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Abstract. We compare two alternative ways to use the Bayesian approach in heuris­
tic optimization. The "no-learning" way means that we optimize the randomization 
parameters for each problem separately. The "learning" way means that we optimize 
the randomization parameters for some "learning" set of problems. We use those pa­
rameters later on for a family of related problems. 

We define the learning efficiency as a non-uniformity of optimal parameters while 
solving a set of randomly generated problems. We show that for flow-shop problems the 
non-uniformity of optimal parameters is significant. It means that the Bayesian learning 
is efficient in those problems. 
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1. Introduction. We consider the average deviation as a criteqon when 

designing numerical techniques and algorithms (Mockus, 1989). We call that a 

Bayesian approach (J. Mockus and L. Mockus, 1991). 

We apply the Bayesian approach in a non-traditional way. Namely we 

define an a priori distribution on a set of randomized heuristic decision rules 

(A. Mockus, J. Mockus and L. Mockus, 1995). 

We optimize the randomization parameters by multiple application of ran­

domized heuristics. We may optimize those parameters for each problem sep­

arately. Alternatively we may optimize the randomization parameters only for 

some "learning" set of problems. We may use the "learned" parameters later 

on without any additional optimization. 
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The question is will the learning help? We try to get the answer by Monte 

Carlo simulation of a set of flow-shop problems using randomized heuristics. 

We generate 100 flow-shop problems with 10 tasks and 10 tools each 

(Biegler et al., 1988). We choose the operation durations uniformly on a set of 

integers from 0 to 99. We optimize the parameters for each problem. 

We regard learning as irrelevant, if the density of optimal values of parame­

ters is uniform. Therefore we define the "non-uniformity" of optimal parameters 

as a measure of learning efficiency. We show that in the flow-shop problems 

the non-uniformities are significant. 

2. Flow-shop problem 

2.1. Definition. Denote by Tj,. the duration of operation (j, s), where j E J 
denotes a job and s E S denotes a tool. We denote by J and S the set of jobs 

and tools, respectively. Assumption Tj,s = 0 means that operation (j, s) is 
irrelevant. 

Suppose that the sequence of tools s is fixed for each job j. One tool can 
do only one task at a time. Several tools cannot do the same task at the same 
moment. 

The decision dj(j) E Dj means to start a j E Jj at the stage i. We define 
the set of feasible decisions Dj as the set 1; of tasks available at the stage i 
conforming to the flow-shop rules. 

The objective function is the make-span v. Denote by Tj (d) the time when 

we complete the task j (including the gaps between operations) using the de­

cision sequence d. Then the make-span for d is v(d) = maxjeJ Tj(d). 

2.2. Algorithm 

2.2.1. Permutation schedule. We can see that the number of feasible deci­

sions is very large. We can reduce this number considering only a small subset 

of schedules, so-called permutation schedules. 

The permutation schedule is a schedule with the same task order on all tools 

- a schedule that is completely characterized by a single permutation of task 

indices 1,2, ... , n. We assume the first operation to be on the first tool, the 

second - on the second, and so on. The expert opinion is that using permutation 
schedules we can approach the optimal decision well enough (Baker, 1974). 
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ISI 
Tj = E Tj,s, 

s=l 

where ISI stands for the number of tools. 

We call Tj the length of the task j. 

2.2.2. Heuristics. De~ne the heuristics by expression 

Here 

Ai = J;llin Tj, Ai = max Tj. 
JEJi jEJi 

Thus heuristics prefer longer tasks at each stage i. 
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(1) 

(2) 

In both cases we define the randomized decision function rj by expres­
sion (3). We optimize it by solving the stochastic optimization problem (2.2.4). 

2.2.3. Randomization. An ordinary polynomial may be a good represen­

tation if we prefer the probabilities Ti to be expressed as some monotonous 

functions of the heuristics hi' Here we use zero-one condition: 

where 

and 

N-1 

rf = rO(hi , x) = E ainxnhi(m), 
n=O 

N-1 

E Xn = 1, Xn ~ 0, n = 0, ... , N - 1, 
n=O 

1 
ain = Mi 

I: hi(m) 
m=l 

(3) 

(4) 

The number n in expression (3) may be regarded as the "degree of greed". 

