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Abstract. The exact solution of the reliability of structures under stochastic loading 
is generally difficult, and various approximate methods have been developed. The most 
popular are the linearization method, the Monte-Carlo method and its numerous vari­
ants. In this paper new modification of the Monte-Carlo method based on asymptotical 
expansion is examined. Results of mathematical simulation are given. 
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1. Introduction. In structural systems problems of calculation of probabili­

ties of rare occurrence appeare. Let X = (Xl, ... , X m) is the vector of random 

variables with a known distribution and G(x) is the known function of m vari­

ables. This paper deals with the calculation of probabilities p = P{ G(X) ~ O} 
using random mathematical simulation when the probability p is small and 

random vector X is Gaussian. This problem often occurres in the design of 

buildings where most of the factors of structures are described by Gaussian 

models. 

In solution of this problem main attention ussually is turned to the lineariza­

tion method (see, for example, the review paper Schueller and Stix, 1987). This 

method is based on Taylor series expansion of the function G(x) around the 

closest to the origin point of the domain {G( x) ~ O}. In this way an analitical 

approximation of the probability p is given. The solution of the linearization 

method ussually has systemic error, depending on curvature of surface. The 

Monte-Carlo method has any systemic error, but practically in the estimation 

of small probabilities certain difficulties appeare. Therefore numerous modified 

variants of the Monte-Carlo method have been proposed (for example, Melch­

ers, 1990). In present paper the method combinating Taylor series expansion 
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with the Monte-Carlo method is suggested. Apparently, this idea wasn't adapted 

widely before. This tnethod yields generally lower error than the linearization 

method and, on the other hand, it demands lower random samples than usual 

the Monte-Carlo method. The details are given below. 

Let Xl, ... , X m are Gaussian, standard and independent components. Then 

the probability of structural failure may be defined by 

p = J IPm(x)dx~rpw, 
w 

(1) 

where IPm(x) = (27r)m/2 exp { - /lx112 /2} is the Gaussian probability density 

function, 11 x 11 - Euclidean norm, W {x: G ( x) ~ O} - the failure domain in 
Rm. 

In this direct way finding p it is necessary to calculate m-dimensional in­

tegral. If the number of m is large it requires considerable computer time. 

For many years the random mathematical simulation, called the Monte-Carlo 
method, has been used to calculate multidimensional integrals. The samples of 

independent, random vector X were generated and the statistical estimate p of 

probability p was calculated as the empirical probability of the event {X E W}: 

N 
~ 1 '"'I def ~ 
p = N L.J {X(j)e W } = PW· 

j=l 

(2) 

It is known that the variance of a relative error 1-PiP is equal to the quantity 

1Nl ~ l/Np. Therefore, a large amount of generated random samples, 

N > > 1/ p, is required to give a small relative error. When probability p is 

small, the fulfillment of this condition requires a lot of computer time, and 

sometimes it cannot be realized through the limited possibilities of the random 

number generator. For example, if p = 0.0001, m = 10, it is necessary to 

generate 1 million independent random values to fulfill the condition N > 
O.I/p. It is known that random number generators can to ensure only limited 

quantity of independent random values. 

One possible solution is based on the generation the random vectors Y ( i) 
with probability density function fy (x) including values from the domain A, 
what is a part of the space Rm. If conditions 

A:::>W, (3) 
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fy(x) = SOm(x) , X C A, 
PA 

PA = J SOm(x)dX, 
A 

315 

(4) 

N 
are fulfilled, then the statistical estimate p* = Pff E l{Y(j)Ew} has no bias 

j=l 

(Ep* = p) and the variance of this relative error is equal to PA (l-p/PA)/(N p), 
that is about PAl times less than in case (2). Therefore, PAl times less of gen­

erated values are needed to give the same precision. This method is valid prac­

tically in the case when the random vector Y, whose distribution is completely 

described in the domain A, can be constructively expressed by standard random 
values given using the random number generator. Sometimes the requirement 

(3) should be refused to ensure a comfortable calculation of the random vectors 

Y(l), ... , Y(N). In this case the systematic error 

P- Ep* = J SOm(x)dx 
W\A 

(5) 

is found. Therefore, choosing A it is necessary to try to get the systematic 

error lesser than the desirable precision. On the other hand, if the domain A 
increases, P A grows too and more random vectors Y (i) should be generated. 

