linearly dependent recurrence 7' 

with the natural numbers as index domain is a relation defined by a set of 
equations 

(1) 
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ro = eo, 

where the indices are natural numbers, ¢J is a k-ary expression not referring 

to r, and the ei, representing initial values, are expressions not referring to r. 

The choice of ro, ... , rk-l as initial elements is arbitrary, and one may even 

envision cases where the recurrence is infinite or where different recurrences 

only differ in the choice of initial elements. The archetypical second order 

recurrence relation is the Fibonacci function 

Fn = Fn- 1 + Fn-2, 

FI = 1, 

Fo = 0, 

(2) 

defining the sequence 0,1,1,2,3,5,8,13,21, ... ' The dependency pattern of 

this function is illustrated in Fig. 1. 

~ 
o lCD 2 CD 3 <D4CD ... <DN 
Fig. 1. Data dependency graph of a second order one-dimensional re

currence, such as the Fibonacci function. The numbers in circles 

label the two arcs from a node. The nodes are enumerated by 

the plain numbers underneath them. 

A straight forward method to compute the n'th value of the recurrence (1) 

is to start with an array R[O :k-1] with the k initial values, i.e. R[j] = ej, j = 
0,1, ... ,k - 1. Then for each j = k, k + 1, ... , n, compute 

R[j mod k] :=¢J(R[(j-1) mod k], R[(j-2) mod k] • 

...• R[(j-k) mod k]), (3) 

where the value R[n mod k] represents rn. If all values ro, rl,' .. , rn are 

needed., the array should be declared R [0: n], and the computations be 

R[j] := ¢J(R[j-1], R[j-2], ... ,R[j-k]), (4) 
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where R[j] will then contain rj for 0 ~ j ~ n. Other result sets may also be 

defined, and have to be mirrored in the declaration and use of the array R. More 

efficient computation techniques exist for special cases of recurrences, e.g., if 

the expression <Ph, o. 0, Ok) is linear, the recurrence may be reformulated as a 

matrix exponentiation problem. Such techniques will not be discussed further 

in this paper. 

Recurrences may be generalized to arbitrary index domains. Given a suffi

cient set of initial values c i" 0 0 0, i m' the m-dimensional order k general recurrence 

has the form 

(5) 

where the m-ary functions 6;, each returning an m-tuple of indices, have to 

be well founded with respect to the set of initial values. This scheme is more 

powerful than that of conventional recurrences, and algorithms such as the Fast 

Fourier Transform (Cooley and Tukey, 1965) belong to the class of general 

recurrences. Since the 6; have a more complex relationship than the linear 

dependency in (1), it is impossible to give a general algorithm for computing 

rn"o .. ,n m ' Moreover, finding such an algorithm for a given set of 6;, even if 
they are affine, may be difficult. But the structure of the algorithm to compute 

the recurrence is dependent only on the 8;, the data dependency pattern of the 

recurrence, and is independent of the actual <p, known as the computational 

aspect of the recurrence. 

Sometimes we will be working with a set of recurrences, all mutually de

pendent on each other. A set of mutually dependent recurrences is a set of £ 
recurrences rl, 0 0 0 , rl, the recurrence ri being of dimensionality mj and order 

k j , of the form 

(6) 

together with a suitable set of initial values. Here ij ,q E {l, 0 0 • , £}, and 8j ,q 

is an mrary function returning an mj j,q -tuple of indices. Without loss of 
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generality we can assume that all the dimensionalities are equal: ml = ... me = 
m. The mutually dependent recurrences correspond to course of value recursion 

in the terminology of Tucker and Zucker (1988). 

3. Structural blanks. The structural blanks (SB) approach (Cyras, 1983; 

Greshnev et aI., 1985; Cyras, 1986~ Cyras, 1988) was developed to express 

solutions to mutually dependent recurrences in the form of reusable program 

components defining loops over arrays. The problem of synthesizing a right 

sequence of array element updates in order to compute a set of mutually depen

dent recurrences was formulated by Lyubimskii as early as in 1958 (published 

in (Lyubimskii, 1960)), and later on investigated by Zadykhailo (1963). The 

organization of computations for linear recurrences over multidimensional ar

rays was studied by Karp, Miller and Winograd (1967) independently of the 

earlier research. The presentation here represents a further development of the 

SB approach, so the notation and definitions differ from the older papers. We 

will use a mixed Fortran/Pascal notation in the examples. 

The SB approach distinguishes between structural components (S-modules) 

and functional components (F-modules). It is well suited to define mutually 

dependent recurrences (6), and F- and S-modules derived directly from such 

recurrences are called elementary F- and S-modules. Each module contains 

a data dependency part and a procedure part. The S-module describes the 

data dependencies, the set of initial elements and the set of output elements, 

and in the S-procedure it defines a driver algorithm for recurrences with this 

dependency structure. 

An F-procedure defines the algorithm to compute one step of one recur

rence expression ri of (6), and the containing F-module describes the data 

dependencies of this step. An S-module is applied to a collection of F-modules 

by matching the dependencies of the F-modules with those of the S-module as 

defined by a substitution :=: on the S-module. The application produces a new 

F-module containing an algorithm to compute the full recurrence. Normally 

this F-module will not be elementary. 

In the case of an order k linear recurrence (1) an elementary structural 

module would capture the computational idea of (4) by 

S-module LDEP (Fmod q>(integer); k, N: integer) -

formal x: array [*] 
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internaJ-tennplate 

(var q: integer; <p(q) == (x[t], t=q-k .. q-l) --+ x[q]) 

externaJ-tennplate 

(x[t]. t=O .. k-l) --+ (x[t]. t=k .. N) 

procedure 

end 

var q:integer; 

for q : = k to N do 

call <p(q) 

(7) 

This is to be interpreted as: given a one-dimensional (one argunnent in the 

declaration of formal F-module <P) order k recurrence over the array x (as 

declared in the internal template), the S-module defines a procedure that will 

invoke <I> to compute all elements x [k], ... ,x [N] given that x [0], ... ,x [k-

1] are defined (external template). The set of array elements to the left of the 

"--+" (gives) in the external template is the set of initial elements, and the set to 

the right is the set of output elements. The parameters to the formal F-module cp 
range over the index domain of the recurrence. The formal array x will be part 

of the environment for the argunnent F-module "CP". The S-module only needs 

size information for the formal array x since it is only used in the templates to 

declare the dependencies. The parameters - formal arrays - of the S-module 

are not parameters in the traditional sense, but they will be matched by the 

substitution rules. The data dependency graph of the computation organized by 

the S-module LDEP when k = 2 is shown in Fig. 1, where square nodes mean 

that the nodes here have initial values, while the disc nodes represent nodes 

that will be computed. 

The elementary functional module giving the computational aspect of each 

step of the Fibonacci function is 

F-nnodule FIBSTEP (q: integer) == 

global X: array [*] of integer 

tennplate X [q-l]. X [q-2] --+ X [q] 

procedure X[q] := X[q-l] + X[q-2] 

end 

(8) 

This is to be interpreted as: FIBSTEP contains a one-dimensional (index domain 

parameter q) second order recurrence expression over the array X (as can be 
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seen from the template). The size of the array X is not declared in the F-module, 

but it will be declared in the program unit that uses the modules. The base type 

of X is declared since the operations on the elements require this knowledge. 

We view X as being declared in a global external environment with respect 

to FIBSTEP (8). This environment can be, for example, COMMON area in 

Fortran, STATIC in PUl, etc. 

To be able to use FIBSTEP to compute the Fibonacci function, we need a 

driver procedure that will schedule the computations of its F-procedure. Driver 

procedures are part of the S-modules, and are applicable if the internal template 

of the S-module matches the template of the F-module. This occurs when the 

dependency pattern Iin --+ I out of the S-module's corresponding internal 

template is equal to the pattern :Fin --+ :Fout of the F-module's template. In 

our example we obtain an equality by substituting 

k 1-+ 2; x[·]; 1-+ x[.]; ~(.) 1-+ FIBSTEP(.). (9) 

This shows the three kinds substitution rules: 

• The binding substitution f3 that replaces an argument of the S-module 
by a constant, i.e., it removes k from the parameter list, and replaces all 

occurrences of k in the body of the S-module by 2. 

• The array domain substitution e (. ) that embeds the formal array x and 
its index domain into the global array X and its index domain. 

• The formal F-module domain substitution r(· ) that changes the formal 

F-module ~ and its parameters in all calls in the S-module, allowing the 

embedding of the formal index domain in a higher dimensional domain as 

well as other manipUlations. In this case changing the name to FIBSTEP. 

Calling the substitution (9) for S, we denote the application 

FIB = LDEPls(FIBSTEP). 

The actual parameter FIBSTEP indicates that the internal template's pattern ~ 

in LDEP should match that of FIB STEP . The actual application is defined by 

the use of the substitution S, and this substitution must be compatible with the 

argument of the application. 

Unfolding the application above we get a new F-module 
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F-module FIB (I: integer) == 
global X: array[*] or integer 

template X[O], X[1] -+ X[2 .. 1] 

procedure 

var q:integer; 
for q : = 2 to N do 

X[q] := X[q-1] + X [q-2] 
end 

The resulting' F-module FIB is not an elementary one. The template of FIB 
specifies that X contains Fibonacci numbers numbered from 0 to N, where 

X [2 .. I] are regarded as output, based on the initial values of X [0] and X [1] . 

