
INFORMATICA, 1995, Vol. 6, No.4, 397-444

MODULAR PROGRAMMING OF RECURRENCES:
A COMPARISON OF TWO APPROACHES*

Vytautas Cyras

Department of Informatics, Vilnius University
2600 Vilnius, Naugarduko St. 24, Lithuania
and
Institute of Mathematics and Informatics
2600 Vilnius, Akademijos St. 4, Lithuania

Magne HAVERAAEN

Department of Informatics, University of Bergen
H~yteknologisenteret, N-5020 Bergen, Norway

Abstract. We present two methods for expressing computations based on recurrence
relations and discuss their relative merits. One method, the structural blanks approach,
is built on top of traditional programming languages like Fortran or Pascal. It aims at
program reuse and bases a certain architecture of software packages. The other method,
the constructive recursive approach, is based on recursive relations over graphs.

Key words: recurrence relation, loop program synthesis, data dependency graph,
architecture of software packages, program module specification.

1. Introduction. Recurrence relations play an important role in the formu

lation of many problems, such as partial differential equations in mathematical

physics or dynamic progranuning in operations research. A recurrence may be

viewed as composed from three parts: a structural part, an expression part, and

an initialization part. In this paper we discuss two progranuning methods for

solving generalized recurrences: the structural blanks approach and the con-

* This paper extends the comparison of two approaches first contributed to the 6th NWPT

in Aarhus, Denmark (Cyras and Haveraaen, 1994). The research was supported in part

by the Research Council of Norway under the Nordic-Baltic scholarship programme,

and in part by the University of Bergen.

398 Modular programming of recu"ences

structive recursive approach. Both approaches rely on the separation between

the structural part describing the data dependency pattern of the recurrence, the

definition of the expressions to be computed as the computational aspect, and

the initialization and definition of outputs.

The structural blanks approach was first presented by Cyras (1983), then

by Greshnev, Lyubimskii and Cyras (1985), and later by Cyras (1986, 1988).

The approach was inspired by the computation of finite difference solutions

of partial differential equations (PDE), where driver routines for sets of mu

tually dependent recurrences were needed. One of the aims was to develop

a framework where the correctness of the driver routine need only be proved
once, while the scheduling it defines may be reused for different problems with

the same basic dependency stuctures. The solution to this was to define driver

routines (S-modules) based on the structure of the recurrence, and requiring
that the routines (F-modules) for solving each reccurence included a declara

tion of its dependency structure. The driver routine could then be applied to all
recurrences with a compatible structure. Compatibility was shown by exibiting
an injective function from the S-module to the global arrays underlying the

F-modules.

The constructive recursive approach was developed by Haveraaen (1990,
1993) from a programming perspective. Traditionally a recursive program im
plicity defines an exponentially growing tree-structured graph. In the construc

tive recursive case the graph is explicitly defined by the user, allowing linear
solution time for recurrences, even for higer order recurrences. The infonnation

in the graph also allows the translation of the recursive program to recursion
free loop programs.

This paper is structured as follows. First we discuss some basic properties

of recurrences. Then we present the structural blanks approach followed by a

presentation of the constructive recursion case in Section 4. In Section 5 we

show similarities and differences of the two approaches by comparing them on

some examples. Finally we discuss the relative merits of the approaches.

2. Generalized recurrences. An order k linearly dependent recurrence 7'

with the natural numbers as index domain is a relation defined by a set of
equations

(1)

v. Cyras and M. Haveraaen 399

ro = eo,

where the indices are natural numbers, ¢J is a k-ary expression not referring

to r, and the ei, representing initial values, are expressions not referring to r.

The choice of ro, ... , rk-l as initial elements is arbitrary, and one may even

envision cases where the recurrence is infinite or where different recurrences

only differ in the choice of initial elements. The archetypical second order

recurrence relation is the Fibonacci function

Fn = Fn- 1 + Fn-2,

FI = 1,

Fo = 0,

(2)

defining the sequence 0,1,1,2,3,5,8,13,21, ... ' The dependency pattern of

this function is illustrated in Fig. 1.

~
o lCD 2 CD 3 <D4CD ... <DN
Fig. 1. Data dependency graph of a second order one-dimensional re

currence, such as the Fibonacci function. The numbers in circles

label the two arcs from a node. The nodes are enumerated by

the plain numbers underneath them.

A straight forward method to compute the n'th value of the recurrence (1)

is to start with an array R[O :k-1] with the k initial values, i.e. R[j] = ej, j =
0,1, ... ,k - 1. Then for each j = k, k + 1, ... , n, compute

R[j mod k] :=¢J(R[(j-1) mod k], R[(j-2) mod k] •

...• R[(j-k) mod k]), (3)

where the value R[n mod k] represents rn. If all values ro, rl,' .. , rn are

needed., the array should be declared R [0: n], and the computations be

R[j] := ¢J(R[j-1], R[j-2], ... ,R[j-k]), (4)

400 Modular programming of recurrences

where R[j] will then contain rj for 0 ~ j ~ n. Other result sets may also be

defined, and have to be mirrored in the declaration and use of the array R. More

efficient computation techniques exist for special cases of recurrences, e.g., if

the expression <Ph, o. 0, Ok) is linear, the recurrence may be reformulated as a

matrix exponentiation problem. Such techniques will not be discussed further

in this paper.

Recurrences may be generalized to arbitrary index domains. Given a suffi

cient set of initial values c i" 0 0 0, i m' the m-dimensional order k general recurrence

has the form

(5)

where the m-ary functions 6;, each returning an m-tuple of indices, have to

be well founded with respect to the set of initial values. This scheme is more

powerful than that of conventional recurrences, and algorithms such as the Fast

Fourier Transform (Cooley and Tukey, 1965) belong to the class of general

recurrences. Since the 6; have a more complex relationship than the linear

dependency in (1), it is impossible to give a general algorithm for computing

rn"o .. ,n m ' Moreover, finding such an algorithm for a given set of 6;, even if
they are affine, may be difficult. But the structure of the algorithm to compute

the recurrence is dependent only on the 8;, the data dependency pattern of the

recurrence, and is independent of the actual <p, known as the computational

aspect of the recurrence.

Sometimes we will be working with a set of recurrences, all mutually de

pendent on each other. A set of mutually dependent recurrences is a set of £
recurrences rl, 0 0 0 , rl, the recurrence ri being of dimensionality mj and order

k j , of the form

(6)

together with a suitable set of initial values. Here ij ,q E {l, 0 0 • , £}, and 8j ,q

is an mrary function returning an mj j,q -tuple of indices. Without loss of

V. Cyras and M. Haveraaen 401

generality we can assume that all the dimensionalities are equal: ml = ... me =
m. The mutually dependent recurrences correspond to course of value recursion

in the terminology of Tucker and Zucker (1988).

3. Structural blanks. The structural blanks (SB) approach (Cyras, 1983;

Greshnev et aI., 1985; Cyras, 1986~ Cyras, 1988) was developed to express

solutions to mutually dependent recurrences in the form of reusable program

components defining loops over arrays. The problem of synthesizing a right

sequence of array element updates in order to compute a set of mutually depen

dent recurrences was formulated by Lyubimskii as early as in 1958 (published

in (Lyubimskii, 1960)), and later on investigated by Zadykhailo (1963). The

organization of computations for linear recurrences over multidimensional ar

rays was studied by Karp, Miller and Winograd (1967) independently of the

earlier research. The presentation here represents a further development of the

SB approach, so the notation and definitions differ from the older papers. We

will use a mixed Fortran/Pascal notation in the examples.

The SB approach distinguishes between structural components (S-modules)

and functional components (F-modules). It is well suited to define mutually

dependent recurrences (6), and F- and S-modules derived directly from such

recurrences are called elementary F- and S-modules. Each module contains

a data dependency part and a procedure part. The S-module describes the

data dependencies, the set of initial elements and the set of output elements,

and in the S-procedure it defines a driver algorithm for recurrences with this

dependency structure.

An F-procedure defines the algorithm to compute one step of one recur

rence expression ri of (6), and the containing F-module describes the data

dependencies of this step. An S-module is applied to a collection of F-modules

by matching the dependencies of the F-modules with those of the S-module as

defined by a substitution :=: on the S-module. The application produces a new

F-module containing an algorithm to compute the full recurrence. Normally

this F-module will not be elementary.

In the case of an order k linear recurrence (1) an elementary structural

module would capture the computational idea of (4) by

S-module LDEP (Fmod q>(integer); k, N: integer) -

formal x: array [*]

402 Modular programming of recurrences

internaJ-tennplate

(var q: integer; <p(q) == (x[t], t=q-k .. q-l) --+ x[q])

externaJ-tennplate

(x[t]. t=O .. k-l) --+ (x[t]. t=k .. N)

procedure

end

var q:integer;

for q : = k to N do

call <p(q)

(7)

This is to be interpreted as: given a one-dimensional (one argunnent in the

declaration of formal F-module <P) order k recurrence over the array x (as

declared in the internal template), the S-module defines a procedure that will

invoke <I> to compute all elements x [k], ... ,x [N] given that x [0], ... ,x [k-

1] are defined (external template). The set of array elements to the left of the

"--+" (gives) in the external template is the set of initial elements, and the set to

the right is the set of output elements. The parameters to the formal F-module cp
range over the index domain of the recurrence. The formal array x will be part

of the environment for the argunnent F-module "CP". The S-module only needs

size information for the formal array x since it is only used in the templates to

declare the dependencies. The parameters - formal arrays - of the S-module

are not parameters in the traditional sense, but they will be matched by the

substitution rules. The data dependency graph of the computation organized by

the S-module LDEP when k = 2 is shown in Fig. 1, where square nodes mean

that the nodes here have initial values, while the disc nodes represent nodes

that will be computed.

The elementary functional module giving the computational aspect of each

step of the Fibonacci function is

F-nnodule FIBSTEP (q: integer) ==

global X: array [*] of integer

tennplate X [q-l]. X [q-2] --+ X [q]

procedure X[q] := X[q-l] + X[q-2]

end

(8)

This is to be interpreted as: FIBSTEP contains a one-dimensional (index domain

parameter q) second order recurrence expression over the array X (as can be

V. (;yras and M. Haveraaen 403

seen from the template). The size of the array X is not declared in the F-module,

but it will be declared in the program unit that uses the modules. The base type

of X is declared since the operations on the elements require this knowledge.

