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Abstract. In the paper a general approach to identification 
of non-linear autoregression processes in the class of parametric and 
non-parametric mathematical models is formulated. With the help 
of mathematical simulation the estimates of the processes of this 
class are studied: a nuclear estimate, an estimate of least squares 
projective estimates. Some statistical properties of these estimates 
are indicated. 
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Introduction. Practical and theoretical investigations 
show that many real physical processes (mechanical, chem­
ical, thermbphysical, plasmochemical, economic, biological, 
etc.) are non-linear stochastic processes (NSP) - (Neimark 
and Landa, 1987; Tong, 1983). Up to now in the studies of 
stochastic processes (if time is the argument, then time se­
ries) on th~ whole there prevailed linear mathematical autore­
gression models or moving average autoregression. However, 
a more deep study and knowledge of the essence of physi-
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cal processes and phenomena indicate an essential shortage 
and boundedness in the application of linear models. Namely 
non-linear models may reveal interesting types of behaviour 
of physical processes and phenomena, such as: limit cycles, 
strange attractors, bifurcation, turbulence, etc. (Lichtenberg 
and Liberman, 1984; Neimark and Landa, 1987), which can be 
never revealed by means of linear models. Physical processes 
of the mentioned class may be sufficiently well described by a 
non-linear autoregression process with the help of the follow­
ing difference equation: 

(1) 

where t = 1,2, ... is a discrete physical argument, f(x) is an 
unknown function, {St, t = 1,2, ... } is a sequent of in de pen­
dent random variables. 

Let us note the case when St = 0, Vt, then expression (1) 
relates to irregular oscillations (consequently called random) 
in the determinated dynamic systems of different physical na­
ture which would promote a rapid development of this sphere 
of science. 

It is possible to solve the problem estimating the un­
known function f (x) of process (1) according to the data of 
the observation {Xt, t = 1, N} both by parametric and non­
parametric methods and the class of mathematical models of 
process (1) is rather diverse. 

The complexity of the estimation problem f(· ) of process 
(1) consists in the first place in the approximation of multi­
variate non-linear functions with their peculiarities: contin­
uous, discontinuous; in the second place the process {Xd is 
a dynamic process, i.e. the argument values of the function 
f(· ) are random variables and the distribution of this argu­
ment {Xt - 1 , . .. , X t - n } depends on the estimated function f; 
in the third place for n > 2 the obviousness of presentation 
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of the function f is lost. Therefore in order to identify (an­
alyze) the processes of type (1), we develop a complex ap­
proach: a non-parametric (nuclear), a parametric (projective) 
or their combination, i.e. a combined method. Its essence 
is in the following. In the statistical analysis of experimental 
data the estimate of the function f (. ) is constructed by a non­
parametric (nuclear) method. After studying the peculiarities 
of the obtained estimate f(· ), an adequate parametric model 
is selected and the estimate of the function f (. ) is calculated, 
e.g. of projective type. An important problem is the compari­
son of efficiency of the methods and algorithms applied in the 
sense of exactness of estimation of f(·) and (high speed of) 
algorithms on a computer. 

Main suppositions 
Let 

lit = (Xt - 1 , ... ,Xt - n ) + Ct· (2) 

While studying statistical properties of estimates [(lit) of 
the function f(lIt) of the non-linear stochastic process of type 
(1), we shall consider that following conditions are fulfilled. 

1. The sequence of the white noise {Ct, t = 1,2, ... } has 
a zero value and finite dispersion, i.e. 

where E is the symbol of mathematical expectation, D is the 
dispersion symbol. 

2. Function f satisfies the inequality 

where f(O) = 0, a:l + ... +a:n = a: < 1. Let us note that in this 
case processes (1) are stable (see, Baltrunas and Rudzkiene, 
1984) and the strong intermixing function p( T) of process 
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(1) decreases with an exponential speed (see, Baltrunas and 
Rudzkiene, 1986): 

p(r) = sup IP(AB) - P(A)P(B)I ~ ci-6r , (5) 
AEF!!.oo,BEFp 

where c and 8 are positive constants, while by F! 8-algebras 
are denoted which are generated by the random variables 
{Xt,a ~ t ~ b}. 