We may now extract a normal procedure that does the computation by extracting 
the F-procedure from the F-module FIB and adding the parameterS. This yields 

procedure FIB (I: integer); 

end 

global X:, array[*] of integer 
var q:integer; 
for q : = 2 to 1 do 

X[q] := X[q-1] + X[q-2] 

3.1. Development methodology. The development methodology of the 

structural blanks approach can be formulated as three steps. In the first step 

a domain expert, e.g., a physicist, formulates the problem as a set of mutually 

dependent recurrence equations, which is encoded as a collection of F-modules 

and global array declarations, comprising the computational model for the prob

lem. The sizes of the arrays may be dependent on the size of input data, the 

number of time-steps to be used, or may be forced by numerical properties of 

the discretization technique involved in formulating the recurrence equations. 

As an example take the problem that can be formulated as the real valued 

general recurrence equation on the exponential scale 

g(2;+2) = 'Y ( g(2i+2/2), g(2i+2/4) ), 

g(21) = gl, 

g(20) = go, 

(10) 
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where we want to find g(2i) for i = 0,1,2,. ',', I. This may be formulated as 

the declaration of '<Y: array [1 .. 2**1] of real" together with the F-module 

F-module GSTEP (i: integer) == 

global Y : array [*] of real 

template Y[2**i]. Y[2**(i+l)] - Y[2**(i+2)] (11) 

procedure Y[2**(i+2)] := r(Y[2**(i+1»). Y[2**i) 

end 

The data dependency graph of this recurrence is shown in Fig. 2. 

CD CD CD 
1=20 2=21 4=22 8=23 16=2" 

Fig. 2. Data dependency graph of the recurrence 9 defined in (10). 

The second step is to devise a driver routine for the computational model, 

i.e., to find an appropriate S-module. For this purpose there may be a library of 

S-modules, and one of them may be adapted to the problem at hand by using 

a substitution. 

In the case of the recurrence (10) we may reuse the S-module LDEP with 

the substitution 

involving all three substitution rules. Here the array domain substitution does 

the exponential expansion, while the formal F-module domain substitution, 

shifts the formal F-module parameters two positions in order to adjust the start

ing point of the loop in the S-procedure to the indices used by the F-module. 

This yields the application G = LDEPls(GSTEP): 
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F·module G (N: integer) == 

global Y : array [*J of real 

template Y[lJ, Y[2)J ---+ (Y[2**tJ, t=2 .. N) 

procedure (13) 

end 

var q:integer; 

for q : = 2 to N do 

call GSTEP(q-2) 

The third step is to show that an application is correct by proving that the 

substitutions are safe. In this case it is obvious since the function on the array 

index domain, j 1-+ 2i as embodied in "X[·) 1-+ Y[2 * *-]", is injective. 

Note that only N elements of the array Y are involved in the computation. 

The array Y is treated as a part of the environment and has to have at least 2N 

elements. 

Suppose that we shift the index of the initial values in (10) to that of 

g(2No) = cb, g(2No+l) = c~, for some No. In this case, the same F-module 
GSTEP (11) can be used to compute g(2N o+t) for t = 2,3, ... ,N. The S-module 

LDEP (7) can be reused, but with the substitution 3' 

3' = [k 1-+ 2; X[·) 1-+ Y[2 * *(No+ )); <1>(.) 1-+ GSTEP(No + . - 2)). 

This yields the application GNO = LDEPI3,(GSTEP): 

F·module GNO (No, N: integer) == 

global Y: array [*J of real 

template Y[2**No], Y[2**(No+l)]---+(Y[2**(No+t)], t=2 .. N) 

procedure 

end 

var q:integer; 

for q : = 2 to N do 

call GSTEP (No+q-2) 

Both the input/output notation and the notion of computational model are 

influenced by Tyugu, his method of structural synthesis of programs, and the 
NUT system (Tyugu, 1987). NUT supports the automatic synthesis of "for 
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i: =m to n" loops (Harf, 1994). The structural blanks approach, when com

pared with the structural synthesis of programs, aims at (i) the reuse of com

plicated loop combinations, and (ii) the transformation of the loop parameter i 

allowing embeddings in larger dimensions. 

3.2. Dependency patterns. Dependency patterns are defined in the tem

plate of an F-module and the internal templates and the external template of 

an S-module. They describe the data dependencies being assumed by the mod

ules. The dependency pattern describes a pair of non-intersecting sets (of array 

elements) called input and output, and is of the form 

where 'Pin n'Pout = 0. 

The interpretation at the dependency pattern is that the array elements identified 

on the left hand side, Pin, are needed in the computation of the array elements 
identified on the right hand side, Pout. The elements on the right hand side 
will be defined (assigned to) by some expression of the array elements on the 

left hand side in the body of the procedure. 

For the case of the equations on form (6) the dependencies would have the 

form 

Xij,1[8j ,1(nl,"" n m )], ... , Xij,kj [8j ,kj(nl, .. " n m )] 

---- Xj[nt, ... , n m]. (14) 

This is interpreted as: if the array elements on the left hand side of the " ____ " 

arrow, 

xij,l [8j,1 (nl' ... , nm )], ... ,Xij,kj [8j,kj (nl' ... , nm )], 

are appropriately initialized, then the F-procedure Fj will compute the array 

element Xj [nl' ... , nm ]. The dependency of the form (14), where exactly one 

array element is in 'Pout, is called an elementary dependency. In the case of 

elementary module, the number of elements k on the left hand side of the arrow 

represent the order of the dependency. 

The general form of dependency pattern that is used in the F- and S-modules 

allow more than one element to be computed: both sides of the arrow "----r" 

contain a list of one or more array elements. These may be listed explicitly, 

or a group of array elements may be enclosed by an implicit DO-loop of the 
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form used in Fortran. The implicit DO will allow easy identification of array 

segments or more scattered array element patterns. Another possible notation 

for dependency pattern is the shape declaration of Fortran-90, which cuts out 

a segment of a (multidimensional) array. 

3.3. The F-module. The elementary F-module defines the dependency pat

tern and the computational aspect of a step of the recurrence equation. When 

programming recurrences using the structural blanks approach, the set of mutu

ally dependent recurrence relations (6) is taken as starting point. Global arrays 

Xl, ... , Xix with the corresponding dimensions are declared for each of the 

recurrences 1'1, ... , ri, and an F-module Fj has to be declared for each of the 

recurrence equations ¢lj of the set. 

The parameters of the F-module belong to one of two different groups . 

• Parameters declared in the parameter list of the F-module. This group 
is divided into two subgroups. The first subgroup, the index domain 

parameters: reflect the number of dimensions m of the index domain 
of the recurrence equation. These parameters are free in the index ex

pressions of the array elements at the template declaration. The second 
subgroup comprises (i) constants to the procedure representing the com
putational aspect, and (ii) loop boundaries (in the case of non-elementary 

F-modules). In general case an array domain parameter can play the role 
of a loop boundary. 

• Global array names corresponding to each recurrence of the set. The 

bounds of these arrays are in the declaration of the computational model. 

The computational model is treated as an environment. It is viewed as 

the set of all the global arrays a collection of F-modules operates with. The 

computational model can be viewed as a graph: each node corresponds to one 
element of a certain global array. 

The basic form of the elementary F-module referring to one recurrence in 
the set of mutually dependent recurrences (6) is 

F-module FNAME (nl ,n2," .,nm: integer, <other parameters» --

global Xl: array[*, ... , *] of <typel >; 
X2: array [*, ... , *] of < type2 >; 

(15) 
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:Fin ---+ :Fout 

procedure 

< statements> 
end 
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where nl, ... , nm are index domain parameters, Xl, ... ,Xlx are global array 

names, and the number of stars of an array Xi corresponds to its number of 

dimensions. Normally the < typei > will all be the same, namely the type of the 

recurrence (typically real or complex numbers). In the case of an elementary 

F-module FNAME, the < statements> are the program statements defining the 
actual expression 

with the appropriate array elements replacing the ri expressions, and assigning 

this value to the array element corresponding to r{.." ... ,n m • The statements may 
be in any suitable programming language, e.g., Fortran or Pascal. We have 

chosen a Pascal-like language with some Fortran-90 extensions and notation 

for the examples given here. We will be following the Pascal conventions of 

interpreting a multidimensional array declaration 

as equal to the declaration 

x: arraY[ll : Ul] ofarraY[12 : U2] ofarray[ ... ] ofarraY[lm : um]. 

This also applies to indexing operations, where a multidimensional index is 

considered equivalent to a sequence of indices: 

This convention gives a greater flexibility when combining S-modules and 

F-modules. 

To illustrate the notation, we will develop the F-module HEATSTEP. It defines 

the recurrence of the classic explicit finite difference approximation to solve a 
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parabolic partial difference equation (see, e.g., Lapidus and Pinder, 1982). The 

F-module HEATSTEP corresponds to the two-dimensional, order 3 recurrence 

equation given in Fig. 3. 