We view X as being declared in a global external environment with respect

to FIBSTEP (8). This environment can be, for example, COMMON area in

Fortran, STATIC in PUl, etc.

To be able to use FIBSTEP to compute the Fibonacci function, we need a

driver procedure that will schedule the computations of its F-procedure. Driver

procedures are part of the S-modules, and are applicable if the internal template

of the S-module matches the template of the F-module. This occurs when the

dependency pattern Iin --+ I out of the S-module's corresponding internal

template is equal to the pattern :Fin --+ :Fout of the F-module's template. In

our example we obtain an equality by substituting

k 1-+ 2; x[·]; 1-+ x[.]; ~(.) 1-+ FIBSTEP(.). (9)

This shows the three kinds substitution rules:

• The binding substitution f3 that replaces an argument of the S-module
by a constant, i.e., it removes k from the parameter list, and replaces all

occurrences of k in the body of the S-module by 2.

• The array domain substitution e (.) that embeds the formal array x and
its index domain into the global array X and its index domain.

• The formal F-module domain substitution r(·) that changes the formal

F-module ~ and its parameters in all calls in the S-module, allowing the

embedding of the formal index domain in a higher dimensional domain as

well as other manipUlations. In this case changing the name to FIBSTEP.

Calling the substitution (9) for S, we denote the application

FIB = LDEPls(FIBSTEP).

The actual parameter FIBSTEP indicates that the internal template's pattern ~

in LDEP should match that of FIB STEP . The actual application is defined by

the use of the substitution S, and this substitution must be compatible with the

argument of the application.

Unfolding the application above we get a new F-module

404 Modular programming of recurrences

F-module FIB (I: integer) ==
global X: array[*] or integer

template X[O], X[1] -+ X[2 .. 1]

procedure

var q:integer;
for q : = 2 to N do

X[q] := X[q-1] + X [q-2]
end

The resulting' F-module FIB is not an elementary one. The template of FIB
specifies that X contains Fibonacci numbers numbered from 0 to N, where

X [2 .. I] are regarded as output, based on the initial values of X [0] and X [1] .

We may now extract a normal procedure that does the computation by extracting
the F-procedure from the F-module FIB and adding the parameterS. This yields

procedure FIB (I: integer);

end

global X:, array[*] of integer
var q:integer;
for q : = 2 to 1 do

X[q] := X[q-1] + X[q-2]

3.1. Development methodology. The development methodology of the

structural blanks approach can be formulated as three steps. In the first step

a domain expert, e.g., a physicist, formulates the problem as a set of mutually

dependent recurrence equations, which is encoded as a collection of F-modules

and global array declarations, comprising the computational model for the prob

lem. The sizes of the arrays may be dependent on the size of input data, the

number of time-steps to be used, or may be forced by numerical properties of

the discretization technique involved in formulating the recurrence equations.

As an example take the problem that can be formulated as the real valued

general recurrence equation on the exponential scale

g(2;+2) = 'Y (g(2i+2/2), g(2i+2/4)),

g(21) = gl,

g(20) = go,

(10)

V. Cyras and M. Haveraaen 405

where we want to find g(2i) for i = 0,1,2,. ',', I. This may be formulated as

the declaration of '<Y: array [1 .. 2**1] of real" together with the F-module

F-module GSTEP (i: integer) ==

global Y : array [*] of real

template Y[2**i]. Y[2**(i+l)] - Y[2**(i+2)] (11)

procedure Y[2**(i+2)] := r(Y[2**(i+1»). Y[2**i)

end

The data dependency graph of this recurrence is shown in Fig. 2.

CD CD CD
1=20 2=21 4=22 8=23 16=2"

Fig. 2. Data dependency graph of the recurrence 9 defined in (10).

The second step is to devise a driver routine for the computational model,

i.e., to find an appropriate S-module. For this purpose there may be a library of

S-modules, and one of them may be adapted to the problem at hand by using

a substitution.

In the case of the recurrence (10) we may reuse the S-module LDEP with

the substitution

involving all three substitution rules. Here the array domain substitution does

the exponential expansion, while the formal F-module domain substitution,

shifts the formal F-module parameters two positions in order to adjust the start

ing point of the loop in the S-procedure to the indices used by the F-module.

This yields the application G = LDEPls(GSTEP):

406 Modular programming of recurrences

F·module G (N: integer) ==

global Y : array [*J of real

template Y[lJ, Y[2)J ---+ (Y[2**tJ, t=2 .. N)

procedure (13)

end

var q:integer;

for q : = 2 to N do

call GSTEP(q-2)

The third step is to show that an application is correct by proving that the

substitutions are safe. In this case it is obvious since the function on the array

index domain, j 1-+ 2i as embodied in "X[·) 1-+ Y[2 * *-]", is injective.

Note that only N elements of the array Y are involved in the computation.

The array Y is treated as a part of the environment and has to have at least 2N

elements.

Suppose that we shift the index of the initial values in (10) to that of

g(2No) = cb, g(2No+l) = c~, for some No. In this case, the same F-module
GSTEP (11) can be used to compute g(2N o+t) for t = 2,3, ... ,N. The S-module

LDEP (7) can be reused, but with the substitution 3'

3' = [k 1-+ 2; X[·) 1-+ Y[2 * *(No+)); <1>(.) 1-+ GSTEP(No + . - 2)).

This yields the application GNO = LDEPI3,(GSTEP):

F·module GNO (No, N: integer) ==

global Y: array [*J of real

template Y[2**No], Y[2**(No+l)]---+(Y[2**(No+t)], t=2 .. N)

procedure

end

var q:integer;

for q : = 2 to N do

call GSTEP (No+q-2)

Both the input/output notation and the notion of computational model are

influenced by Tyugu, his method of structural synthesis of programs, and the
NUT system (Tyugu, 1987). NUT supports the automatic synthesis of "for

V. {;yras and M. Haveraaen 407

i: =m to n" loops (Harf, 1994). The structural blanks approach, when com

pared with the structural synthesis of programs, aims at (i) the reuse of com

plicated loop combinations, and (ii) the transformation of the loop parameter i

allowing embeddings in larger dimensions.

3.2. Dependency patterns. Dependency patterns are defined in the tem

plate of an F-module and the internal templates and the external template of

an S-module. They describe the data dependencies being assumed by the mod

ules. The dependency pattern describes a pair of non-intersecting sets (of array

elements) called input and output, and is of the form

where 'Pin n'Pout = 0.

The interpretation at the dependency pattern is that the array elements identified

on the left hand side, Pin, are needed in the computation of the array elements
identified on the right hand side, Pout. The elements on the right hand side
will be defined (assigned to) by some expression of the array elements on the

left hand side in the body of the procedure.

For the case of the equations on form (6) the dependencies would have the

form

Xij,1[8j ,1(nl,"" n m)], ... , Xij,kj [8j ,kj(nl, .. " n m)]

---- Xj[nt, ... , n m]. (14)

This is interpreted as: if the array elements on the left hand side of the " ____ "

arrow,

xij,l [8j,1 (nl' ... , nm)], ... ,Xij,kj [8j,kj (nl' ... , nm)],

are appropriately initialized, then the F-procedure Fj will compute the array

element Xj [nl' ... , nm]. The dependency of the form (14), where exactly one

array element is in 'Pout, is called an elementary dependency. In the case of

elementary module, the number of elements k on the left hand side of the arrow

represent the order of the dependency.

The general form of dependency pattern that is used in the F- and S-modules

allow more than one element to be computed: both sides of the arrow "----r"

contain a list of one or more array elements. These may be listed explicitly,

or a group of array elements may be enclosed by an implicit DO-loop of the

408 Modular programming of recurrences

form used in Fortran. The implicit DO will allow easy identification of array

segments or more scattered array element patterns. Another possible notation

for dependency pattern is the shape declaration of Fortran-90, which cuts out

a segment of a (multidimensional) array.

3.3. The F-module. The elementary F-module defines the dependency pat

tern and the computational aspect of a step of the recurrence equation. When

programming recurrences using the structural blanks approach, the set of mutu

ally dependent recurrence relations (6) is taken as starting point. Global arrays

Xl, ... , Xix with the corresponding dimensions are declared for each of the

recurrences 1'1, ... , ri, and an F-module Fj has to be declared for each of the

recurrence equations ¢lj of the set.

The parameters of the F-module belong to one of two different groups .

• Parameters declared in the parameter list of the F-module. This group
is divided into two subgroups. The first subgroup, the index domain

parameters: reflect the number of dimensions m of the index domain
of the recurrence equation. These parameters are free in the index ex

pressions of the array elements at the template declaration. The second
subgroup comprises (i) constants to the procedure representing the com
putational aspect, and (ii) loop boundaries (in the case of non-elementary

F-modules). In general case an array domain parameter can play the role
of a loop boundary.

• Global array names corresponding to each recurrence of the set. The

bounds of these arrays are in the declaration of the computational model.

The computational model is treated as an environment. It is viewed as

the set of all the global arrays a collection of F-modules operates with. The

computational model can be viewed as a graph: each node corresponds to one
element of a certain global array.

The basic form of the elementary F-module referring to one recurrence in
the set of mutually dependent recurrences (6) is

F-module FNAME (nl ,n2," .,nm: integer, <other parameters» --

global Xl: array[*, ... , *] of <typel >;
X2: array [*, ... , *] of < type2 >;

(15)

template

:Fin ---+ :Fout

procedure

< statements>
end

V. Cyms and M. Haveraaen 409

where nl, ... , nm are index domain parameters, Xl, ... ,Xlx are global array

names, and the number of stars of an array Xi corresponds to its number of

dimensions. Normally the < typei > will all be the same, namely the type of the

recurrence (typically real or complex numbers). In the case of an elementary

F-module FNAME, the < statements> are the program statements defining the
actual expression

with the appropriate array elements replacing the ri expressions, and assigning

this value to the array element corresponding to r{.." ... ,n m • The statements may
be in any suitable programming language, e.g., Fortran or Pascal. We have

chosen a Pascal-like language with some Fortran-90 extensions and notation

for the examples given here. We will be following the Pascal conventions of

interpreting a multidimensional array declaration

as equal to the declaration

x: arraY[ll : Ul] ofarraY[12 : U2] ofarray[...] ofarraY[lm : um].