Next, the specific algorithm, when domain A is a part of the space Rm bounded 

by hyperplane will be described. This idea is related to the linearization method 

available for calculation of failure probabilities of structures. 

2. Algorithm of evaluation. Firstly we will turn the attention to one evident 

inequality. Denote a = arg min Ilxll. Therefore, a is the point of the domain 
xEW 

W, which is the closest to the origin. Inequality 

<Pm(x) :s;; SOm(a) exp {-llall' (1Ixll-llalln, x E W (6) 

is valid, i.e., the density function decreases exponentially when distance from 

the origin increases. Therefore for a such functions G, which have distinctly 

expressed the closest point a, it is enough for estimation of P to integrate around 

the point a. The linearization method is based on this idea. If a function G is 
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unifonnly differentiable around the point a, then Taylor series expansion of the 

function G( x) around this point a can be described by 

G(x) = G(a) + G'(a)(x - a) + o(lIx - aiD. 

Here G'(a) = (ogJ;), ... , °ffrt»). x· y is scalar product. 

Because of G(a) = 0, 

p =P{G(X) ~ O} ~ P{G'(a). (X - a) ~ O} 

=P{a·X ~ lIall 2 } = 1- ~(lIall), (7) 

~(. ) is standardised Gaussian distribution function. Here the property that the 

direction of a gradient in the closest to the origin point a of domain W coincides 

with direction of the point a, is used. The situation is shown in Fig. 1. 

Fig. 1. Schematic sketch of two-variable system. 

The tangential hyperplane L is denoted by equality 

The estimation p = 1 - ~(lIall) is obtained by the linearization method. 

When N value is enough large, the error given by the Monte-Carlo method 

will be lower than the error given by the linearization method. 
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Let A = {X: X· a ~ lIaI1 2}. Fig. 1 illustrates the case of such function G, 
when A :J W. In this case, when random vectors Y (i) with the distribution 

density function (4) is generated, probability p can be estimated as precise as 

it is necessary, because here is no systemic error. 

Now the algorithm of generation Y will be discussed. Let m x m matrix Q 

is orthogonal, i.e., Q. QT is unit matrix and its elements Qmi = adllall. Let 

X· = QX. Then Xi is independent standard normal variables, in addition 

X - X:;' a is the projection of vector X to plane L, and the vector X:;' a is the 

projection of X to the direction of the vector a. Let V is the random variable 

with distribution density function 

where IPl(V) = i:Re-v2/2. 

if v ~ lIall, 
otherwise, (8) 

The random vector Y has the distribution (4) in the case when equality 

Y = Q-1y. is satisfied, where Y· = (Xi, ... , X:;'_l, V). The sample of 
Y (t), t = 1, 2, ... ,N is generated in such way: standard normal components 
Xi(t), ... , X:;'_l (t) are obtained using the random number generator, and V(t) 
is obtained from equality 

1- cl> (V(t)) = 1- e(t), t = 1, ... , N, 
PA 

(9) 

where e(t) - independent random values, distributed uniformly in the interval 
(0,1). 

In the case of such function G when expression (3) is not valid, this metbod 

of estimation, how it was mentioned, will give the systemic error, indicated in 

(4), that will be less than the bias 1 - cl>(lIall) - p given by the linearization 
method. It can be decreased, defining the domain A by equality 

(10) 

where 0: < 1. 
When the coefficient 0: is choosed less, the bias is lower, but variance of 

error is increasing, because in this case 

PA = 1 - cl> (o:lIall)· (11) 
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Fig. 2. Situation with bias. Here La = {x: xa = al/aI/ 2}. 