X q, ,92 = <p(Xq, -1,Q2-lJ Xq"Q2-1, X Q,+1,Q2-d, (16) 

Xt,O = et, t = 1,2, ... , Nb 

XO,t = e~, t = 0, 1, ... , N2 - 1, 

XN, +1,t = e~', t = 0,1, ... , N2 - 1. 

q2 

(Ql,q2) 

.0. N:-' 
(Ql -1,Q2 -1) (Ql + I,Q2 -1) 

(Ql,Q2 - 1) o 
o 1 2 

Fig. 3 The classic explicit finite difference approximation of heat flow 

in the dimension ql, where the q2 axis represents time. The 

points 0 and Nt + 1 on the ql axis represent the end points. On 

the top the actual two-dimensional, order 3 recurrence relation 

with initial values and values at the end points is shown. The 

dependency pattern of the equation is shown to the left. On the 

right a global picture of how the initial values (squares) relate to 

the interior domain (discs), 

We translate the recurrence x into the two-dimensional array I, and will 

also need two arguments for the F-procedure. The dependency pattern of the 

equation (16) tells us that X[ql-l, q2-1]. X[ql, q2-1], and X[q1+1 ,q2-1] 

are all needed to compute X[ql,q2] and we state this 

F-module HEATSTEP (ql,q2: integer) == 
global X: array [*, *] of real (17) 

template X[ql-1 ,q2-1] ,X[ql ,q2-1] ,I[q1+1 ,q2-1] ---;.X[ql.q2] 

procedure X[ql,q2]:=<p(I[ql-1,q2-1],X[ql,q2-1].I[ql+l,q2-1]) 

end 
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The F-procedure body contains the assignment to X [q1, q2] based on comput

ing the expression 'P with the appropriate array element arguments. 

The F-procedure may be extracted from the F-module as a normal procedure 

in the chosen programming language. The F-procedure extracted from the 

general form (15) of the F-module, has the following form 

procedure FN AME 

global Xl: 

X2: 

(n! ,n2, ... ,nm: integer, <other parameters»; 

array[*, ... ,*] of <type!>; 

array[*, ... ,*] of <type2 >; 

Xix: array [*, ... , *] of < typelx >; 

< statements> 

end 

(18) 

Note that the statements and the declarations are the same as those in the 

F-module. Different programming constructs can be used in different program

ming languages to implement global arrays. 

3.4. The S-module. The purpose of the elementary S-module is to orga

nize the computations needed to solve a recurrence equation. The S-module 
declares a set of arrays xl, .. '. , xis, but for the S-module, however, the types 

of the array elements are immaterial, while the number of dimensions still is 

important. Thus the S-module array declarations need only emphasize this. The 

internal templates of the S-module serve the same purpose as the template of 

the F-module: to identify the data dependencies of the computation steps. The 

external template of the S-module states which elements of the arrays must be 

initialized in order to compute the recurrences for a specific set of index domain 

points. It is defined using a dependency pattern £in --+ £out, where £in to the 

left of the arrow "--+" describes the initial values, while the elements Iout to 

the right of the arrow identify the values being computed. 

The S-module itself does not depend on a specific recurrence (i.e., functions 

¢;j), but rather on the dependency pattern of a recurrence (i.e., functions bj,i, 

i = 1, ... , k j)' Thus the specific F-modules <I> j, j = 1, ... , e associated with 

each recurrence are parameters to the S-module. The F-module parameters are 

declared with only the index domain parameters. This convention applies to all 

uses of the F-modules within the S-module. 
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The dependency pattern embedded in each F-module parameter is described 

in the internal template. For every procedure <I>j the pattern is declared using 

where the qj,i denote index domain variables. In this presentation they will be 

reaching over the full Cartesian product domain integermj , but in the general 

setting they may be constrained to some subdomain. The interpretation of the 

pattern is similar to the F-module case: the call to <I>j (qj,l' ... , qj,m) will use 
the array elements in Ij,in to compute the array elements in Ij,out. 

The S-procedure is a driver routine that will call the F-procedures in a pre

determined order, so that the computation successively will define new elements 

of the arrays until the entire output has been computed. 

Although the actual parameter declarations and their ordering may vary, the 

recurrence fonn of the S-module is based on the pattern of (6) and has the form 

S-module SNAME ( Fmod 11>1 (integer, ... , integer) ; 

Fmod 11>2 (integer, ... ,integer); 

Fmod I1>l (integer, ... ,integer); 

< other parameters» ~ 

formal xl : array[*, ... , *l; 

x2 : array[*, ... , *l; 

internal-template 

(19) 

(var q1,1"'" q1,ml: integer; 11>1(Q1,1,···, Q1,mJ == I 1,in - I 1,out) 
(var Q2,1"'" Q2,m2: integer; <I>2(Q2,1,···, Q2,m2) == I 2 ,in - I 2,out) 

(var~,l,···,~,ml:integer; <I>t(~,l,·.·,~,mJ ==It,in -It,out) 
external-template 

£in -£out 
procedure 

< statements> 
end 
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where the < statements> are the program statements defining the driver algo

rithm, and < other parameters> are other parameters the S-module may need. 

In our examples < other parameters> are named N 1, ... ,NiN and play the role 

of loop boundaries. 

In some cases the templates of the S-module may leave unspecified which 

F-module <I> j is being used to generate a specific output element value. This 

can be remedied by splitting the output dependency pattern of the <I>j templates 

into different subdomains, e.g., by introducing different formal arrays or by 

constraining the index domain of the variables. We only explore the former 

option in this presentation. 

To illustrate the notation, we develop the S-module FAN3 corresponding 

to the two-dimensional recurrence equation given in Fig. 3. We translate the 

recurrence x into the two-dimensional array x. We also see the F-module 

argument <I> of the S-module needs two arguments, and the equation (16) has 

a fan-like pattern so the internal template reflects this. The external template 
defines the border elements are needed as inputs, and that the interior will be 

computed. The lower bounds of the border and the array dimensions are fixed 

to 0, but the upper bounds depend on the constants N1 and N 2, which will be 

declared as parameters to the S-module. 

S-moduleFAN3(Fmod<I>(integer, integer); Ni, N2: integer)== 

formal x: array[*, *] 
internal-template 

(varql, q2: integer; <I>(ql,q2)== 
x[ql-l,q2-1], x[ql,q2-1], x[ql+l,q2-1] ~ x[ql,q2]) 

external-template 

(x[tl,O]. tl=1. .Nl), 

(x[O,t2], t2=O . . N2-1~ 

(x[N1+1,t2], t2=O . . N2-1) ~ 

(x[tl,t2], tl=1..Nl, t2=1..N2) 

procedure 

end 

var ql, q2: integer; 

for q2:=1 to N2 do 

for ql:=l to Nl do 

call <I>(ql, q2) 

(20) 
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3.5. Substitution rules. The F-module and the S-module capture different 

aspects of how to compute a recurrence. In order to compute the values of 

an actual recurrence, the expressions encoded in the F-procedures must be 

combined with the driver routine of a compatible S-module. Au S-module is 

compatible with a list of F-modules, if the individual internal templates of the 

S-module match the templates of the corresponding F-modules. The application 

yields a new F-module. 

Since F- and S-modules may be programmed independently of each other, 

different programmers may choose different names for the same entities, or 

be working on more or less specific instances of the equations for a problem. 

In order to combine such modules, they must be made to agree with each 

other, hence certain substitution rules are needed for the S-modules. In order to 

avoid unintentional variable capture, none of the free variables must be equal 

to variables declared in a local context in the S-module. 

DEFINITION 3.1. A substitution E is a string of atomic substitutions 

[ < atomic substitution>; ... ; < atomic substitution> ], 

each atomic substitution having the general form 

<pattern> ....... <pattern> . 

Variables introduced in the pattern to the left of " ....... " are bound in the substi

tution, those introduced on the right are free in the substitution. 

DEFINITION 3.2. The binding substitution f3 is of the form 

N ....... e, 

where N is a parameter to the S-module, and the e is an expression of the same 

type. The effect is to replace all occurrences of N in the body of the S-module 

with the expression e, and to remove the declaration of N from the parameter 

list, and adding declarations for the free variables of e to the parameter list of 

the S-module. 

DEFINITION 3.3. The array domain substitution is of the form 

xl-! , ... , ·n 1 ....... X[~h,···,·n)], 
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where x is a formal array of at least n dimensions in the S-module, and X must 

be a global array, of at least d dimension, and e =< 6, ... ,ed > is ad-tuple 
of n-ary functions such that e is injective. 

The effect is to take all occurrences of X[Pl, ... ,Pn] and replace them with 

X[6(Pl,'" ,Pn), ... ,ed(Pl,'" ,Pn)], doing the required manipulations of all 
index expressions in all occurrences of x. Finally, the x is removed from 

the formal array declarations of the S-module, and declarations for any free 

variables of e(-r , ... , 'n ) being added to the parameter list of the S-module. 

Since this substitution is on the formal arrays, only the array expressions in 

the internal template of the S-module is affected. This is a very general substi
tution rule that allows the renaming of arrays, array index domain embeddings, 

and also array embeddings. The substitution may be applied even if the dimen

sionality of the index domain is lower than that of the array x itself, as the rest 
of the dimensions may be treated as part of the type declaration of the array 

(see the Pascal array declaration convention earlier). The requirement that the 
function e is injective means that all distinct old elements must be mapped to 
distinct new elements. This could be relaxed so that several read-only locations 
of the array x could be mapped to the same read-only location of the array X, 

but the benefits of this are not quite clear, and the constraints to be checked 

have not been worked out. 

DEFINITION 3.4. The formal F-module index domain substitution is of the 

form 

where «1> has m arguments and is a formal F-module parameter to the S-module, 

and F is an actual F-module. r must be injective. 