This also applies to indexing operations, where a multidimensional index is

considered equivalent to a sequence of indices:

This convention gives a greater flexibility when combining S-modules and

F-modules.

To illustrate the notation, we will develop the F-module HEATSTEP. It defines

the recurrence of the classic explicit finite difference approximation to solve a

410 Moduw programming of recurrences

parabolic partial difference equation (see, e.g., Lapidus and Pinder, 1982). The

F-module HEATSTEP corresponds to the two-dimensional, order 3 recurrence

equation given in Fig. 3.

X q, ,92 = <p(Xq, -1,Q2-lJ Xq"Q2-1, X Q,+1,Q2-d, (16)

Xt,O = et, t = 1,2, ... , Nb

XO,t = e~, t = 0, 1, ... , N2 - 1,

XN, +1,t = e~', t = 0,1, ... , N2 - 1.

q2

(Ql,q2)

.0. N:-'
(Ql -1,Q2 -1) (Ql + I,Q2 -1)

(Ql,Q2 - 1) o
o 1 2

Fig. 3 The classic explicit finite difference approximation of heat flow

in the dimension ql, where the q2 axis represents time. The

points 0 and Nt + 1 on the ql axis represent the end points. On

the top the actual two-dimensional, order 3 recurrence relation

with initial values and values at the end points is shown. The

dependency pattern of the equation is shown to the left. On the

right a global picture of how the initial values (squares) relate to

the interior domain (discs),

We translate the recurrence x into the two-dimensional array I, and will

also need two arguments for the F-procedure. The dependency pattern of the

equation (16) tells us that X[ql-l, q2-1]. X[ql, q2-1], and X[q1+1 ,q2-1]

are all needed to compute X[ql,q2] and we state this

F-module HEATSTEP (ql,q2: integer) ==
global X: array [*, *] of real (17)

template X[ql-1 ,q2-1] ,X[ql ,q2-1] ,I[q1+1 ,q2-1] ---;.X[ql.q2]

procedure X[ql,q2]:=<p(I[ql-1,q2-1],X[ql,q2-1].I[ql+l,q2-1])

end

V. Cyras and M. Haveraaen 411

The F-procedure body contains the assignment to X [q1, q2] based on comput

ing the expression 'P with the appropriate array element arguments.

The F-procedure may be extracted from the F-module as a normal procedure

in the chosen programming language. The F-procedure extracted from the

general form (15) of the F-module, has the following form

procedure FN AME

global Xl:

X2:

(n! ,n2, ... ,nm: integer, <other parameters»;

array[*, ... ,*] of <type!>;

array[*, ... ,*] of <type2 >;

Xix: array [*, ... , *] of < typelx >;

< statements>

end

(18)

Note that the statements and the declarations are the same as those in the

F-module. Different programming constructs can be used in different program

ming languages to implement global arrays.

3.4. The S-module. The purpose of the elementary S-module is to orga

nize the computations needed to solve a recurrence equation. The S-module
declares a set of arrays xl, .. '. , xis, but for the S-module, however, the types

of the array elements are immaterial, while the number of dimensions still is

important. Thus the S-module array declarations need only emphasize this. The

internal templates of the S-module serve the same purpose as the template of

the F-module: to identify the data dependencies of the computation steps. The

external template of the S-module states which elements of the arrays must be

initialized in order to compute the recurrences for a specific set of index domain

points. It is defined using a dependency pattern £in --+ £out, where £in to the

left of the arrow "--+" describes the initial values, while the elements Iout to

the right of the arrow identify the values being computed.

The S-module itself does not depend on a specific recurrence (i.e., functions

¢;j), but rather on the dependency pattern of a recurrence (i.e., functions bj,i,

i = 1, ... , k j)' Thus the specific F-modules <I> j, j = 1, ... , e associated with

each recurrence are parameters to the S-module. The F-module parameters are

declared with only the index domain parameters. This convention applies to all

uses of the F-modules within the S-module.

412 Modular programming of recurrences

The dependency pattern embedded in each F-module parameter is described

in the internal template. For every procedure <I>j the pattern is declared using

where the qj,i denote index domain variables. In this presentation they will be

reaching over the full Cartesian product domain integermj , but in the general

setting they may be constrained to some subdomain. The interpretation of the

pattern is similar to the F-module case: the call to <I>j (qj,l' ... , qj,m) will use
the array elements in Ij,in to compute the array elements in Ij,out.

The S-procedure is a driver routine that will call the F-procedures in a pre

determined order, so that the computation successively will define new elements

of the arrays until the entire output has been computed.

Although the actual parameter declarations and their ordering may vary, the

recurrence fonn of the S-module is based on the pattern of (6) and has the form

S-module SNAME (Fmod 11>1 (integer, ... , integer) ;

Fmod 11>2 (integer, ... ,integer);

Fmod I1>l (integer, ... ,integer);

< other parameters» ~

formal xl : array[*, ... , *l;

x2 : array[*, ... , *l;

internal-template

(19)

(var q1,1"'" q1,ml: integer; 11>1(Q1,1,···, Q1,mJ == I 1,in - I 1,out)
(var Q2,1"'" Q2,m2: integer; <I>2(Q2,1,···, Q2,m2) == I 2 ,in - I 2,out)

(var~,l,···,~,ml:integer; <I>t(~,l,·.·,~,mJ ==It,in -It,out)
external-template

£in -£out
procedure

< statements>
end

V. Cyras and M. Haveraaen 413

where the < statements> are the program statements defining the driver algo

rithm, and < other parameters> are other parameters the S-module may need.

In our examples < other parameters> are named N 1, ... ,NiN and play the role

of loop boundaries.

In some cases the templates of the S-module may leave unspecified which

F-module <I> j is being used to generate a specific output element value. This

can be remedied by splitting the output dependency pattern of the <I>j templates

into different subdomains, e.g., by introducing different formal arrays or by

constraining the index domain of the variables. We only explore the former

option in this presentation.

To illustrate the notation, we develop the S-module FAN3 corresponding

to the two-dimensional recurrence equation given in Fig. 3. We translate the

recurrence x into the two-dimensional array x. We also see the F-module

argument <I> of the S-module needs two arguments, and the equation (16) has

a fan-like pattern so the internal template reflects this. The external template
defines the border elements are needed as inputs, and that the interior will be

computed. The lower bounds of the border and the array dimensions are fixed

to 0, but the upper bounds depend on the constants N1 and N 2, which will be

declared as parameters to the S-module.

S-moduleFAN3(Fmod<I>(integer, integer); Ni, N2: integer)==

formal x: array[*, *]
internal-template

(varql, q2: integer; <I>(ql,q2)==
x[ql-l,q2-1], x[ql,q2-1], x[ql+l,q2-1] ~ x[ql,q2])

external-template

(x[tl,O]. tl=1. .Nl),

(x[O,t2], t2=O . . N2-1~

(x[N1+1,t2], t2=O . . N2-1) ~

(x[tl,t2], tl=1..Nl, t2=1..N2)

procedure

end

var ql, q2: integer;

for q2:=1 to N2 do

for ql:=l to Nl do

call <I>(ql, q2)

(20)

414 Modular programming of recurrences

3.5. Substitution rules. The F-module and the S-module capture different

aspects of how to compute a recurrence. In order to compute the values of

an actual recurrence, the expressions encoded in the F-procedures must be

combined with the driver routine of a compatible S-module. Au S-module is

compatible with a list of F-modules, if the individual internal templates of the

S-module match the templates of the corresponding F-modules. The application

yields a new F-module.

Since F- and S-modules may be programmed independently of each other,

different programmers may choose different names for the same entities, or

be working on more or less specific instances of the equations for a problem.

In order to combine such modules, they must be made to agree with each

other, hence certain substitution rules are needed for the S-modules. In order to

avoid unintentional variable capture, none of the free variables must be equal

to variables declared in a local context in the S-module.

DEFINITION 3.1. A substitution E is a string of atomic substitutions

[< atomic substitution>; ... ; < atomic substitution>],

each atomic substitution having the general form

<pattern> <pattern> .

Variables introduced in the pattern to the left of " " are bound in the substi

tution, those introduced on the right are free in the substitution.

DEFINITION 3.2. The binding substitution f3 is of the form

N e,

where N is a parameter to the S-module, and the e is an expression of the same

type. The effect is to replace all occurrences of N in the body of the S-module

with the expression e, and to remove the declaration of N from the parameter

list, and adding declarations for the free variables of e to the parameter list of

the S-module.

DEFINITION 3.3. The array domain substitution is of the form

xl-! , ... , ·n 1 X[~h,···,·n)],

v. (:yras and M. Haveraaen 415

where x is a formal array of at least n dimensions in the S-module, and X must

be a global array, of at least d dimension, and e =< 6, ... ,ed > is ad-tuple
of n-ary functions such that e is injective.

The effect is to take all occurrences of X[Pl, ... ,Pn] and replace them with

X[6(Pl,'" ,Pn), ... ,ed(Pl,'" ,Pn)], doing the required manipulations of all
index expressions in all occurrences of x. Finally, the x is removed from

the formal array declarations of the S-module, and declarations for any free

variables of e(-r , ... , 'n) being added to the parameter list of the S-module.

Since this substitution is on the formal arrays, only the array expressions in

the internal template of the S-module is affected. This is a very general substi
tution rule that allows the renaming of arrays, array index domain embeddings,

and also array embeddings. The substitution may be applied even if the dimen

sionality of the index domain is lower than that of the array x itself, as the rest
of the dimensions may be treated as part of the type declaration of the array

(see the Pascal array declaration convention earlier). The requirement that the
function e is injective means that all distinct old elements must be mapped to
distinct new elements. This could be relaxed so that several read-only locations
of the array x could be mapped to the same read-only location of the array X,

but the benefits of this are not quite clear, and the constraints to be checked

have not been worked out.

DEFINITION 3.4. The formal F-module index domain substitution is of the

form

where «1> has m arguments and is a formal F-module parameter to the S-module,

and F is an actual F-module. r must be injective.