The figure 2 illustrates the situation with a bias. 

3. Generalization of method. Briefly we will outline the main ideas of 

Section 2 and will review possible generalizations. The method described earlier 

can be divided into these four parts. 

3.1. The estimation with a possible bias to reduce variance. Probability P 

can be expanded 

P = PI + P2, PI = P{X E WA}, 

where A is chosen as the domain of simple structure. Probability PI is es­

timated without bias and is accepted P2 = O. In this way the bias is equal 

P2, and estimation of PI is constructed with lower variance than the empirical 

probability P in Eq. 2. 

3.2. The switch to new orthononnal coordinate system using the nearest 

point a of the domain W. 

x* = Qx, 

where Q is orthogonal matrix, Qmi = ai/I/all, i = 1, ... ,m. Let d = m - 1. 
Then x:;' describes the projection of the vector x to the direction of the vector 

a, and Xl> .•. , Xd describe the projection of x to the tangential hyperplane of 

the curve O(x) = 0, what is drawn through the point a. 
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For every A C IRm we will denote A* = QA. 
3.3. The approximating domain is constructed based on Taylor series ex­

pansion of the function G( x) around the point a. 

It is very important to approximate the domain W around the point a as 

precise as possible, because max<pm(x) = <Pm(a). If instead G(x) the first 
xEW 

member of its Taylor series would be taken 

GI(x) = G(a) + G'(a)(x - a) = G'(a)(x - a), because G(a) = 0, (12) 

then corresponding to the W approximation WI = {x: GI(x) ~ o} would be 
described by equality 

W; = {x* : x:n ~ lIall} . 

Therefore the simplest way is to describe the domain A by equality 

(13) 

where the parameter a ~ 1 is introduced fOr the decreasion of P2 bias size. 

3.4. The definition of estimate using conditional probabilities. If X E 

N(O, Jm ), X* = QX, and Q is orthogonal matrix, then X* E N(O, Jm ), 

too, where Jm is the unit matrix m x m. We have PI = P{X* E W* IX* E 

A"}·P{X* E A*} andP{X* EA"} = l-~(allaID. DenoteZ = (Xi, .. . ,Xd). 
Then the random vector Y can be defined by 

Y* = (Z, V), (14) 

where V is the random value, independent from Z, with distribution density 

<PI (v) 
fv(v) = ~ (1- allalD .1{vEAo}. 

Then P{X" E WoO IX" EA} = P{y* E WoO} = P(Y E W) and 

PI = P{Y E W}· (1- ~ (allall)). 

(15) 

(16) 

In this way random vectors y* (t), t = 1, ... , N are generated and the estimate 

fi is defined by equality 

1 N . 
fi= N L l{G(Y(t))~O}· (1- ~ (allaID), 

t=1 

(17) 
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where Yet) = Q-l Y*(t). 
We will outline natural generalization of the items 3 and 4. To define 

more precesily the approximation of the domain W, it is possible to use more 

members of Taylor ~es expansion: 
r 

Gl(x) = G(a) + L;aCk)(a)(x - a)k /k! (lla) 
k=l 

Here termS GCk)(a)(x - a)k are understood as polynomial forins corresponding 

to the k-th derivative. From (11a) and from the definition of the domain Wi = 
QWlo where Wl = {x: Gl(x) ~ O} follows that 

Wi = {x*: Pz(x~) ~ 0, z = (xi, ... ,x:;)}, 
u 

Pz(u) = LCk(Z)Uk and coefficients Ck(Z) 
k=O 

are defined by ~vatives GCk)(a), k = 1, ... ,r, z = (xi, ... ,x:n and by 
_ waor a. To increase the bias, it is possible to describe the domain A by 

equality 

A* = {x* : x~ E B(z)}, (13a) 

where B(z) = {u: Pz(u) + 9z(u) ~ O}, 9z(u) is some selected non­
negative function. Then the algorithm of random samples generation and for 

counting of p, described in item 4, can be generalized in the following way. 