The effect is to take all occurrences of «1>h , ..• , 'm), throughout the tem

plates and S-procedure, and replace them with F( rh , ... , 'm)), doing the 

required manipUlations of all index expressions in all occurrences. Finally, the 

«1> declaration is removed from the parameter list of the S-module, and decla

rations for any free variables of r(-r, ... , 'm) being added to the parameter list 

of the S-module. 

This substitution allows the change of the number of arguments to an 

F-module parameter, as well as changing the expressions used in calls of the 
F-module. The purpose of this rule is to allow greater flexibility in the use 
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of S-modules. With this substitution it is possible to let a two-dimensional 

S-module drive the computations of a three-dimensional F-module along a hy

perplane, or shift the indexing conventions, e.g., rotation, of a formal F-module, 

as well as add other parameters being used by the actual F-module. The func

tion T is required to be injective to avoid the danger that a call to the actual 

F-module will overwrite previous results. 

The individual substitution rules have their requirements on the substitution 

functions, but there are also some global criteria that affect the whole substitu

tion :=:. 

DEFINITION 3.5. A substitution:=: is safe if it does not merge any distinct 

array elements of the S-module's output set. 

FACT 3.6. A substitution:=: is safe if all array domain substitutions have 

different global arrays on the right hand side of the f-+ arrow. 

3.6. Application of an S-module to F-modules. Given a declaration of an 
S-module of the form (19), it may be applied to an argument list of C F-modules 

Fl, ... , Fl· 

An application is denoted by 

(21) 

where S is an S-moduleand Fl, ... , Fi are F-modules, and it yields a new 

F-module F. 

DEFINITION 3.7. The application (21) is legal if 

• The substitution:=: removes all formal arrays from the S-modules; 

• All global arrays introduced by :=:. are declared by at least one actuai 
F-module; 

• The number of actual F-module arguments in the application are the same 

as the number of formal F-module parameters of the S-module; 

• For all j = 1, ... ,C, the formal F-module index domain substitutions in 

:=: bind the formal F-module <I>j to the actual F-module Fj given in the 

argument list of the application; 

• For all j = 1, ... ) C, the declaration of Fj matches its use in s as given af
ter the formal F-module index domain substitutions have been performed; 

• For all j = 1) ... ) C, the templates 

Tj,in(i) ---+ :Fj,out(i) 
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as defined by the call Fj (Tj (qj,!, ... , qj,mj)) matches the internal tem
plate of the S-module as defined after the array domain substitutions have 

been performed. By match we mean that the corresponding sets of array 

elements, for q being the variables declared in the internal template of 

the S-module, must satisfy 

• The substitution is safe. 
As can be seen, T changes the templates of the argument <l>j F-modules, 

while ~ changes the formal arrays in the S-module. This effect can be summa
rized by 

e( internal-template <l>j(q)) = template Fj (Tj (q)). (23) 

The effect of the Tj will show up in the code of the resulting F-module, while 

the e play a role in the template definition. 

DEFINITION 3.8. For a legal application (21) the resulting F-module is 
given by 

• The parameters of the F-module are the parameters of the S-module that 
remain when all substitutions in B have been performed; 

• The global arrays of the resulting F-module are the union of the global 
arrays of the actual F-module arguments; 

• The template of the F-module is the external template of the S-module 
after substitutions in B have been performed. The resulting template of 

F can be summarized by 

Fin = ~(t:inU3(N))) and Fout = ~(£outU3(N))), (24) 

where f3(ii) is the total effect of all binding substitutions; 

• The statements of the F-procedure are the statement'> of the S-procedure 

that result when the substitution B has been performed. The calls to the 

Pj now refer to the actual F-procedures, and not to an F-module as such. 

We are now ready to formulate the central consistency theorem for the reuse of 

the computational structures as embodied in the F- and S-modules. 

Theorem 3.9. The generated template ofF in the application (21) de

fines the dependencies of the F-module's F-procedure, provided the ap-
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plication is legal, all F-modules have correct templates, and the template 
specification of the S-module is correct. 

It should be possible to check the matching of templates syntactically given 

a rewrite system that includes the arithmetic of the index domain types. Further

more, this rewrite-system should be able to generate the resulting F-module of 

the application. However, further investigations into this have to be performed. 

The definition of matching and application is illustrated in the computation 

of the recurrence (10). The S-module LDEP, (7), with linear internal template 

is here applied to the F-module GSTEP, (11). The result of the application 

G = LDEPI:::(GSTEP), as given in (13), provides the Fibonacci-like computation, 

but on the exponential scale. The substitution 2, (12), defines an exponential 

expansion by e and a shift adjustment by T. 

3.7. Example: inverting the computation ordering. Let us illustrate 

an application by looking at the recurrence defined in Fig. 3. The F-module 

HEATSTEP (17) and the S-module FAI3 (20) are both defined based on the 

simple, two-dimensional recurrence in Fig. 3. Thus FAI3 may be applied to 

HEAT STEP using the identity substitution 2id yielding the F-module 

SIMPLEHEATFLOW = FAN31:::)HEATSTEP), 

which may be expanded to 

F-module SIMPLEHEATFLOW (Ii, 12: integer) -

global X: array [ *, * 1 of real 

template 

X[l .. ll,O], X[O,O .. 12-1], X[ll+1,O .. 12-1] --+ 

X[1. .11,1. .N2] 

procedure 

end 

var ql, q2: integer; 

for q2:=1 to N2 do 

for ql: =1 to 11 do 

X[ql,q2] := ~(X[ql-l,q2-1], X[ql,q2-1], 

X [q1+1 , q2-1]) 

(25) 

SIMPLEHEATFLOW computes the interior of the domain using the equation 

(16), and leaves the appropriate values in the array X provided the borders are 

properly initialized. 
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When applying an S-module to an F-module a programmer should care not 

to exceed the bounds of global arrays. 

When we applied the S-module FAN3 (20) to the F-module HEATSTEP 

(17) (see Fig. 3) no substitutions were necessary. Fig. 4 shows another two

dimensional, order 3 recurrence. The F-module will be very different from the 

previous case, but we may use the same S-module, if we choose the right sub

stitutions to make the templates match. From the equations (26) in the figure, 
we write the F-module 

Yi 1 .i2 = ¢(Yi 1 -l,i2+1,Yi l.i2+1,Yi1 +l.i2+l), 

Yt,4 = ct, t = 1,2, ... , 7, 

YO,t = c~, t = 4,3,2,1, 

YS,t = €~/, t = 4,3,2, I, 

(il,i2+ 1) 
4 

(;'-'v~+l) : 
o 
012345678 

(26) 

Fig. 4. A two-dimensional order 3 recurrence. The computation can 

be organized by the S-module F AN3 (20) which traverses' the 

dependency graph shown in Fig. 3. The transformation to be 

considered is i l = q1> i2 = 4-q2 or i l = 8-ql, i2 '= 4-q2' 

F-module DOWN STEP (il, i2: integer)-

global Y: array[*, *] of real 

template 

Y[il-l,i2+1], Y[il,i2+1], Y[il+1,i2+1]~Y[il,i2J 
procedure 

Y[il,i2]:=¢(Y[il-l,i2+1],Y[il,i2+1],Y[il+1,i2+1]) 
end 

(27) 
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To match this template with that of the S-module FAN3, we need the fol

lowing substitution ::: 

xh, ·2) i--+' Yh,4 - ·2], 

<Ph , ·2) i--+' DOWNSTEPh, 4-·2), 

Nl i--+' 7; N2 i--+' 4. 

Since the dimensionality of the index domain is the same after the substitu

tion, no redeclaration of F-module parameters or global arrays are needed, but 

the size of the global arrays get fixed since Nl and N2 are replaced by constants. 

The big changes occur in the templates and the body of the S-procedure, where 

the second index expre..<;sion q2 in both procedure "calls" and array indexing op

erations are replaced by the index expression 4-q2. Thus the internal template 

<P(ql,q2) gets substituted to 

Y[ql-l ,4-(q2-1)], Y[ql ,4-(q2-1)], Y[ql+l ,4-(q2-1)] -+ 

Y[ql,4-q2] , 

which is equal to DOWNSTEP (ql, 4-q2). The external template changes to 

(Y[tl,4-0], tl=1..7), (Y[0,4-t2], t2=0 .. 3), 

(Y[8,4-t2], t2=0 .. 3) --+ (Y[tl,4-t2], tl=1..7, t2=1..4), 

and this may be simplified to 

(Y[tl,4], tl=1..7), (Y[0,t2'J, t2'=4 .. 1), 

(Y[8,t2'J, t2'=4 .. 1) --+ (Y[tl,t2'J, tl=1..7, t2'=3 .. 0), 

by replacing t2 with 4-t2' and normalizing the form of the implicit DO-loops. 

With this formulation it is easy to verify that the internal templates match, so 

the application 

DOWNHEATFLOW = FAN3Is(DOWNSTEP) 

may be expanded to 

F-module DOWNHEATFLOWO == 
global Y: array [0 .. 8,0 .. 4] of real 

template Y[1..7,4],Y[0,1..4],Y[8,1..4] --+ Y[1..7,0 .. 3] 
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procedure 

end 

var ql, q2: integer; 

for q2:=1 to 4 do 
for ql :=1 to 7 do 

call DOWNSTEP (q 1, 4-q2) 

421 

(28) 

showing that we may reuse the same S-module even for apparently quite dif

ferent recurrences. We just have to develop a case specific transformation. 