The effect is to take all occurrences of «1>h , ..• , 'm), throughout the tem

plates and S-procedure, and replace them with F(rh , ... , 'm)), doing the

required manipUlations of all index expressions in all occurrences. Finally, the

«1> declaration is removed from the parameter list of the S-module, and decla

rations for any free variables of r(-r, ... , 'm) being added to the parameter list

of the S-module.

This substitution allows the change of the number of arguments to an

F-module parameter, as well as changing the expressions used in calls of the
F-module. The purpose of this rule is to allow greater flexibility in the use

416 Modular programming of recurrences

of S-modules. With this substitution it is possible to let a two-dimensional

S-module drive the computations of a three-dimensional F-module along a hy

perplane, or shift the indexing conventions, e.g., rotation, of a formal F-module,

as well as add other parameters being used by the actual F-module. The func

tion T is required to be injective to avoid the danger that a call to the actual

F-module will overwrite previous results.

The individual substitution rules have their requirements on the substitution

functions, but there are also some global criteria that affect the whole substitu

tion :=:.

DEFINITION 3.5. A substitution:=: is safe if it does not merge any distinct

array elements of the S-module's output set.

FACT 3.6. A substitution:=: is safe if all array domain substitutions have

different global arrays on the right hand side of the f-+ arrow.

3.6. Application of an S-module to F-modules. Given a declaration of an
S-module of the form (19), it may be applied to an argument list of C F-modules

Fl, ... , Fl·

An application is denoted by

(21)

where S is an S-moduleand Fl, ... , Fi are F-modules, and it yields a new

F-module F.

DEFINITION 3.7. The application (21) is legal if

• The substitution:=: removes all formal arrays from the S-modules;

• All global arrays introduced by :=:. are declared by at least one actuai
F-module;

• The number of actual F-module arguments in the application are the same

as the number of formal F-module parameters of the S-module;

• For all j = 1, ... ,C, the formal F-module index domain substitutions in

:=: bind the formal F-module <I>j to the actual F-module Fj given in the

argument list of the application;

• For all j = 1, ...) C, the declaration of Fj matches its use in s as given af
ter the formal F-module index domain substitutions have been performed;

• For all j = 1) ...) C, the templates

Tj,in(i) ---+ :Fj,out(i)

V. Cyras and M. Haveraaen 417

as defined by the call Fj (Tj (qj,!, ... , qj,mj)) matches the internal tem
plate of the S-module as defined after the array domain substitutions have

been performed. By match we mean that the corresponding sets of array

elements, for q being the variables declared in the internal template of

the S-module, must satisfy

• The substitution is safe.
As can be seen, T changes the templates of the argument <l>j F-modules,

while ~ changes the formal arrays in the S-module. This effect can be summa
rized by

e(internal-template <l>j(q)) = template Fj (Tj (q)). (23)

The effect of the Tj will show up in the code of the resulting F-module, while

the e play a role in the template definition.

DEFINITION 3.8. For a legal application (21) the resulting F-module is
given by

• The parameters of the F-module are the parameters of the S-module that
remain when all substitutions in B have been performed;

• The global arrays of the resulting F-module are the union of the global
arrays of the actual F-module arguments;

• The template of the F-module is the external template of the S-module
after substitutions in B have been performed. The resulting template of

F can be summarized by

Fin = ~(t:inU3(N))) and Fout = ~(£outU3(N))), (24)

where f3(ii) is the total effect of all binding substitutions;

• The statements of the F-procedure are the statement'> of the S-procedure

that result when the substitution B has been performed. The calls to the

Pj now refer to the actual F-procedures, and not to an F-module as such.

We are now ready to formulate the central consistency theorem for the reuse of

the computational structures as embodied in the F- and S-modules.

Theorem 3.9. The generated template ofF in the application (21) de

fines the dependencies of the F-module's F-procedure, provided the ap-

418 Modular programming of recurrences

plication is legal, all F-modules have correct templates, and the template
specification of the S-module is correct.

It should be possible to check the matching of templates syntactically given

a rewrite system that includes the arithmetic of the index domain types. Further

more, this rewrite-system should be able to generate the resulting F-module of

the application. However, further investigations into this have to be performed.

The definition of matching and application is illustrated in the computation

of the recurrence (10). The S-module LDEP, (7), with linear internal template

is here applied to the F-module GSTEP, (11). The result of the application

G = LDEPI:::(GSTEP), as given in (13), provides the Fibonacci-like computation,

but on the exponential scale. The substitution 2, (12), defines an exponential

expansion by e and a shift adjustment by T.

3.7. Example: inverting the computation ordering. Let us illustrate

an application by looking at the recurrence defined in Fig. 3. The F-module

HEATSTEP (17) and the S-module FAI3 (20) are both defined based on the

simple, two-dimensional recurrence in Fig. 3. Thus FAI3 may be applied to

HEAT STEP using the identity substitution 2id yielding the F-module

SIMPLEHEATFLOW = FAN31:::)HEATSTEP),

which may be expanded to

F-module SIMPLEHEATFLOW (Ii, 12: integer) -

global X: array [*, * 1 of real

template

X[l .. ll,O], X[O,O .. 12-1], X[ll+1,O .. 12-1] --+

X[1. .11,1. .N2]

procedure

end

var ql, q2: integer;

for q2:=1 to N2 do

for ql: =1 to 11 do

X[ql,q2] := ~(X[ql-l,q2-1], X[ql,q2-1],

X [q1+1 , q2-1])

(25)

SIMPLEHEATFLOW computes the interior of the domain using the equation

(16), and leaves the appropriate values in the array X provided the borders are

properly initialized.

V. Cyras and M. Haveraaen 419

When applying an S-module to an F-module a programmer should care not

to exceed the bounds of global arrays.

When we applied the S-module FAN3 (20) to the F-module HEATSTEP

(17) (see Fig. 3) no substitutions were necessary. Fig. 4 shows another two

dimensional, order 3 recurrence. The F-module will be very different from the

previous case, but we may use the same S-module, if we choose the right sub

stitutions to make the templates match. From the equations (26) in the figure,
we write the F-module

Yi 1 .i2 = ¢(Yi 1 -l,i2+1,Yi l.i2+1,Yi1 +l.i2+l),

Yt,4 = ct, t = 1,2, ... , 7,

YO,t = c~, t = 4,3,2,1,

YS,t = €~/, t = 4,3,2, I,

(il,i2+ 1)
4

(;'-'v~+l) :
o
012345678

(26)

Fig. 4. A two-dimensional order 3 recurrence. The computation can

be organized by the S-module F AN3 (20) which traverses' the

dependency graph shown in Fig. 3. The transformation to be

considered is i l = q1> i2 = 4-q2 or i l = 8-ql, i2 '= 4-q2'

F-module DOWN STEP (il, i2: integer)-

global Y: array[*, *] of real

template

Y[il-l,i2+1], Y[il,i2+1], Y[il+1,i2+1]~Y[il,i2J
procedure

Y[il,i2]:=¢(Y[il-l,i2+1],Y[il,i2+1],Y[il+1,i2+1])
end

(27)

420 Modular programming of recurrences

To match this template with that of the S-module FAN3, we need the fol

lowing substitution :::

xh, ·2) i--+' Yh,4 - ·2],

<Ph , ·2) i--+' DOWNSTEPh, 4-·2),

Nl i--+' 7; N2 i--+' 4.

Since the dimensionality of the index domain is the same after the substitu

tion, no redeclaration of F-module parameters or global arrays are needed, but

the size of the global arrays get fixed since Nl and N2 are replaced by constants.

The big changes occur in the templates and the body of the S-procedure, where

the second index expre..<;sion q2 in both procedure "calls" and array indexing op

erations are replaced by the index expression 4-q2. Thus the internal template

<P(ql,q2) gets substituted to

Y[ql-l ,4-(q2-1)], Y[ql ,4-(q2-1)], Y[ql+l ,4-(q2-1)] -+

Y[ql,4-q2] ,

which is equal to DOWNSTEP (ql, 4-q2). The external template changes to

(Y[tl,4-0], tl=1..7), (Y[0,4-t2], t2=0 .. 3),

(Y[8,4-t2], t2=0 .. 3) --+ (Y[tl,4-t2], tl=1..7, t2=1..4),

and this may be simplified to

(Y[tl,4], tl=1..7), (Y[0,t2'J, t2'=4 .. 1),

(Y[8,t2'J, t2'=4 .. 1) --+ (Y[tl,t2'J, tl=1..7, t2'=3 .. 0),

by replacing t2 with 4-t2' and normalizing the form of the implicit DO-loops.

With this formulation it is easy to verify that the internal templates match, so

the application

DOWNHEATFLOW = FAN3Is(DOWNSTEP)

may be expanded to

F-module DOWNHEATFLOWO ==
global Y: array [0 .. 8,0 .. 4] of real

template Y[1..7,4],Y[0,1..4],Y[8,1..4] --+ Y[1..7,0 .. 3]

V. Cyras and M. Haveraaen

procedure

end

var ql, q2: integer;

for q2:=1 to 4 do
for ql :=1 to 7 do

call DOWNSTEP (q 1, 4-q2)

421

(28)

showing that we may reuse the same S-module even for apparently quite dif

ferent recurrences. We just have to develop a case specific transformation.

3.8. Example: affine transformation in the application of an S-module in

2D to an F-module in 3D. In this example, the S-module FAN3 (20) is applied

to an F-module to organize the computation on a two-dimensional plane in

three-dimensional space (see Fig. 5). The F-module PLAliESTEP represents the

recurrence (29) on the three-dimensional array Z

il ih = (-1,1,0)

Fig. 5. The computation on a two-dimensional plane in three-dimensio

nal space can be organized by the S-module FAN3 (20). The

transformation i1. = -ql - q2 + h1 , i2 = ql - qz + hz, i3 =
q2 + h3 embeds the S-module's F AN3 (20) data dependency graph

which. is shown in Fig. 3. Here iit and V2 are the generating

vectors for the plane, and h is a shift vector.