Formulation of the problem. By observations {Xt, 
t = 1, N} of process (1) in the domain x E Wit is necessary 
to estimate the function f(· ). 

Let us consider the most widely spread methods of get­
ting the estimates of the function f(· ) and some their statisti­
cal properties and also formulate a more general approach to 
process identification of type (1). 

1. Nuclear estimate (NE) 

N N 

i(x) = LXtK(lIvt - xii) / L K(IIVt - xII), (6) 
t=l t=l 

where IIzll2 = zi + ... + z~, K(·) = K N(' ). 
Usually kernel K(· ) is defined by the equality K(x) 

= 'iJ!(x/h), where 'iJ!(. ) is an even" positive independent on N 
function, called the kernel form, h = h(N). 

Let estimating shortages be defined by the equality 

E j[f(x) -1(x)]2dx 6 D?(j, J). (7) 

w 

From the results of Collomb (1981) it follows that if there 
exists the second derivative f" and h .:;:( N- 1 /(4+n) then 

~ , 
!}.2(j,j) = O(N-4/(4+n») for N -+ 00. 
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2. Projective estimates 

2.1. Projective estimate 1(PE1}. Let' {ek(x)}~1 
be some orthononnalized base in the space L2(W), Then the 
expanSIOn 

holds, where 

f(x) = LCkek(X), x E W, 
I' 

Ck = J ek(x)f(x)dx. 
W 

(8) 

For n = 1, W = [-:-1, 1] the estimate f( x) is defined by 
the equality 

m 

l(x) = LCkek(X), (9) 
k=1 

where m = m(N), 

N 

Ck = LXtek(Vi)· (bt - at)·l{VtEW}, 

t=1 (10) 
at = inf[x : -1 ~ x, (2x - Vi, Vi) n {VI, ... , V N} = 0], 

bt = sup[x: x ~ 1,(Vi,2x - Vi) n {VI"'" V N} = 0]. 

Baltrunas and Rudzkiene (1987) have studied asymptotic 
properties of the estimates of shape (9). It is shown that 

(11) 

Consequently, for a sufficient smoothness of the function 
f and the corresponding choice of m(N) for the estimates of 
shape (9), it is possible to obtain a better rate of convergence 
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in comparison with nuclear estimates (6). E.g. if Ck = O( e- k ) 

for k ~ 00, then for m = InN we get 

L:':l.2 (j, 1) = O(ln N / N) for estimates (9) 

and 

for the nuclear estimate. 

Estimates of shape (9) are generalized for the case 
n > 1, however the algorithms for calculating the estimate 
f(· ) become more complicated, therefore it is desirable to con­
sider another projective method, according to which the esti..: 
mates of the function f(· ) are calculated considerably simply 
and for n > 1. 

2.2. Projective estimate II (PE2). Let Pxv,Pv 
be distribution densities of the random vectors (Xt, Vi), Vi, 
respectively. Since f(x) = E(XtIVi = x), having denoted 

00 

g(x) = J zpxv(z,x) dz we have 
-00 

f(x) = g(x)/pv(x). (12) 

Suppose that the expansions take place 

g(x) = Lakek(x), pv(x) = Lbkek(X), (13) 
k k 

where 
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Let us define the estimate offunction f(x) by the equality 

ml m2 

j(x) =g(x)/pv(x) = Laiei(x)/Lbjejer), (14) 
i=l j=l 

where 

1 N 
bj = N L ejCVi)·l{vt EW}· 

t=l 

According to (14) g( x) and pv( x) are simple pro jecti ve 
estimates of the functions 9 and Pv. Chencov (1962) has pro­
posed a projective method for the estimation of distribution 
density. It is known that for smooth densities this method 
of estimation gives good results (Doukhan, 1986; Chencov, 
1962). Some results concerning the investigation of the prop­
erties of estimates g, PV in the case, when as base func­
tions ek(x) Hermit's polynomials are used, given by Doukhan 
(1986). 

Note that estimate (14) may strongly differ from f(x) in 
the case, when values p( x) are close to zero. This has been 
also proved by the experimental investigation of estimate (14), 
carried out by the authors of the paper. In this connection we 
have performed the simulation by a computer not of estimate 
(14) but of its modified variant 

j(x) = g(x)/[Pv(x) + ii + ;9VN*], (15) 

where ii = max (-0:; 0), 0: = min pv( u), u E tV, ;9' = 
= maxfJv( u), N* is a number of points Vt , occurring in the 

uEW 
interval W. 