3.8. Example: affine transformation in the application of an S-module in 

2D to an F-module in 3D. In this example, the S-module FAN3 (20) is applied 

to an F-module to organize the computation on a two-dimensional plane in 

three-dimensional space (see Fig. 5). The F-module PLAliESTEP represents the 

recurrence (29) on the three-dimensional array Z 

il ih = (-1,1,0) 

Fig. 5. The computation on a two-dimensional plane in three-dimensio

nal space can be organized by the S-module FAN3 (20). The 

transformation i1. = -ql - q2 + h1 , i2 = ql - qz + hz, i3 = 
q2 + h3 embeds the S-module's F AN3 (20) data dependency graph 

which. is shown in Fig. 3. Here iit and V2 are the generating 

vectors for the plane, and h is a shift vector. 
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F-module PLANESTEP (ii, i2, i3: integer)-

global Z: array[*,*,*] of <type> 
template 

Z[il-2,i2,i3-i], Z[ii-i,i2-i,i3-i], 

Z[ii,i2-2,i3-i] ~ Z[ii,i2,i3] 

procedure 

end 

Z[ii,i2,i3] := <fo(Z[il-2,i2,i3-i], Z[ii-i,i2-i,i3-i], 

Z[ii,i2-2,i3-i]) 

(30) 

The equation of a two-dimensional plane is a linear combination of two 

generating vectors VI = (-1,1,0) and V2 = (-1, -1, 1) 

{i I i=VI*lI+V2*i2+ h, iI,i2=0,1,2",,}, 

where the vector h = (hI, h2' h3) plays the role of a shift. The application of 

the S-module F AN3 (20) to the above F-module PLANESTEP (30) yields a new 

F-module 

PLANEFLOW = FAN312(PLANESTEP) 

where we need the substitution 3 = [e, TJ 

e: xh, '2] 1-+ Z[-'I -'2 +hi, '1 -'2 +h2, '2 +h3]' 

T: <I>(-r, '2) 1-+ PLANESTEP( -'I -'2 +hi, 'I -'2 +h2, '2 + h3), 

(31) 

The yielded F-module PLANEFLOW (31) has parameters hi, h2, h3, Ni, and 

N2 

F-modulePLANEFLOW (hi, h2, h3, Ni, N2: integer) -

global Z: array [*, *, *] of < type> 
template (Z[-t1+hi,t1+h2,h3], ti=1. ,Ni), 

(Z[-t2+hi,-t2+h2,t2+h3], t2=O .. N2-i), 

(Z[-Ni-i-t2+hi,Ni+i-t2+h2,t2+h3], t2=O, ,N2-i) ~ 

(Z[-t1-t2+hl,ti-t2+h2,t2+h3], tl=l .. N1, t2=1 .. N2) 

procedure 

end 

var q1,q2: integer; 

for q2:=1 to N2 do 

for q1 : =1 to Ni do 

call PLANESTEP (-qi-q2+hi, qi-q2+h2, q2+h3) 
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4. Constructive recursion. Constructive recursion (CR) is an extension of 

the primitive recursive and Il-recursive schemes over the integers to recursion 

schemes over any graph structure. It was developed by Haveraaen and early 

ideas are presented in (Haveraaen 1990; 1993). Although constructive recursion 

was developed independently from the work of Tucker and Zucker (1988), CR 

can be seen as a generalization of the theory of computations on arbitrary 

algebraic structures developed there. Tucker and Zucker restrict their recursive 

structures to discrete recursion schemes, while CR can be defined for denser 

graphs. The development of constructive recursion was inspired by ideas in the 

programming language Crystal (Chen et aI., 1991), which in turn was inspired 

by systolic algorithms. 

The CR approach defines general recurrences (5) by distinguishing between 
the definition of the data dependency graph, the recursive relation defining 

a value on each node of the data dependency graph, and the specification of 
initial values at input nodes and the interesting set of output nodes. A data 
dependency graph is a directed multigraph with two edge-labeling functions 

that satisfy certain injectivity properties. The graph is defined as an algebraic 
structure, which allows for the concise expression of repetitive structures. We 

will refer to the graph as a data dependency algebra (dda). The recursive 

functions define a relation between the value of a node and its neighbors in the 

direction of the arcs of the dda. Thus the value at any node P may be computed 
if the values at the nodes that P depends on are known. This generalizes to 
the whole graph, so that given a certain set of nodes with initial values, it will 

be possible to compute the values of (some subset of) the dda nodes. The 

set of interesting outputs is a subset of the set of nodes whose values may be 

computed. 

DEFINITION 4.1. A data dependency algebra (dda) is given by the data 

of an 8-tuple 

where 

< P, D, canR, canS, r, s, dirS, dirR >, 

P 

D 
canR C P x D 
canS ~ P x D 

r: canR -+ P 

- is a set of points, 

- is a set of directions, 

- is the relation can receive, 

- is the relation can send, 

- is the function receive from, 

(32) 
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dirS : canR ---+ D - is the function direction sent to, 
s : canS ---+ P - is the function send to, and 

dirR : canS ---+ D - is the function direction to receive from, 

so that the following equations are satisfied (writing canR(p, d) for p, d E 

canR, etc.) 

canR(p,d) ::} canS(r(p,d),dirS(p,d»; 
canR(p,d) ::} s(r(p,d),dirS(p,d» = p; 

canR(p,d) ::} dirR(r(p,d),dirS(p,d» = d' , 
canS(p,d) ::} canR(s(p,d),dirR(p,d»; 
canS(p,d) ::} r(s(p,d),dirR(p,d» = p; 

canS(p,d) ::} dirS(s(p,d),dirR(p,d» d' , 

Let Dp = {d E D 1< p, d >E canR}. 

There is a symmetry between the r- and the s-notions of a dda, and this is 
captured by 

COROLLARY 4.2 

< P,D, canR,S,r,s,dirS,dirR> 

is a dda if and only if 

< P, D, canS, canR, s, r, dirR, dirS > 

is a dda. 

There is a close correspondence between dda's and a special class of edge

labeled multi-graphs, just think of P as the set of nodes and canR as the 
arcs with D as edge-labels. This allows us to use graph terminology when 
discussing dda's. 

To concretize the definition, let's take a look at the order k linear recurrence 

(1). We can define the recurrence data dependency algebra RDDA with P being 

the set of natural numbers, D = {I, 2, ... , k} and the labels of an arc being 

the number in D representing the distance between two nodes. As is common 
in programming, we define relations (canR and canS) as boolean functions. 

canR(p,d) (1~ d ~k) and (k~p); 
r(p,d) = p-d; 



dirS(p.d) 
canS(p.d) 
s(p.d) 
dirR(p.d) 
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dj 

= (1~d~k) and (k~p+d); 

p+dj 

d. 

In addition we can define two injective node-labeling functions 

llab(p) 

elab(p) 

P. 

2**p. 

425 

(33) 

(34) 

The graph defined by the RDDA when k = 2 is depicted in Fig. 1 using the 

llab node labeling scheme and in Fig. 2 using the elab node labeling scheme. 
Given a set of points in a dda, there is a notion of the points which can be 

reached using the s-operations of the dda. 

DEFINITION 4.3. A maximal domain A over I ~ P, given a dda 

H =< P, D, canR, canS, r, s, dirS, dirR > 

is defined by 

• pEl then pEA, 

• pEA \ I then for all dE Dp ' r(p, d) E A, and 

• pEP \ A then for some dE Dp ' r(p, d) tI. A. 

The least maximal domain, denoted PI, over I ~ P is such that PI ~ A 
for all A that are maximal domains over I. 

There may be several maximal domains over a set l, e.g., P itself is always 

a maximal domain over any I ~ P. 

PROPOSITION 4.4. The least maximal domain Plover I ~ P always 
exists, and is the set of points solely reachable with paths in the s-direction 

from the points I. 

We say that PI is generated by s-paths from I. 
In order to define recmrence relations over a dda, we need to have a notion 

of consistently assigning values to the points of the dda. This will allow us to 

define a computation generating those values. 

DEFINITION 4.5. A P-indexed relation is given by a 7-tuple 

C =< P,D,R,T,x,xD,E >, 
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where P, D and T are sets, R ~ P x D such that for any pEP there is a 

subset Dp = {dp 1< p, dp >E R} ~ D, x is a variable over the set P, x D = 
{Xd IdE D} is a set of variables over the set T, and E =< E l , .•. , Em> is 
a sequence of conditional expressions 

where the Cj,i are truth expressions and ej is an expression with value in T. 
The expressions may be written in some programming language extended with 

expressions with values in P and D, but without using loops or recursion, and 

such that all free variables in the expressions are from {x} U xD • 

C defines a family Cp =< Cp I pEP> of partial functions 

Cp = T D , -+ T 

where T D , = {V I V =< Vd E Tid E Dp >} is a set of families of values 
from T. Cp(V), for V E T D " is defined when at least one of the conditional 
expressions Ej is such that all expressions Cj,i and ej are defined, all the 

conditions Cj,i are true, and there are no free variables remaining, when given 

the assignment x = p and Xd = Vd for every d E Dp. The value of Cp(V) is 
then the value of the expression in the first of those Ej. 