422 Modular programming of recurrences

F-module PLANESTEP (ii, i2, i3: integer)-

global Z: array[*,*,*] of <type>
template

Z[il-2,i2,i3-i], Z[ii-i,i2-i,i3-i],

Z[ii,i2-2,i3-i] ~ Z[ii,i2,i3]

procedure

end

Z[ii,i2,i3] := <fo(Z[il-2,i2,i3-i], Z[ii-i,i2-i,i3-i],

Z[ii,i2-2,i3-i])

(30)

The equation of a two-dimensional plane is a linear combination of two

generating vectors VI = (-1,1,0) and V2 = (-1, -1, 1)

{i I i=VI*lI+V2*i2+ h, iI,i2=0,1,2",,},

where the vector h = (hI, h2' h3) plays the role of a shift. The application of

the S-module F AN3 (20) to the above F-module PLANESTEP (30) yields a new

F-module

PLANEFLOW = FAN312(PLANESTEP)

where we need the substitution 3 = [e, TJ

e: xh, '2] 1-+ Z[-'I -'2 +hi, '1 -'2 +h2, '2 +h3]'

T: <I>(-r, '2) 1-+ PLANESTEP(-'I -'2 +hi, 'I -'2 +h2, '2 + h3),

(31)

The yielded F-module PLANEFLOW (31) has parameters hi, h2, h3, Ni, and

N2

F-modulePLANEFLOW (hi, h2, h3, Ni, N2: integer) -

global Z: array [*, *, *] of < type>
template (Z[-t1+hi,t1+h2,h3], ti=1. ,Ni),

(Z[-t2+hi,-t2+h2,t2+h3], t2=O .. N2-i),

(Z[-Ni-i-t2+hi,Ni+i-t2+h2,t2+h3], t2=O, ,N2-i) ~

(Z[-t1-t2+hl,ti-t2+h2,t2+h3], tl=l .. N1, t2=1 .. N2)

procedure

end

var q1,q2: integer;

for q2:=1 to N2 do

for q1 : =1 to Ni do

call PLANESTEP (-qi-q2+hi, qi-q2+h2, q2+h3)

V. Cyras and M. Haveraaen 423

4. Constructive recursion. Constructive recursion (CR) is an extension of

the primitive recursive and Il-recursive schemes over the integers to recursion

schemes over any graph structure. It was developed by Haveraaen and early

ideas are presented in (Haveraaen 1990; 1993). Although constructive recursion

was developed independently from the work of Tucker and Zucker (1988), CR

can be seen as a generalization of the theory of computations on arbitrary

algebraic structures developed there. Tucker and Zucker restrict their recursive

structures to discrete recursion schemes, while CR can be defined for denser

graphs. The development of constructive recursion was inspired by ideas in the

programming language Crystal (Chen et aI., 1991), which in turn was inspired

by systolic algorithms.

The CR approach defines general recurrences (5) by distinguishing between
the definition of the data dependency graph, the recursive relation defining

a value on each node of the data dependency graph, and the specification of
initial values at input nodes and the interesting set of output nodes. A data
dependency graph is a directed multigraph with two edge-labeling functions

that satisfy certain injectivity properties. The graph is defined as an algebraic
structure, which allows for the concise expression of repetitive structures. We

will refer to the graph as a data dependency algebra (dda). The recursive

functions define a relation between the value of a node and its neighbors in the

direction of the arcs of the dda. Thus the value at any node P may be computed
if the values at the nodes that P depends on are known. This generalizes to
the whole graph, so that given a certain set of nodes with initial values, it will

be possible to compute the values of (some subset of) the dda nodes. The

set of interesting outputs is a subset of the set of nodes whose values may be

computed.

DEFINITION 4.1. A data dependency algebra (dda) is given by the data

of an 8-tuple

where

< P, D, canR, canS, r, s, dirS, dirR >,

P

D
canR C P x D
canS ~ P x D

r: canR -+ P

- is a set of points,

- is a set of directions,

- is the relation can receive,

- is the relation can send,

- is the function receive from,

(32)

424 Modular programming of recu"ences

dirS : canR ---+ D - is the function direction sent to,
s : canS ---+ P - is the function send to, and

dirR : canS ---+ D - is the function direction to receive from,

so that the following equations are satisfied (writing canR(p, d) for p, d E

canR, etc.)

canR(p,d) ::} canS(r(p,d),dirS(p,d»;
canR(p,d) ::} s(r(p,d),dirS(p,d» = p;

canR(p,d) ::} dirR(r(p,d),dirS(p,d» = d' ,
canS(p,d) ::} canR(s(p,d),dirR(p,d»;
canS(p,d) ::} r(s(p,d),dirR(p,d» = p;

canS(p,d) ::} dirS(s(p,d),dirR(p,d» d' ,

Let Dp = {d E D 1< p, d >E canR}.

There is a symmetry between the r- and the s-notions of a dda, and this is
captured by

COROLLARY 4.2

< P,D, canR,S,r,s,dirS,dirR>

is a dda if and only if

< P, D, canS, canR, s, r, dirR, dirS >

is a dda.

There is a close correspondence between dda's and a special class of edge

labeled multi-graphs, just think of P as the set of nodes and canR as the
arcs with D as edge-labels. This allows us to use graph terminology when
discussing dda's.

To concretize the definition, let's take a look at the order k linear recurrence

(1). We can define the recurrence data dependency algebra RDDA with P being

the set of natural numbers, D = {I, 2, ... , k} and the labels of an arc being

the number in D representing the distance between two nodes. As is common
in programming, we define relations (canR and canS) as boolean functions.

canR(p,d) (1~ d ~k) and (k~p);
r(p,d) = p-d;

dirS(p.d)
canS(p.d)
s(p.d)
dirR(p.d)

V. Cyras and M. Haveraaen

dj

= (1~d~k) and (k~p+d);

p+dj

d.

In addition we can define two injective node-labeling functions

llab(p)

elab(p)

P.

2**p.

425

(33)

(34)

The graph defined by the RDDA when k = 2 is depicted in Fig. 1 using the

llab node labeling scheme and in Fig. 2 using the elab node labeling scheme.
Given a set of points in a dda, there is a notion of the points which can be

reached using the s-operations of the dda.

DEFINITION 4.3. A maximal domain A over I ~ P, given a dda

H =< P, D, canR, canS, r, s, dirS, dirR >

is defined by

• pEl then pEA,

• pEA \ I then for all dE Dp ' r(p, d) E A, and

• pEP \ A then for some dE Dp ' r(p, d) tI. A.

The least maximal domain, denoted PI, over I ~ P is such that PI ~ A
for all A that are maximal domains over I.

There may be several maximal domains over a set l, e.g., P itself is always

a maximal domain over any I ~ P.

PROPOSITION 4.4. The least maximal domain Plover I ~ P always
exists, and is the set of points solely reachable with paths in the s-direction

from the points I.

We say that PI is generated by s-paths from I.
In order to define recmrence relations over a dda, we need to have a notion

of consistently assigning values to the points of the dda. This will allow us to

define a computation generating those values.

DEFINITION 4.5. A P-indexed relation is given by a 7-tuple

C =< P,D,R,T,x,xD,E >,

426 Modular programming of recurrences

where P, D and T are sets, R ~ P x D such that for any pEP there is a

subset Dp = {dp 1< p, dp >E R} ~ D, x is a variable over the set P, x D =
{Xd IdE D} is a set of variables over the set T, and E =< E l , .•. , Em> is
a sequence of conditional expressions

where the Cj,i are truth expressions and ej is an expression with value in T.
The expressions may be written in some programming language extended with

expressions with values in P and D, but without using loops or recursion, and

such that all free variables in the expressions are from {x} U xD •

C defines a family Cp =< Cp I pEP> of partial functions

Cp = T D , -+ T

where T D , = {V I V =< Vd E Tid E Dp >} is a set of families of values
from T. Cp(V), for V E T D " is defined when at least one of the conditional
expressions Ej is such that all expressions Cj,i and ej are defined, all the

conditions Cj,i are true, and there are no free variables remaining, when given

the assignment x = p and Xd = Vd for every d E Dp. The value of Cp(V) is
then the value of the expression in the first of those Ej.

The conditional expression E may easily be thought of as an if-expres

sion, so C p may be conceived of as a procedure with the variables x and
x D as parame~i;. - This captures the ¢; of (5), and corresponds roughly to the

F-modules. Now we should combine this definition with that of the dda, in

order to assign values to the points of a dda and thus describing the whole

recurrence.

DEFINITION 4.6. Given a dda If =< P, D, canR, canS, r, s, dirS, dirR>

and a P-indexed relation C =< P, D, canR, T, x, xD, E >, a consistent assign

ment of values T to a set A ~ P is a mapping J : A -+ T such that for every

PEA either

• for some d E Dp ' r(p, d) f/:. A, or

• for all d E Dp, r(p, d) E A and Cp(V) is defined and J(p) = Cp(V),

where V =< Vd I Vd = J(r(p, d), d E Dp >.

DEFINITION 4.7. A maximally extended consistent assignment of a con
sistent assignment f : A -+ T is a mapping 9 : B -+ T, such that A ~ B ~ P,

V. Cyras and M. Haveraaen 427

for every pEA, g(p) = f(p), 9 : B -+ T is a consistent assignment, and for
every point pEP \ B,

• for some d E Dp , r(p, d) rt. B, or

• for all d E Dp, r(p, d) E Band Cp(V), where V =< Vd I t'd

f(r(p, d), dE Dp >, is undefined.

There may exist many maximally extended consistent assignments given a

consistent assignment, but since C p is a partial function, they are identical on

a subset of the points generated by the set of initial points.

PROPOSITION 4.8. For every consistent assignment f: A -+ T for A ~ P,

there exists a least maximally extended consistent assignment j : Ae -+ T

such that for any maximally extended consistent assignment 9 : B -+ T of

f : A -'" T, then Ae ~ B and for all p E A e , g(p) = j(p).

Moreover, Ae ~ PA, where PA is the least maximal domain over A ~ P.

The interesting case is that we can force the existence of a unique such set
given initial values for a collection of poinl'>.

Theorem 4.9. Given a dda H =< P, D, canR, canS, r, s, dirS, dirR >
and a P-indexed relation C =< P, D, canR, T, X, x D ,E>, for every non

empty I ~ P and 0: : I -+ T, there is a least maximally extended consistent

assignment a : Pe.o. -+ T, where Pe,o. ~ PI \ I, such that when p E PI \ I
and all d E Dp , r(p, d) E I then eitlJer

• Cp(V), where V =< Vd I Vd = 0: (r(p, d), dE Dp >, is undefined and

p rt. Pe,o., or

• Cp(V), where V =< Vd I Vd = a(r(p, d), dE Dp >, is defined and

p E Pe,o.'