The number n = 0 means no greed, because all feasible decisions are equally 

desirable. If the number of greed n is large, then we prefer the decisions with 

the best heuristics. Optimizing x we define degrees of greed such that provide 

the most efficient randomized decision procedure. 
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2.2.4. Parameter optimization. We denote by !K (x) the best value of 

the objective function obtained after K repetitions of the randomized decision 

procedure r( x) for a fixed x. We defined the randomized decision procedure 

so that 

lim fK(X) = v, for any fixed x. 
K-oo 

(5) 

It means that all the values of parameters x are "good" asymptotically. However 

the right choice of x could be very important if the number of repetitions K is 

not large. 

Thus we get the following continuous problem of stochastic programming 

where 

minfK(x), 
:r: 

x = (xo, ... , XN-l), 

N-l 

L Xn = 1, 
n=O 

Xi ~ 0, n = 0, ... , N - 1. 

(6) 

This way we reduced, in the described sense, the flow-shop problem to the 

problem of continuous stochastic optimization (2.2.4). 

2.3. Results 

2.3.1. No-learning mode. Table 1 shows the results of the Bayesian method 

after 100 iterations using heuristic (1) and different randomization procedures. 

The number of tasks J, of tools S, and of operations 0 each of them is equal to 

10. We define the lengths and the sequences of operations generating random 

numbers unifonnly from 0 to 99. We estimate the expectations and the standard 

deviations for each type of randomization using the results of 40 optimization 

of the same randomly generated problem. 

Table 1. The results of Bayesian methods using heuristics (1) 

R = 100, K = 1, J = 10, S = 10, and 0 = 10 

Randomization 

Taylor 3 
CPLEX 

fB 

6.173 
12.234 

0.083 
0.00 

0.304 0.276 0.420 
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In Table 1 the symbol lE denotes the mean, and dE denotes the standard 
deviation of span. "Taylor 3" denotes randomization (3) with the number of 

terms N = 3, and "CPLEX" denotes the results of the well known general 

discrete optimization software after 2000 iterations (one CPLEX iteration is 

comparable with one Bayesian observation). The bad results of CPLEX show 

that the standard MILP technique is not efficient solving a specific problem of 

discrete optimization. It is not yet clear how much one may improve the results 

using specifically tailored brllIlch-and-bounds techniques. We have some doubts 
about that. 

2.3.2. Learning mode. We define the lengths and the sequences of oper­

ations generating random numbers uniformly from 0 to 99. We generate 100 

different problems. We optimize randomization parameters of each problem 
separately by Bayesian techniques. The first three figures show the density of 

optimal parameters. 

Fig. 1 shows the density Of the first parameter pair (Xl, X2). 

Fig. 2 shows the density of the second pair (Xl, X3), and Fig. 3 shows the 

density of the third pair (X2, X3). 

The last three figures show the objective as a function of the first pair of 

parameters (Xl, X2) for three different samples of the flow-shop problem. 

We smoothed all the density functions and objectives to improve the visu­
alization. For the densities (see the first three figures) we used the following 

smoothed function: 

T(x) = IIN L: e-Cklxi-xl. 

i=l,N 

We smoothed the objectives (see the last three figures) this way: 

Here T ( x) denotes the smoothed optimal parameter density, F ( x) denotes 

the smoothed objective, N is number of points, and Cl = C2 = C3 = 15, C4 = 
22, C5 = 18, C6 = 22 are smoothing parameters. 
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Fig. I. Density of optimal parameters Xl, X2' 
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Fig. 2. Density of optimal parameters Xl, X3. 
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Fig. 3. Density of optimal parameters Z2, X3' 
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Fig. 4. The objective of the I-st sample problem as a function of pa­

rameters Zl, Z2. 
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Fig. S. The objective of the 2-nd sample problem as a function of pa­

rameters Z'l, Z'2' 
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Fig. 6. The objective of the 3-d sample problem as a function of para­

meters Xl, Z'2' 
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BAJESO HEURISTIKQ ,,APSIMOKYMAS" 

SPRENDZIANT TVARKARASCIO PROBLEM1\ 

Jonas MOCKUS, Henrikas KURYLA 

Straipsnyje sulyginarni du bUdai naudojant Bajeso metodus heuristiniame optimiza­
vime. Budas "be apsimokymo" rei~kia, kad heuristiktt raddornizavimo parametrai op­
tirnizuojarni kiekvienai problemai atskirai. Budas "su apsimokymu" rei~kia, kad ~ie 
parametrai optirnizuojarni visai problemtt ~eimai. Atlikus serij'l skai~iavimtt, sprend~iant 
eil~ tvarkara~~io optirnizavimo problemtt, parodoma, kad Bajeso heuristiniai metodai 
gerai tinka naudojant "apsimokymo" bUd'l. 