The conditional expression E may easily be thought of as an if-expres

sion, so C p may be conceived of as a procedure with the variables x and 
x D as parame~i;. - This captures the ¢; of (5), and corresponds roughly to the 

F-modules. Now we should combine this definition with that of the dda, in 

order to assign values to the points of a dda and thus describing the whole 

recurrence. 

DEFINITION 4.6. Given a dda If =< P, D, canR, canS, r, s, dirS, dirR> 

and a P-indexed relation C =< P, D, canR, T, x, xD, E >, a consistent assign

ment of values T to a set A ~ P is a mapping J : A -+ T such that for every 

PEA either 

• for some d E Dp ' r(p, d) f/:. A, or 

• for all d E Dp, r(p, d) E A and Cp(V) is defined and J(p) = Cp(V), 

where V =< Vd I Vd = J(r(p, d), d E Dp >. 

DEFINITION 4.7. A maximally extended consistent assignment of a con
sistent assignment f : A -+ T is a mapping 9 : B -+ T, such that A ~ B ~ P, 
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for every pEA, g(p) = f(p), 9 : B -+ T is a consistent assignment, and for 
every point pEP \ B, 

• for some d E Dp , r(p, d) rt. B, or 

• for all d E Dp, r(p, d) E Band Cp(V), where V =< Vd I t'd 

f(r(p, d), dE Dp >, is undefined. 

There may exist many maximally extended consistent assignments given a 

consistent assignment, but since C p is a partial function, they are identical on 

a subset of the points generated by the set of initial points. 

PROPOSITION 4.8. For every consistent assignment f: A -+ T for A ~ P, 

there exists a least maximally extended consistent assignment j : Ae -+ T 

such that for any maximally extended consistent assignment 9 : B -+ T of 

f : A -'" T, then Ae ~ B and for all p E A e , g(p) = j(p). 

Moreover, Ae ~ PA, where PA is the least maximal domain over A ~ P. 

The interesting case is that we can force the existence of a unique such set 
given initial values for a collection of poinl'>. 

Theorem 4.9. Given a dda H =< P, D, canR, canS, r, s, dirS, dirR > 
and a P-indexed relation C =< P, D, canR, T, X, x D ,E>, for every non

empty I ~ P and 0: : I -+ T, there is a least maximally extended consistent 

assignment a : Pe.o. -+ T, where Pe,o. ~ PI \ I, such that when p E PI \ I 
and all d E Dp , r(p, d) E I then eitlJer 

• Cp(V), where V =< Vd I Vd = 0: (r(p, d), dE Dp >, is undefined and 

p rt. Pe,o., or 

• Cp(V), where V =< Vd I Vd = a(r(p, d), dE Dp >, is defined and 

p E Pe,o.' 

We are now able to define a constructive recursive programming style with 

a semantics as defined above. 

DEFINITION 4.10. A constructive recursive relation f : P -+ T over a 

dda H = < P, D, canR, canS, r , s, dirS, dirR >. is a function definition 

E = [f(X) = if E1 I E2 I ... I Em fil, 
where 

Ej = Cj,l & ... & Cj,n) -+ ej, 
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where the Cj,i are truth expressions and ej is an expression with value in T. 
The expressions may be written in some programming language extended with 

variable p, expressions with values in P and D, but without using loops and 

restricting recursion to the form f (r( x, d)), where d ED. 

A constructive recursive program F =< E, a : I -+ T, Q > is a constructive 

recursive relation f : P -+ T given by E, with the initial value assignments 

a : I -+ T, and a set of demanded output points Q ~ P. 

The set Q is the set of interesting output values, and does not have to reflect 

the points that need to be computed in order to obtain these values, and it 
need not reflect a set of values that can be computed using the given a. The 

actual result will be a computable subset of Q. We can define the initial value 

assignments a by writing f(p) = a(p) for all pEl. The output set Q, and the 

dependency on input values, could be defined using a notation with --+ and 
lists of function elements, similar to that of dependency patterns in SB. 

DEFINITIO N 4.11. The semantics of constructive recursive program 

< E, a: 1-+ T, Q > over a dda H =< P, D, canR, canS, r, 5, dirS, dirR > 
is the map 0 : Pe,t:>. n Q -+ T, O(p) = a(p) for every p E Pe,t:>. n Q, as given 
by the least maximal consistent assignment of the P-indexed relation 

D ~ C=< P,D,canR,T,x,x ,E>, 

with initial values a : 1-+ T and --
for every Ej = Cj,l & ... & Cj,nj -+ ej , such that fj,i is Cj,i and ej is ej, 

where, for every d ED, f(r(x, d)) has been replaced by Xd E x D • 

This provides a compilation strategy, where we translate the equations E 
into programming language functions with headers 

function CPb(x:P,V:array[D] of T): boolean; 

function CP (x: P, V: array [D] of T): T; 

such that, when x = p, CPb tells when Cp(V) is defined, and, CP returns the 

value in T given by Cp(V) when this value is defined. Both these procedures 
can easily be created by a compiler based on the if-statement embedded in E 
by replacing the free variables x D =< x d > of E by V [d] . 
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A recurrence of the form (1) can easily be expressed as a constructive 
recursive relation. In the Fibonacci (2) case, we choose the graph nodes of the 

RDDA guided by the function Ipro, and arrive at the following CR relation 

Fib(x) = if canR(x,l) 1/& canR(x,2) -+ 

Fib(r(x,l)) + Fib(r(x,2)) fl, (35) 

Fib(O)=O, Fib(l)=l -+ (Fib(t), t=O .. N). 

This means that whenever there is an arc in direction 1 and an arc in direction 

2 from a point p, the value at p is the sum of the values at r (p, 1) and r (p , 2). 

So far we have only showed that constructive recursive programs are well 

defined. In order to execute them on a computer, the following is needed. 

Theorem 4.12. A constructive recursive program F is computable by a 
wave-front algorithm, if the dda is computable, the set I of initial \ralues 

are finite, all expressions in E are computable, and Q n PC,Oi is generated 
by finite s-paths for the P-indexed relation C derived from F. 

This provides us with a very general execution strategy. It does not claim 

anything about the order of evaluation, and there is no means of controlling the 
size of the temporary storage needed by the algorithm. 

We may now use this result and compute the Fibonacci numbers by travers
ing the graph in the s-direction, from the inputs at 0 and 1, till we have computed 

all values in the output set. 

4.1. Space-time structured computations. The previous development pro
vided us with a wave-front algorithm to compute any constructive recursive 

program. This algorithm had the drawback that the storage space requirements 

were not under control. In order to achieve this we need to provide the dda 

with extra structure. 

DEFINITION 4.13. A space-time algebra (sta) is given by the data of a 

7-tuple 

< H, 5, R, <, space, time, point >, 

where H is a dda as in (32), < is an ordering relation on R, and space: P -+ 5, 

time: P -+ R and point: 5 x R -+ P are functions, such that 

point(space(p), time(p)) = p, 

time(r(p, d)) < time(p). 
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An immediate consequence of this is that time(p) < time(s(p, d)). 

DEFINITION 4.14. A computable space-time dependency algebra of height 

k is a sta where the dda and the sta functions are computable, S is finite, R is 

a subset of the integers, and time(p) - time(r(p, d)) ~ k. 

We can amend the dda RDDA, (33), with S = {I}, R = {O, 1, ... }, 

space(x) = 1 

time(x) = 2 

point(i,j) = j 

in order to get an sta. The sta has height k when D = {I, 2, ... , k}. 

(36) 

Theorem 4.15. A constructive recursive program F =< E, Q : I -+ 

T, Q > over the dda part of a computable sta with height at most k is, 
given some constant c, computable with fixed execution time requirement 
proportional to (c + k) * s and storage space requirements proportional to 

k * s, where s is the cardinality of S, iftime(p) E {O, 1, ... , k - I} for all 
pEl, all expressions in E are computable, and time(p) - c E {O, 1, ... , k} 
for all p E Q, the set of output values. 

Proof. The CR program F may be compiled into the recursion free loop pro

cedure:F shown in Fig. 6. This procedure computes F efficiently by traversing 

k * s points of the array U. 

The algorithm in Fig. 6 will visit every element of the temporary storage as 

many times as required to compute the output set. If we have the situation that 

c = 0, In Q = 0, space(I U Q) = 5, and time(I U Q) = {O, 1, ... , k}, we 

have a situation very similar to that used in the structural blanks approach. 

For many CR programs, such as Fib, (35), the cardinality of the space 

component is 1. In this case we could remove the first dimension of the array 

U in Fig. 6. In the computation of (35) we should set c = 0 and k = N in 

order to return the whole output set. 

If we want to embed the array U [S, R] into a larger array A [BI ,B2 , ... , Bn] , 

this can easily be done be providing injective functions indl : S x R -+ BI, 

ind2 : S x R -+ B2, """' indn : S x R -+ Bn , and replacing the references to 

U [j ,i] with references A[indl (j ,i) ,ind2 (j ,i) '" . "' indn (j ,i)]. 