We are now able to define a constructive recursive programming style with

a semantics as defined above.

DEFINITION 4.10. A constructive recursive relation f : P -+ T over a

dda H = < P, D, canR, canS, r , s, dirS, dirR >. is a function definition

E = [f(X) = if E1 I E2 I ... I Em fil,
where

Ej = Cj,l & ... & Cj,n) -+ ej,

428 Modular programming of recurrences

where the Cj,i are truth expressions and ej is an expression with value in T.
The expressions may be written in some programming language extended with

variable p, expressions with values in P and D, but without using loops and

restricting recursion to the form f (r(x, d)), where d ED.

A constructive recursive program F =< E, a : I -+ T, Q > is a constructive

recursive relation f : P -+ T given by E, with the initial value assignments

a : I -+ T, and a set of demanded output points Q ~ P.

The set Q is the set of interesting output values, and does not have to reflect

the points that need to be computed in order to obtain these values, and it
need not reflect a set of values that can be computed using the given a. The

actual result will be a computable subset of Q. We can define the initial value

assignments a by writing f(p) = a(p) for all pEl. The output set Q, and the

dependency on input values, could be defined using a notation with --+ and
lists of function elements, similar to that of dependency patterns in SB.

DEFINITIO N 4.11. The semantics of constructive recursive program

< E, a: 1-+ T, Q > over a dda H =< P, D, canR, canS, r, 5, dirS, dirR >
is the map 0 : Pe,t:>. n Q -+ T, O(p) = a(p) for every p E Pe,t:>. n Q, as given
by the least maximal consistent assignment of the P-indexed relation

D ~ C=< P,D,canR,T,x,x ,E>,

with initial values a : 1-+ T and --
for every Ej = Cj,l & ... & Cj,nj -+ ej , such that fj,i is Cj,i and ej is ej,

where, for every d ED, f(r(x, d)) has been replaced by Xd E x D •

This provides a compilation strategy, where we translate the equations E
into programming language functions with headers

function CPb(x:P,V:array[D] of T): boolean;

function CP (x: P, V: array [D] of T): T;

such that, when x = p, CPb tells when Cp(V) is defined, and, CP returns the

value in T given by Cp(V) when this value is defined. Both these procedures
can easily be created by a compiler based on the if-statement embedded in E
by replacing the free variables x D =< x d > of E by V [d] .

V. Cyras and M. Haveraaen 429

A recurrence of the form (1) can easily be expressed as a constructive
recursive relation. In the Fibonacci (2) case, we choose the graph nodes of the

RDDA guided by the function Ipro, and arrive at the following CR relation

Fib(x) = if canR(x,l) 1/& canR(x,2) -+

Fib(r(x,l)) + Fib(r(x,2)) fl, (35)

Fib(O)=O, Fib(l)=l -+ (Fib(t), t=O .. N).

This means that whenever there is an arc in direction 1 and an arc in direction

2 from a point p, the value at p is the sum of the values at r (p, 1) and r (p , 2).

So far we have only showed that constructive recursive programs are well

defined. In order to execute them on a computer, the following is needed.

Theorem 4.12. A constructive recursive program F is computable by a
wave-front algorithm, if the dda is computable, the set I of initial \ralues

are finite, all expressions in E are computable, and Q n PC,Oi is generated
by finite s-paths for the P-indexed relation C derived from F.

This provides us with a very general execution strategy. It does not claim

anything about the order of evaluation, and there is no means of controlling the
size of the temporary storage needed by the algorithm.

We may now use this result and compute the Fibonacci numbers by travers
ing the graph in the s-direction, from the inputs at 0 and 1, till we have computed

all values in the output set.

4.1. Space-time structured computations. The previous development pro
vided us with a wave-front algorithm to compute any constructive recursive

program. This algorithm had the drawback that the storage space requirements

were not under control. In order to achieve this we need to provide the dda

with extra structure.

DEFINITION 4.13. A space-time algebra (sta) is given by the data of a

7-tuple

< H, 5, R, <, space, time, point >,

where H is a dda as in (32), < is an ordering relation on R, and space: P -+ 5,

time: P -+ R and point: 5 x R -+ P are functions, such that

point(space(p), time(p)) = p,

time(r(p, d)) < time(p).

430 Modular programming of recurrences

An immediate consequence of this is that time(p) < time(s(p, d)).

DEFINITION 4.14. A computable space-time dependency algebra of height

k is a sta where the dda and the sta functions are computable, S is finite, R is

a subset of the integers, and time(p) - time(r(p, d)) ~ k.

We can amend the dda RDDA, (33), with S = {I}, R = {O, 1, ... },

space(x) = 1

time(x) = 2

point(i,j) = j

in order to get an sta. The sta has height k when D = {I, 2, ... , k}.

(36)

Theorem 4.15. A constructive recursive program F =< E, Q : I -+

T, Q > over the dda part of a computable sta with height at most k is,
given some constant c, computable with fixed execution time requirement
proportional to (c + k) * s and storage space requirements proportional to

k * s, where s is the cardinality of S, iftime(p) E {O, 1, ... , k - I} for all
pEl, all expressions in E are computable, and time(p) - c E {O, 1, ... , k}
for all p E Q, the set of output values.

Proof. The CR program F may be compiled into the recursion free loop pro

cedure:F shown in Fig. 6. This procedure computes F efficiently by traversing

k * s points of the array U.

The algorithm in Fig. 6 will visit every element of the temporary storage as

many times as required to compute the output set. If we have the situation that

c = 0, In Q = 0, space(I U Q) = 5, and time(I U Q) = {O, 1, ... , k}, we

have a situation very similar to that used in the structural blanks approach.

For many CR programs, such as Fib, (35), the cardinality of the space

component is 1. In this case we could remove the first dimension of the array

U in Fig. 6. In the computation of (35) we should set c = 0 and k = N in

order to return the whole output set.

If we want to embed the array U [S, R] into a larger array A [BI ,B2 , ... , Bn] ,

this can easily be done be providing injective functions indl : S x R -+ BI,

ind2 : S x R -+ B2, """' indn : S x R -+ Bn , and replacing the references to

U [j ,i] with references A[indl (j ,i) ,ind2 (j ,i) '" . "' indn (j ,i)].

The space-time structure can also be used to map computations on parallel

V. Cyras and M. Haveraaen

procedure :F (c, k: R; var n: array [Q] of T);
var U: array[S,O:k] of T;

forall pE I
do U[space(p),time(p)] = a(p) od;

for i := 0 to c+k
do foraH jE 5

od;

do var b: boolean;
if point(j,i)~I
then b := true;

forall dE Dp

fi
od

do q := r(point(j,i),d);
b := b and (U[space(q),time(q) mod (k+l)]

:I undef ined)
od
if b
then var V: array [D] of T;

forall dE Dp

fi

do q := r(point(j,i),d);
v[d] := U[space(q),time(q)]

od;
if CPb(point(j,i),V)
then U[j,i mod (k+l)]= CP(point(j,i),V)
else U[j,i mod (k+l)]= undefined
fi;

forall pE Q
do n[p] = U[space(p),time(p)] od
end;

431

Fig. 6. A recursion free loop program that computes the CR program

F =< E, a : I -+ T, Q > over an sta, where n gives the
outputs. Computations in the S coordinate are unordered, while

those over R = {a, 1, ... ,c+ k} are ordered. The functions CPb
and CP are compiled from E, so this is not an interpreter. The

choice of values for c, k depends on the sets I and Q and the
height of the sta.

432 Modular programming of recurrences

computers by defining the sta based on the communication structure of a parallel

computer. See Haveraaen (1990; 1993) for more information.

4.2. Development methodology The development methodology for defin

ing constructive recursive programs is quite similar to that of the structural

blanks approach, see Section 3.1. Going from a recurrence of the form (5) to

a constructive recursive program may be described as a 3-step approach.

In step 1 we define the constructive recursive function based on the recur

rence equation. Simply use the set D = {I, ... , k} as given by the occurrences

of the recurrence variable on the right-hand side of the equation. Then define

the CR program by

f(x) =if canR(x,l) 8& canR(r(x,2) 8& ••• 8& canR(x,k)

~¢(f(r(x,l), f(r(x,2), ... ,f(r(x,k)) fl,

and the appropriate set of input values and desired outputs. This corresponds
to the task of writing an F-module in the SB development methodology.

Step 2 is to define the dda based on the structure of the recurrence. In the
normal case an appropriate dda will be available in a library of dda's, just as
one expect to find a suitable S-module in a library in the SB case. A scheduling
algorithm, given in the form of an sta connected to the dda, will also be in the

CR library.

If the dda is not in the library, it must be developed. The sets P = X,
where X is the index domain of the recurrence, and D = {I, ... , k} are

straight forward. The r and canR functions follow directly from the recurrence

equations, as they are defined from the 8-functions, although the form chosen
may vary (see Lundevik (1994) for details). dda-functions are more difficult

and may require ingenuity if it is to be done efficiently. For affine dependencies

and certain other special cases this can be automated. Finally the scheduling

task embedded in an sta definition should be provided. This corresponds closely

to the development of a S-module in the SB case.

Step 3 is to verify that the recursive relation, given the dda, defines the recur

rence. This involves defining an injective function nlab : P ~ X, where X is

the index domain of the recurrence, such that 8; (nlab (p)) = nlab (r(p, i)),

for i = 1, ... , k.

Let us apply this programming technique on the recurrence defined in (10),

V. Cyras and M. Haveraaen

using RDDA defined in (33). The CR relation and input/output sets are

g(x) =ifcanR(x.1) 8& canR(x.2) -+,(g(r(x.1».g(r(x.2» fl,

g(O) =0:0, g(1) =0:1 -----+g(t). t=2 .. N.

433

for g: P -+ real. The sta is given in (36). Also in this case c=O and k=N for

the algorithm in Fig. 6. We use the epro function to label the points consistently

with the domain used in (10), and show that epro(p)/2d = epro(r(p, d)) for

all pEP and d E Dp.