Y is defined by Eq. 13, but V is optionally independent from Z. The 

conditional distribution density Iv(vlZ = z) of random value V under the 

condition Z = z satisfies the equality 

IPl (v) 
Iv (viZ = z) = cl) (B(z»: l{vEBCz)}, (15a) 

where cl)(B) = J IPl(u)du. 
B 

The equalities (16) and (17) change in the next equalities (16a) and (17a): 

Pl = f P{X E WIZ=z}·IPd(z)dz 
RA 

= f P {y E WIZ = z} . cl) (B(z» . IPd(z)dz 

=E [l{GCY)~O}' cl) (B(Z»] , (16a) 
1 N 

Pl = N L l{GCYCt)~o)}" cl) (B (Z(t»). (17a) 
t=l 



Table 1. Estimation of the failure probabilities p and time of calculation T using different techniques 

Di- Safe- Theo- Linearization ~ formula (4) Monte-Carlo method 
men- ty retical method umber of samples N=1000 N - number of samples 

. sion index Time Tin s Time Tin s Time T is in hours 

~ ~ po 95% confidence T N=10 4 N=105 n p p p T 
(8) interval (8) 

~ ~ 

p T p 

2 3 0.000914 0.00135 3 0.000909 [0.864; 0.954] E-3 17 0.0004 0.05 0.00037 
2 2 0.0166 0.02275 3 0.0166 [0.161; 0.171] E-l 17 0.0179 0.05 0.0178 
4. 3 0.000403 0.00135 4 0.0004 [0.368; 0.432] E-3 32 - 0.08 -
4 2 0.00847 0.02275 4 0.00838 [0.779; 0.897) E-2 32 0.0065 0.08 0.0065 
6 3 0.000169 0.00135 6 0.000177 [0.146; 0.208] E-3 51 - 0.12 0.00001 
6 2 0.00406 0.02275 6 0.00425 [0.361; 0.489] E-2 51 . 0.003 0.12 0.00324 
8 3 0.000669 0.0135 8 0.0000671 [0.501; 0.841] E-4 70 - 0.15 0.00001 
8 2 0.00183 0.02275 8 0.00182 [0.152; 0.213] E-2 70 0.002 0.15 0.00026 

------------ L-________ ---

- denotes that there were no values; the estimation of p was given from 10 samples. 

T 

0.33 
0.33 
0.67 i 

0.67 
0.92 
0.92 
1.12 I 

1.12 

;0::: 

~ 
§: 
~. ... 

~ 
N ... 
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Particular algorithms and results of mathematical simulation in the case 

when r = 2 in the first equality will be discussed in the next article. 

4. Numerical example. In this example three methods for calculation of 

failure probabilities - such as usual Monte-Carlo method, the linearization 

method and the method, described by Eq. 4 - are compared in light of their 

accuracy and efficiency. To have the possibility to compare these methods, the 

hypersphere 
m 

z = 2)Xi - a)2 - b2 = 0 
i=1 

was taken as function G(X) with X1,X2, ... ,Xm being standard Gaussian 

and m = 2,4,6,8. 
The data in Table 1 confinn the advantages of technique, defined by formula 

(1). Of course, these results are depended on the shape of failure surface. The 

precision of the solution given by the linearization method depend on number 

of variables of G (x), and the Monte-Carlo method requires a lot of computer 

time. 
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Maiq tikimybiq vertinimas struktiirose 

Vitalija RUDZKIENE 

Skai<::iuojant statybinill konstrukcijl.l patikimumll, naudojami jvairiis aproksimaciniai 

metodai. Populiariausi yra linearizacijos ir Monte-Karlo metodai bei jl.l modifikuoti 
variantai. Straipsnyje nagrinejama nauja Monte-Karlo metodo modifikacija, kuri remiasi 
asimptotiniais skleidiniais. Pateikiami matematinio modeliavimo rezultatai. 