The space-time structure can also be used to map computations on parallel 
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procedure :F (c, k: R; var n: array [Q] of T); 
var U: array[S,O:k] of T; 

forall pE I 
do U[space(p),time(p)] = a(p) od; 

for i := 0 to c+k 
do foraH jE 5 

od; 

do var b: boolean; 
if point(j,i)~I 
then b := true; 

forall dE Dp 

fi 
od 

do q := r(point(j,i),d); 
b := b and (U[space(q),time(q) mod (k+l)] 

:I undef ined) 
od 
if b 
then var V: array [D] of T; 

forall dE Dp 

fi 

do q := r(point(j,i),d); 
v[d] := U[space(q),time(q)] 

od; 
if CPb(point(j,i),V) 
then U[j,i mod (k+l)]= CP(point(j,i),V) 
else U[j,i mod (k+l)]= undefined 
fi; 

forall pE Q 
do n[p] = U[space(p),time(p)] od 
end; 
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Fig. 6. A recursion free loop program that computes the CR program 

F =< E, a : I -+ T, Q > over an sta, where n gives the 
outputs. Computations in the S coordinate are unordered, while 

those over R = {a, 1, ... ,c+ k} are ordered. The functions CPb 
and CP are compiled from E, so this is not an interpreter. The 

choice of values for c, k depends on the sets I and Q and the 
height of the sta. 
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computers by defining the sta based on the communication structure of a parallel 

computer. See Haveraaen (1990; 1993) for more information. 

4.2. Development methodology The development methodology for defin

ing constructive recursive programs is quite similar to that of the structural 

blanks approach, see Section 3.1. Going from a recurrence of the form (5) to 

a constructive recursive program may be described as a 3-step approach. 

In step 1 we define the constructive recursive function based on the recur

rence equation. Simply use the set D = {I, ... , k} as given by the occurrences 

of the recurrence variable on the right-hand side of the equation. Then define 

the CR program by 

f(x) =if canR(x,l) 8& canR(r(x,2) 8& ••• 8& canR(x,k) 

~¢( f(r(x,l), f(r(x,2), ... ,f(r(x,k)) fl, 

and the appropriate set of input values and desired outputs. This corresponds 
to the task of writing an F-module in the SB development methodology. 

Step 2 is to define the dda based on the structure of the recurrence. In the 
normal case an appropriate dda will be available in a library of dda's, just as 
one expect to find a suitable S-module in a library in the SB case. A scheduling 
algorithm, given in the form of an sta connected to the dda, will also be in the 

CR library. 

If the dda is not in the library, it must be developed. The sets P = X, 
where X is the index domain of the recurrence, and D = {I, ... , k} are 

straight forward. The r and canR functions follow directly from the recurrence 

equations, as they are defined from the 8-functions, although the form chosen 
may vary (see Lundevik (1994) for details). dda-functions are more difficult 

and may require ingenuity if it is to be done efficiently. For affine dependencies 

and certain other special cases this can be automated. Finally the scheduling 

task embedded in an sta definition should be provided. This corresponds closely 

to the development of a S-module in the SB case. 

Step 3 is to verify that the recursive relation, given the dda, defines the recur

rence. This involves defining an injective function nlab : P ~ X, where X is 

the index domain of the recurrence, such that 8; (nlab (p)) = nlab (r(p, i)), 

for i = 1, ... , k. 

Let us apply this programming technique on the recurrence defined in (10), 
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using RDDA defined in (33). The CR relation and input/output sets are 

g(x) =ifcanR(x.1) 8& canR(x.2) -+,(g(r(x.1».g(r(x.2» fl, 

g(O) =0:0, g(1) =0:1 -----+g(t). t=2 .. N. 
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for g: P -+ real. The sta is given in (36). Also in this case c=O and k=N for 

the algorithm in Fig. 6. We use the epro function to label the points consistently 

with the domain used in (10), and show that epro(p)/2d = epro(r(p, d)) for 

all pEP and d E Dp. 

5. Comparing the approaches. The structural blanks and constructive re
cursive approaches are similar in that they break a recurrence equation in a 

structural part (templates of the S- and F-modules or a graph defined by a dda), 

a computational part (F-module and recursive relation), and a defined initial 
value set and output set (external template of S-module or separate input/output 

description in the CR case). 

Looking at how the input/output description is handled, we see that the CR 
approach is slightly more flexible. There we define the output set indepen
dently from the graph, so we may specify that only the N'th value, or some 
other subset of the computed values, is to be output. In the SB approach we 

will have to modify the driver routine to reflect and take advantage of any 
change in the external template of an S-module. But, as in the CR case, any 
subset of the computed values may of course be specified as the set of out

puts. 
In the SB case the data array is declared by the user, separately from the 

modules, while in the CR approach the points to be computed are given im

plicitly by the dda graph. In the latter case we may provide the points with a 

space-time mapping, assigning the computations to explicit time-steps on the 

processors of a parallel computer. Thus data parallelism is inherent in the CR 

approach. The data distribution information needed in the SB case is dependent 

on the driver procedure of the S-module, but has to be declared by the user of 

the module independently of what S-module that is to be chosen, hence data 

parallelism is difficult to achieve in the SB approach. 

When it comes to programmability the SB approach probably has the edge 

011 the CR approach. SB is based on conventional languages such as For

tran, a notation the practitioner is familiar with. The practitioner is also fa

miliar with the task of adding pragmas and additional information to make 
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a program run faster or exploit properties of specific architectures. The CR 

approach, although clearly related to the mathematical structure of the recur

rence, introduces concepts not used in traditional programming, and has a less 

familiar notation. In the next subsections we show the two approaches on 

some more complex examples to illustrate the practical similarities and differ

ences. 

5.1. Example: mutually dependent equations. Given a set of mutually 

dependent recurrences 

Xq = !Pi(Xq-i, Yq), 

Yq = !P2(Yq-i, Zq), 

Zq = !P3(Zq-i, Yq-i), 

Xa = ea, Ya = Va, Za = (a. 

(37) 

The dependency pattern is shown in Fig. 7. Expressing this in the structural 

blanks approach we will define three arrays X [0 .. N], Y [0 .. N] and Z [0 .. N], 

where N is a constant defining how much we want computed. For each of the 
equations define an F-module 

F-module FX (q: integer) == 
global X, Y: arrayH of < type> 

template X [q-l], Y [q] --jo X [q] 

procedure X [q] : = !Pi (X [q-l], Y [q] ) 

end 

F-module FY (q: integer) == 
global Y, Z: array[*] of < type> 

template Y[q-l], Z[q] --jo Y[q] 

procedure Y [q] : = 'P2 (y [q-l], Z [q] ) 

end 

F-module FZ (q: integer) == 
global Y, Z: arrayH of < type> 

template Y[q-l], Z[q-l] --jo Z[q] 

procedure Z[q] := 'P3(Y[q-l], Z[q-l]) 

end 
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Fig. 7. The dependencies of the mutually dependent recurrence in (37) 

shown separately (on the top) and combined into one large graph 
(bottom). 

We assume that elements X [0]. Y [0]. Z [0] are initialized. Elements 

X [1], ... ,xniJ. Y [1], ... ,yeN]. Z[t], ... , ZeN] are to be computed. 

The S-module that will structure the computation of the array elements must 

describe a computation that starting from the initial elements in X[OJ. yeO] 

and Z [oJ will compute the next element based on already computed values. 

Denoting the patterns 4.>1. 4.>2 and 4.>3. we see that this can be achieved by 

repeating the sequence 4.>3 ( q)j 4.>2 ( q); <fl1( q) 

S-module S3 (4.>1, 4.>2, 4.>3: Fmod(integer); N: integer) -

formal x, y, z: array[*] 

internal-template --- Three internal templates: 

(var q: integer; 4.>l(q) == x(q-1], y[q] ~ x[qJ) 

(var q: integer; 4.>2(q) == y[q-1], z[q] ~ y[q]) 

(var q: integer; 4.>3(q) == z[q-1], y[q-1] ~ z[qJ) 
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external-template (38) 

x[O], y[O], z[o] ----+ x[1. .N], y[1. .N], z[1. .N] 

procedure 

end 

var q: integer; 

for q:=l to N do 
begin call <lI3(q); call <lI2(q); call <lIl(q) end 

Using the substitution 

3 = [x[.] ~ X[.]; y[.] ~ Y[·]; z[.] ~ Z[·]; 

<lI1(-) ~ FX('); <lI2(-) ~ FY(.); <lI3(·) ~ FZ(.)], 

we see that S3 may readily be applied to FX, FY and FZ yielding FXYZ = 
S3Is(FX,FY,FZ). The data dependency graph of FXYZ is illustrated in Fig. 7, 
with array names X, Y and Z being substituted for x, y and z. 