5. Comparing the approaches. The structural blanks and constructive re
cursive approaches are similar in that they break a recurrence equation in a

structural part (templates of the S- and F-modules or a graph defined by a dda),

a computational part (F-module and recursive relation), and a defined initial
value set and output set (external template of S-module or separate input/output

description in the CR case).

Looking at how the input/output description is handled, we see that the CR
approach is slightly more flexible. There we define the output set indepen
dently from the graph, so we may specify that only the N'th value, or some
other subset of the computed values, is to be output. In the SB approach we

will have to modify the driver routine to reflect and take advantage of any
change in the external template of an S-module. But, as in the CR case, any
subset of the computed values may of course be specified as the set of out

puts.
In the SB case the data array is declared by the user, separately from the

modules, while in the CR approach the points to be computed are given im

plicitly by the dda graph. In the latter case we may provide the points with a

space-time mapping, assigning the computations to explicit time-steps on the

processors of a parallel computer. Thus data parallelism is inherent in the CR

approach. The data distribution information needed in the SB case is dependent

on the driver procedure of the S-module, but has to be declared by the user of

the module independently of what S-module that is to be chosen, hence data

parallelism is difficult to achieve in the SB approach.

When it comes to programmability the SB approach probably has the edge

011 the CR approach. SB is based on conventional languages such as For

tran, a notation the practitioner is familiar with. The practitioner is also fa

miliar with the task of adding pragmas and additional information to make

434 Modular programming of recurrences

a program run faster or exploit properties of specific architectures. The CR

approach, although clearly related to the mathematical structure of the recur

rence, introduces concepts not used in traditional programming, and has a less

familiar notation. In the next subsections we show the two approaches on

some more complex examples to illustrate the practical similarities and differ

ences.

5.1. Example: mutually dependent equations. Given a set of mutually

dependent recurrences

Xq = !Pi(Xq-i, Yq),

Yq = !P2(Yq-i, Zq),

Zq = !P3(Zq-i, Yq-i),

Xa = ea, Ya = Va, Za = (a.

(37)

The dependency pattern is shown in Fig. 7. Expressing this in the structural

blanks approach we will define three arrays X [0 .. N], Y [0 .. N] and Z [0 .. N],

where N is a constant defining how much we want computed. For each of the
equations define an F-module

F-module FX (q: integer) ==
global X, Y: arrayH of < type>

template X [q-l], Y [q] --jo X [q]

procedure X [q] : = !Pi (X [q-l], Y [q])

end

F-module FY (q: integer) ==
global Y, Z: array[*] of < type>

template Y[q-l], Z[q] --jo Y[q]

procedure Y [q] : = 'P2 (y [q-l], Z [q])

end

F-module FZ (q: integer) ==
global Y, Z: arrayH of < type>

template Y[q-l], Z[q-l] --jo Z[q]

procedure Z[q] := 'P3(Y[q-l], Z[q-l])

end

x

y

z

V. Cyras and M. Haveraaen

® Yq-l Yq

@1

t
Zq •

Yq-l •

'H~"
®

Zq = \03(Zq-l,Yq-l)

CD CD CD CD CD
.~~~@)/~

01 0! 01 0~ 0!
~

... ..

CD~~4 !~4 !~4 !~4! o : 0 : 0 :0 : 0 :
t t t t t • ® ® ® ® ®

o 1 2 3 N

4JJ

Fig. 7. The dependencies of the mutually dependent recurrence in (37)

shown separately (on the top) and combined into one large graph
(bottom).

We assume that elements X [0]. Y [0]. Z [0] are initialized. Elements

X [1], ... ,xniJ. Y [1], ... ,yeN]. Z[t], ... , ZeN] are to be computed.

The S-module that will structure the computation of the array elements must

describe a computation that starting from the initial elements in X[OJ. yeO]

and Z [oJ will compute the next element based on already computed values.

Denoting the patterns 4.>1. 4.>2 and 4.>3. we see that this can be achieved by

repeating the sequence 4.>3 (q)j 4.>2 (q); <fl1(q)

S-module S3 (4.>1, 4.>2, 4.>3: Fmod(integer); N: integer) -

formal x, y, z: array[*]

internal-template --- Three internal templates:

(var q: integer; 4.>l(q) == x(q-1], y[q] ~ x[qJ)

(var q: integer; 4.>2(q) == y[q-1], z[q] ~ y[q])

(var q: integer; 4.>3(q) == z[q-1], y[q-1] ~ z[qJ)

436 Modular programming of recurrences

external-template (38)

x[O], y[O], z[o] ----+ x[1. .N], y[1. .N], z[1. .N]

procedure

end

var q: integer;

for q:=l to N do
begin call <lI3(q); call <lI2(q); call <lIl(q) end

Using the substitution

3 = [x[.] ~ X[.]; y[.] ~ Y[·]; z[.] ~ Z[·];

<lI1(-) ~ FX('); <lI2(-) ~ FY(.); <lI3(·) ~ FZ(.)],

we see that S3 may readily be applied to FX, FY and FZ yielding FXYZ =
S3Is(FX,FY,FZ). The data dependency graph of FXYZ is illustrated in Fig. 7,
with array names X, Y and Z being substituted for x, y and z.

In the constructive recursion approach the graph depicted in Fig. 7 may be

defined by taking the set of points P = {1, 2, 3} x N, where N = {O, 1,2, ... },
and the set of directions D = {1, 2, 3,4,5, 6}. The functions required to define
a dda are

canR«t,q>,d) = q>O and (case t of 1 : d in [1,2] ;

2: d in [3,4] ;

3: d in [5,6]) ;

canS«t,q>,d) (q=O and (case t of 1 : d in [1] ;

2: d in [3,6] ;

3: d in [5])) or

(q>O and (case t of 1 : d in [1] ;

2: d in [2,3,6] ;

3: d in [4,5]»;

r«t,q>,d) (case d of 1 : <1,q-1>; 2: <2,q>;

3: <2,q-1> 4: <3,q>; (39)
5: <3,q-1>; 6: <2,q-1» ;

s«t,q>,d) (case d of 1 : <1,q+1>; 2: <l,q>;

3: <2,q+1> 4: <2,q>;

5: <3,q+1>; 6: <3,q+1» ;

dirS(<t ,q> ,d) d;

dirR(<t, q>, d) = d.

V. Cyras and M. Haveraaen 437

Since this dda has a strict linear dependency, the sta has S = {I}, R = N,

space(<t, q» = 1,

time«t, q» = 3 * q + 3 - t,

point(i, j) = <3-(j mod 3), j div 3>,

which gives the sta a height of 3. The functions needed to show the correspon

dence with the graph in Fig. 7 are

labxyz«t,q» = t,
labN«t,q» = q,

where the return values of labxyz are 1 for array x, 2 for array y and 3 for

array z. Taken as a pair labxyz and labN define an injective mapping that is

preserved over the r-function. The function xyz that defines the recurrence in
(37) is

xyz(p) = if labxyz(p) = 1 -+ S'>1 (xyz(r(p, 1», xyz(r(p,2»)

Ilabxyz(p) = 2 -+ S'>2(xyz(r(p,3», xyz(r(p,4»)

Ilabxyz(p) = 3 -+ S'>3(xyz(r(p,5», xyz(r(p,6») fi

The definition of xyz is split into three cases, each corresponding to one
equation of (37). Then

xyz«l,O» = eo, xyz«2,O» = vo, xyz«3,O» = (0 ---+

xyz<t,q», t=1 .. 3, q=l .. N
(40)

is the input/output specification. In order to retain the full set of computed

values, we let c=O and k=N in the algorithm in Fig. 6.

5.2. Example: embedding in higher-dimensional domain. To illustrate

the flexibility of these approaches, we will define a diagonal c20mputation in a

two-dimensional domain W (see Fig. 8). The computational aspects are defined

by the F-modules F1 and F2

F-module F1 (ii, i2: integer)-

global W: array[*, *] of <type>
template W[il-1,i2-1], W[i1+1,i2-1] ---+ W[il,i2] (41)
procedure W[i1,i2] := 71(W[i1-1,i2-1], W[i1+1,i2-1])

end

438 Modular programming of recurrences

~X (il,i2)

~""."""
~ @~ • •

(il -1,i2 -1) (il + l,i2 -1)

(iI - 2, i2) (iI, i2) .. ~
•

(h - 1, i2 - 1)

-2 -1 0 1 2 3 N

Fig. 8. Three mutually dependent two-dimensional order 2 recurrences

as defined by F-modules F1 (41) (used twice) and F2 (42). The

structural similarity with the recurrence (37) as depicted in Fig. 7

is obvious: think of the upper diagonal as x, the intermediate one

as y and the lower one as z, and check the labeling of the arcs.

F-module F2 (ii, i2: integer) ==
global W: array[*, *] of <type>

template W [ii-i. i2-i]. W [il-2. i2] --. W [il. i2] (42)

procedure W[i1.i2] := 12(W[i1-1.i2-i], W[i1-2.i2])

end

Where Fi is to be used twice in order to define the diagonals marked x

and y. Due to the structural similarity with (37), we may use the S-module

53 (38) as the driver, giving the application FDIAG = 53!-=(Fl.Fi,F2). The
substitution needed is

s = [{xU:
';y (.) :

';Z (.) :

x[.] 1-+ W[· -2, . +2};

y[.] 1-+ W[. -1,· +1];

z[·] W[. ,.];

V. Cyras and M. Haveraaen

Tq,l('): <1>1(·)~Fl(.-2,·+2);

Tq,2(-): <1>2(.)~Fl(·-1,·+1);

TiJ>3('): <1>3(·) ~ F2(-, .)]

Writing the result of the application out in full we get the F-module

F·module FDIAG (N: integer) ==

global to!: array [*, * 1 of < type>

template W[-2,2], W[-l,l], W[O,O] --+

(W[t-2,t+2], t=l .. N), (W[t-l,t+l], t=l .. N),

(W[t,t], t=1. .N)

439

procedure (43)
var q: integer;
for q : = 1 to N do

begin call F2(q,q); call F1(q-l,q+l); call F1(q-2,q+2) end

end

We now need to show that the substitution:=: is safe, and this follows since

each formal array is mapped to a different diagonal of W.

Let us provide more detail for the requirement that S3 was applied to Fl

and F2 correctly, specifically that the templates of F1 and F2 match the internal

templates S3, (38). We have to prove that the mapping ~ =< ';x,';y,';z > maps

x, y and z nodes to W nodes preserving the isomorphism between the internal

templates <1>1, <1>2, and <1>3 and templates of Fl and F2. Formally, we have to

prove that for q = 1, ... , N, the mapping'; maps

• the internal template <1>l(q) to the template of Fl(TiJ> 1 (q)), and

• the internal template <1>2(q) to the template of F1(TiJ>2(q)), and

• the internal template <1>3(q) to the template of F2(TiJ>3(q)).

For short we demonstrate only the last one, i.e., the matching to <1>3. Let us

take the internal template <1>3 from (38) and map it. The mapping is treated as

the substitution

internal-template <1>(q) == z [q-l] ,

';Z 1
W[q-l,q-l], ,

y [q-l]

';y 1
W[q-2,q]

v

II

z[q]

';Z 1
W[q,q]

template F2 with il=q and i2=q

,

440 Modular programming of recurrences

And the last term is exactly F2(Ti1>3(q». Q. e. d.
In the constructive recursive solution we need to define a reindexing of (39)

into the indices of the array W, the array where the computation should be

embedded, as shown in Fig. 8. This is given by ind1 : P --.,. {-2, -1,0, ... }
and ind2 : P --+ {O, 1, ... }.

ind 1(<t , q» = q - 3 + t,
ind2 (<t , q» = q + 3 - t,

and the function f1f2 on the graph corresponding to F1 and F2 (definitions

(41) and (42» is simply

f1f2(p)=ifcanR(p,1) &: canR(p,2)--""1(f1f2(r(p,1»,

fif2(r(p,2»)

IcanR(p,3) &: canR(p,4) --""1(fif2(r(p,3»,

f1f2(r(p,4»)

IcanR(p,5) &: canR(p,6) --""2(f1f2(r(p,5»,

f1f2(r(p,6») fi

with input-output specification

f1f2(1,O) = eo, f1f2(2,O) = Va, f1f2(3,O) = (0---+

f1f2(t,q), t=1 .. 3, q=1 .. N

Note how we do the cases on the canR functions since xpoint etc. are not

defined in this view of the graph. The input/output sets relate to the points of

the dda, not of the embedding into w, thus the same sets of input/output points

is needed as in (40).

6. Summary. We have presented two approaches, structural blanks and

constructive recursion, and shown how they may be applied for the transcription

of generalized recurrence relations to computer programs.

The structural blanks approach extends a traditional imperative program

ming language with constructs for defining explicitly the dependency pattern of

a recurrence. The program to compute the recurrence is defined as a collection

of global arrays and several program components: one for each equation of the

recurrence (6), and a scheduler for the entire computation. These components

V. eyras and M. Haveraaen 441

may be reused, and especially the scheduler may be applied on many different

recurrence relations. Since the notation used is based on well known program

ming languages, it should be fairly easy to start using it for a practitioner in a

field where recurrences are used. In SB the time axis is explicit. This is because

a data dependency graph is explicitly represented in computer memory. This

explicit representation allows the usage of matrix mathematics in affine graph

transformations. The whole array representing the nodes of explicit data depen

dency graph is viewed as the output. The SB approach provides an architecture

of software packages in the numerically oriented domain.

The constructive recursive approach is a functional programming language

where the structure of the directed graph implicitly defined by a recursive ex

pression is made explicit. In most functional languages, such as Haskell and
Standard ML, the graph is a tree. Using memoization, nodes of this tree may be

merged, but the graph can only be traversed in the direction that the functional
expression defines it. In the CR approach the arcs can be traversed both in

this and in the opposite direction. The latter traversal scheme translates into an
efficient loop program to compute the recurrence. The graph may be defined

with an assignment of the nodes to the space-time of a parallel computer. The
result is then a data parallel program distributed on the processors of the par
allel computer. In para-functional progranuning (Hudak, 1991) it is possible

to schedule computations explicitly on a parallel computer, but the underlying
graph will be a tree as given by the standard semantics of the programming

language, preventing the efficiency obtained here.

Even though this presentation has focused on recurrence relations, the pro

gramming techniques presented are not restricted to recurrences in the classical

form (1). Most problems with a repetitive or recursive structure can be ex

pressed with the notation presented. Future work includes demonstrating these

techniques on a broader set of examples, defining the underlying mathematics

of the approaches, and building tools to facilitate the practical use of these

approaches.

REFERENCES

Chen, M., Y.Choo and J.Li (1991). Crystal: theory and pragmatics of generating effi

cient parallel code. In B.K. Szymanski (Ed.), Parallel Functional Languages and

442 Modular programming of recurrences

Compilers. pp. 255-308.

Cooley, J.W, and J.W.Tukey (1965). An algorithm for the machine computation of com

plex Fourier series. In Mathematics of Computation, Vol. 19. pp. 297-301.

Cyras (1983). Loop synthesis over data structures in program packages. In Computer

Programming, Vol. 7. Institute of Mathematics and Cybernetics, Vilnius. pp.
27--50 (in Russian).

Greshnev, S.N., E.z.Lyubimskii and V.A.Chiras (1985). Synthesis of programs on data
structures. Programming and Computer Software, 11(5), 282--291, 1986. Translated
from Programmirovanie (in Russian), No.5, 44--54, 1985.

Cyras, V. (1986). Loop program synthesis in the system that separates functional modules
from data structure traversing modules. Lietuvos Matematikos Rinkinys, 26(4), 636-
655 (in Russian).

Cyras, V. (1988). Loop program synthesis using array traversing modules. Forschungs
berichte Kiinstliche Intelligenz, Report FKl-93-·88, Technische UniversiUit Miinchen,
Institut fUr Informatik, 25 p. Also In S. Meldal and M. Haveraaen (Eds.), Pro
ceedings of the 4th Nordic Workshop on Program Correctness. Bergen, Norway.
University of Bergen, Reports in Informatics, No. 78, 1993, pp. 97-109.

Cyras, V., and M.Haveraaen (1994). Programming with data dependencies: a compar
ison of two approaches. In U.H. Engberg, K.G. Larsen and P.D. Mosses (Eds.),
Proceedings of the 6th Nordic Workshop on Programming Theory. Aarhus, Denmark.
BRICS Notes Series, NS-94-6, University of Aarhus, pp. 112-126.

Haveraaen, M. (1990). Distributing programs on different parallel architectures. In
Proc. of the 1990 International Conference on Parallel Processing, ICPP, Vol. II.
Software pp. 288-289.

Haveraaen, M. (1993). How to create parallel programs without knowing it. In S. Meldal
and M. Haveraaen (Eds.), Proceedings of the 4th Nordic Workshop on Program
Correctness. Bergen, Norway. University of Bergen, Reports in Informatics No. 78,
pp. 165-176.

Harf, M. (1994). Structural synthesis of programs using regular data structures. In
U.H. Engberg, K.G. Larsen and P.D. Mosses (Eds.), Proceedings of the 6th Nordic
Workshop on Programming Theory. Aarhus, Denmark. BRICS Notes Series, NS-
94-6, University of Aarhus, pp. 112-126.

Hudak, P. (1991). Para-functional Programming in Haskell. In B.K. Szymanski (Ed.),

Parallel Functional Languages and Compilers. Addison Wesley, New York. pp.
159-196.

Karp, R.M., R.E.Miller, S.Winograd (1967). The organization of computations for uni
form recurrence equations. Journal of the ACM, 14(3), 563-590.

Lapidus, L., and G.F.Pinder (1982). Numerical Solution of Partial Differential Equations
in Science and Engineering. John Wiley, New York. 677 pp.

Lundevik, R. (1994). Translation from Standard ML to Sapphire. Thesis, Department
of Informatics, University of Bergen, Norway. 104 pp. (in Norwegian).

V. Cyras and M. Haveraaen 443

Lyubimskii, E.Z. (1960). Issues of automatic programming. Vestnik Akademii Nauk SSSR,
8, 47-55 (in Russian).

TUcker, J.v., and J.I. Zucker (1988). Program Correctness over Abstract Data Types,
with Error-State Semantics. North-Holland, Amsterdam, 212 pp.

Tyugu, E. (1987). Knowledge-Based Programming. TUring Institute with Addison
Wesley, Wokingham.

Zadykhailo, I.B. (1963). The organization of a cyclical computing process using a para

metric representation of special form. U.S.S.R. Computational Mathematics and

Mathematical Physics, 3(2), 442-468. Translated from Zhurnal vychislitel'noi
matematiki i matematicheskoi fiziki, 3(2), 337-357 (in Russian).

Received November 1995

V. Cyras is a senior lecturer in computer science at the Vilnius University
and a researcher at the Institute of Mathematics and Informatics, Vilnius. In

1979 he graduated from the Vilnius University, In 1985 he received the Degree

of Doctor of sciences of physics and mathematics from the M.V. Lomonosov

Moscow State University. Current research interests include theoretical com

puter science and loop program synthesis.

M. Haveraaen is a lecturer and researcher at the University of Bergen, Nor

way. In 1983 he obtained the Degree of Doctor at the University of Bergen.

Current research interests include theoretical and practical programming, spec

ification and modularization of programs.

444 Modular programming of recurrences

MODULINIS REKURENTINIQ SANTYKIQ PROGRAMA VIMAS:
DVIEJQ POZIURIQ PALYGINlMAS

Vytautas CYRAS, Magne HAVERAAEN

Pristatomi ir palyginami du po~iuriai i programas, operuojanl:ias rekurentiniais san
tykiais. Tyrimo objektas yra programtt modulitt neprocedurinis aprasymas. Siiilomi for

malus aparatai programtt specifikacijtt pavaizdavimui. StruktUrizuot/{ paruos/{ metodas
akcentuoja ciklinitt programtt daugkartinio panaudojimo galimybf<. Siiiloma programtt
pakettt architektura skail:iavimo matematikos probleminems sritims. Konstruktyviosios

rekursijos metodas grind~iamas rekursyvitt santykitt grafe formalizavimu.