In the constructive recursion approach the graph depicted in Fig. 7 may be 

defined by taking the set of points P = {1, 2, 3} x N, where N = {O, 1,2, ... }, 
and the set of directions D = {1, 2, 3,4,5, 6}. The functions required to define 
a dda are 

canR«t,q>,d) = q>O and (case t of 1 : d in [1,2] ; 

2: d in [3,4] ; 

3: d in [5,6]) ; 

canS«t,q>,d) (q=O and (case t of 1 : d in [1] ; 

2: d in [3,6] ; 

3: d in [5]) ) or 

(q>O and (case t of 1 : d in [1] ; 

2: d in [2,3,6] ; 

3: d in [4,5]»; 

r«t,q>,d) (case d of 1 : <1,q-1>; 2: <2,q>; 

3: <2,q-1> 4: <3,q>; (39) 
5: <3,q-1>; 6: <2,q-1» ; 

s«t,q>,d) (case d of 1 : <1,q+1>; 2: <l,q>; 

3: <2,q+1> 4: <2,q>; 

5: <3,q+1>; 6: <3,q+1» ; 

dirS( <t ,q> ,d) d; 

dirR( <t, q>, d) = d. 
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Since this dda has a strict linear dependency, the sta has S = {I}, R = N, 

space( <t, q» = 1, 

time«t, q» = 3 * q + 3 - t, 

point(i, j) = <3-(j mod 3), j div 3>, 

which gives the sta a height of 3. The functions needed to show the correspon

dence with the graph in Fig. 7 are 

labxyz«t,q» = t, 
labN«t,q» = q, 

where the return values of labxyz are 1 for array x, 2 for array y and 3 for 

array z. Taken as a pair labxyz and labN define an injective mapping that is 

preserved over the r-function. The function xyz that defines the recurrence in 
(37) is 

xyz(p) = if labxyz(p) = 1 -+ S'>1 ( xyz(r(p, 1», xyz(r(p,2» ) 

Ilabxyz(p) = 2 -+ S'>2( xyz(r(p,3», xyz(r(p,4» ) 

Ilabxyz(p) = 3 -+ S'>3( xyz(r(p,5», xyz(r(p,6» ) fi 

The definition of xyz is split into three cases, each corresponding to one 
equation of (37). Then 

xyz«l,O» = eo, xyz«2,O» = vo, xyz«3,O» = (0 ---+ 

xyz<t,q», t=1 .. 3, q=l .. N 
(40) 

is the input/output specification. In order to retain the full set of computed 

values, we let c=O and k=N in the algorithm in Fig. 6. 

5.2. Example: embedding in higher-dimensional domain. To illustrate 

the flexibility of these approaches, we will define a diagonal c20mputation in a 

two-dimensional domain W (see Fig. 8). The computational aspects are defined 

by the F-modules F1 and F2 

F-module F1 (ii, i2: integer)-

global W: array[*, *] of <type> 
template W[il-1,i2-1], W[i1+1,i2-1] ---+ W[il,i2] (41) 
procedure W[i1,i2] := 71(W[i1-1,i2-1], W[i1+1,i2-1]) 

end 
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Fig. 8. Three mutually dependent two-dimensional order 2 recurrences 

as defined by F-modules F1 (41) (used twice) and F2 (42). The 

structural similarity with the recurrence (37) as depicted in Fig. 7 

is obvious: think of the upper diagonal as x, the intermediate one 

as y and the lower one as z, and check the labeling of the arcs. 

F-module F2 (ii, i2: integer) == 
global W: array[*, *] of <type> 

template W [ii-i. i2-i]. W [il-2. i2] --. W [il. i2] (42) 

procedure W[i1.i2] := 12(W[i1-1.i2-i], W[i1-2.i2]) 

end 

Where Fi is to be used twice in order to define the diagonals marked x 

and y. Due to the structural similarity with (37), we may use the S-module 

53 (38) as the driver, giving the application FDIAG = 53!-=(Fl.Fi,F2). The 
substitution needed is 

s = [{xU: 
';y (. ) : 

';Z (. ) : 

x[.] 1-+ W[· -2, . +2}; 

y[.] 1-+ W[. -1,· +1]; 

z[·] ...... W[. ,.]; 
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Tq,l('): <1>1(·)~Fl(.-2,·+2); 

Tq,2(-): <1>2(.)~Fl(·-1,·+1); 

TiJ>3(' ): <1>3(·) ~ F2(-, .)] 

Writing the result of the application out in full we get the F-module 

F·module FDIAG (N: integer) == 

global to!: array [ *, * 1 of < type> 

template W[-2,2], W[-l,l], W[O,O] --+ 

(W[t-2,t+2], t=l .. N), (W[t-l,t+l], t=l .. N), 

(W[t,t], t=1. .N) 
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procedure (43) 
var q: integer; 
for q : = 1 to N do 

begin call F2(q,q); call F1(q-l,q+l); call F1(q-2,q+2) end 

end 

We now need to show that the substitution:=: is safe, and this follows since 

each formal array is mapped to a different diagonal of W. 

Let us provide more detail for the requirement that S3 was applied to Fl 

and F2 correctly, specifically that the templates of F1 and F2 match the internal 

templates S3, (38). We have to prove that the mapping ~ =< ';x,';y,';z > maps 

x, y and z nodes to W nodes preserving the isomorphism between the internal 

templates <1>1, <1>2, and <1>3 and templates of Fl and F2. Formally, we have to 

prove that for q = 1, ... , N, the mapping'; maps 

• the internal template <1>l(q) to the template of Fl(TiJ> 1 (q)), and 

• the internal template <1>2(q) to the template of F1(TiJ>2(q)), and 

• the internal template <1>3( q) to the template of F2( TiJ>3( q)). 

For short we demonstrate only the last one, i.e., the matching to <1>3. Let us 

take the internal template <1>3 from (38) and map it. The mapping is treated as 

the substitution 

internal-template <1>( q) == z [q-l] , 

';Z 1 
W[q-l,q-l], , 

y [q-l] 

';y 1 
W[q-2,q] 

v 

II 

z[q] 

';Z 1 
W[q,q] 

template F2 with il=q and i2=q 

, 
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And the last term is exactly F2(Ti1>3(q». Q. e. d. 
In the constructive recursive solution we need to define a reindexing of (39) 

into the indices of the array W, the array where the computation should be 

embedded, as shown in Fig. 8. This is given by ind1 : P --.,. {-2, -1,0, ... } 
and ind2 : P --+ {O, 1, ... }. 

ind 1( <t , q» = q - 3 + t, 
ind2 ( <t , q» = q + 3 - t, 

and the function f1f2 on the graph corresponding to F1 and F2 (definitions 

(41) and (42» is simply 

f1f2(p)=ifcanR(p,1) &: canR(p,2)--""1( f1f2(r(p,1», 

fif2(r(p,2» ) 

IcanR(p,3) &: canR(p,4) --""1( fif2(r(p,3», 

f1f2(r(p,4» ) 

IcanR(p,5) &: canR(p,6) --""2( f1f2(r(p,5», 

f1f2(r(p,6» ) fi 

with input-output specification 

f1f2(1,O) = eo, f1f2(2,O) = Va, f1f2(3,O) = (0---+ 

f1f2(t,q), t=1 .. 3, q=1 .. N 

Note how we do the cases on the canR functions since xpoint etc. are not 

defined in this view of the graph. The input/output sets relate to the points of 

the dda, not of the embedding into w, thus the same sets of input/output points 

is needed as in (40). 

6. Summary. We have presented two approaches, structural blanks and 

constructive recursion, and shown how they may be applied for the transcription 

of generalized recurrence relations to computer programs. 

The structural blanks approach extends a traditional imperative program

ming language with constructs for defining explicitly the dependency pattern of 

a recurrence. The program to compute the recurrence is defined as a collection 

of global arrays and several program components: one for each equation of the 

recurrence (6), and a scheduler for the entire computation. These components 
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may be reused, and especially the scheduler may be applied on many different 

recurrence relations. Since the notation used is based on well known program

ming languages, it should be fairly easy to start using it for a practitioner in a 

field where recurrences are used. In SB the time axis is explicit. This is because 

a data dependency graph is explicitly represented in computer memory. This 

explicit representation allows the usage of matrix mathematics in affine graph 

transformations. The whole array representing the nodes of explicit data depen

dency graph is viewed as the output. The SB approach provides an architecture 

of software packages in the numerically oriented domain. 

The constructive recursive approach is a functional programming language 

where the structure of the directed graph implicitly defined by a recursive ex

pression is made explicit. In most functional languages, such as Haskell and 
Standard ML, the graph is a tree. Using memoization, nodes of this tree may be 

merged, but the graph can only be traversed in the direction that the functional 
expression defines it. In the CR approach the arcs can be traversed both in 

this and in the opposite direction. The latter traversal scheme translates into an 
efficient loop program to compute the recurrence. The graph may be defined 

with an assignment of the nodes to the space-time of a parallel computer. The 
result is then a data parallel program distributed on the processors of the par
allel computer. In para-functional progranuning (Hudak, 1991) it is possible 

to schedule computations explicitly on a parallel computer, but the underlying 
graph will be a tree as given by the standard semantics of the programming 

language, preventing the efficiency obtained here. 

Even though this presentation has focused on recurrence relations, the pro

gramming techniques presented are not restricted to recurrences in the classical 

form (1). Most problems with a repetitive or recursive structure can be ex

pressed with the notation presented. Future work includes demonstrating these 

techniques on a broader set of examples, defining the underlying mathematics 

of the approaches, and building tools to facilitate the practical use of these 

approaches. 
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MODULINIS REKURENTINIQ SANTYKIQ PROGRAMA VIMAS: 
DVIEJQ POZIURIQ PALYGINlMAS 

Vytautas CYRAS, Magne HAVERAAEN 

Pristatomi ir palyginami du po~iuriai i programas, operuojanl:ias rekurentiniais san
tykiais. Tyrimo objektas yra programtt modulitt neprocedurinis aprasymas. Siiilomi for

malus aparatai programtt specifikacijtt pavaizdavimui. StruktUrizuot/{ paruos/{ metodas 
akcentuoja ciklinitt programtt daugkartinio panaudojimo galimybf<. Siiiloma programtt 
pakettt architektura skail:iavimo matematikos probleminems sritims. Konstruktyviosios 

rekursijos metodas grind~iamas rekursyvitt santykitt grafe formalizavimu. 