2.3. Estimate of least squares (ELS). For relatively 
small values of the variable m it is possible to modify estimates 
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(9) or (14), replacing the estimates of coefficients Ck, defined 
by formula (10), by the estimates, obtained with the help of 
the least square method. ELS is defined by the formula 

m 

f(x) = LCkek(X), (16) 
k=1 

while the coefficients ck( k = 1, m) are calculated according to 
the expression 

M m 

(cr, .. ·, c~J = arg { Cl~~~m L [Xt - L Ckek(Vi)] 2}. (17) 
t=1 k=1 

In the conclusion of this section some words can be said 
concerning spline estimates. These estimates become rather 
popular; especially in regression problems. Though their prop­
erties in connection with the estimation of the fmiction f(· ) 
of process (1) in this paper are not studied, we shall present 
the main idea for the construction of such estimates. 

The idea to construct spline estimates of the function 
f(· ) of process 0) consists in the partitioning of the domain 
W into non-intersecting subdomains Wl(l = 1, L), i.e. 

Then according to the partitioning on the domain W (18) 
for the realization {Xt, t = 1, N} of process (1), we shall write 
the following expression: 

(19) 

where (y), = (Xtll ... ,Xt.(I»), (c), = (Ctll ... ,Ct.(l»), f(V)1 = 
= (f(Yt 1 ),··., f(Yt.(l))), here by t l , ... , ts(l) denoted the in-
dices of elements of the set {Vn+b ... , V N}, belonging to the 
domain WI. 
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According to (19) the problem of estimating the function 
f(vt) by the realization {Xt, t = 1, N} of process (1) is trans­
formed tb the problem of estimating f(V)l in the subdomains 
{WI, 1 = 1, L} E W 

Problem (19) referres to the class of regressive problems, 
while estimation of f(· ) of process (1) in the shape of (19) 
is not a formal transformation. This is connected with the 
peculiarities of solution (19) and with the statistical properties 
of the estimates j(V)l (l = 1, E). 

According to expression (19) it is possible to define the 
estimate j(V)l in different ways: in the subdomains Wl(') 
(1 = 1, L) to approximate f(V)l by a multivariate polynomial, 
splines or the method of finite elements. 

Experimental methods. Mathematical simulation re­
alized in the given paper is applied to the studies of statistical 
properties of the above estimates of the function f for non­
linear autoregression process (1) for n E {1,2}, W = [-1, l]n, 
and also to the calculation of the efficiency of the considered 
estimation algorithms of f(x). In the capacity of f(x) the fol­
lowing functions were used: 

2 

JI(x) = I cos (7rx)l, h(x) = x/2 - 5xe- X , 

Js(x) = sign(x)'lxl l / 2 , f4(XI,X2) = cos 7r(Xl + X2), 

f5(XI, X2) = IXI + x21· (2 - IXI + x21)' l{jxl +x2j~2}' (-20) 

f6(XI,X2) = 0.6 sign (xI) +0.3 sign(x2)' 

In one-dimensional case (n = 1) for each of the func­
tions JI (x), i = 1, 3 all the four mentioned estimates were 
calculated for the sample size N E {100, 1000,5000, 10000}. 
In two-dimensional case (n = 2) for each of the functions 
fi(XI, X2), i = 4,6 three types of estimates were considered: 
NE, PE2, LSE for the s'ample size n E {500, 1000,5000, 10000}. 
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N ole that for the estimated functions h and their est i­
mate& ji it is rather difficult to calculate a theor~ical value 
b.2(j, J). In order to estimate the statistic b.2(j, J) for fixed 
parameters of the experiment, it has been repeated, 10 ti:rp.es 
by independent realizations {XiII), t = 1, N, v = 1,10} and 
the following values were calculated 

if n=l, 

(21) 
if n=2. 

10 
The value 82 110 L: b; was considered as an est i-

11=1 
mate b. 2 (.). Empirical dispersion of the estimates b;, i.e. 

10 2 
(12 = 110 L: [b~ - b2 ] was calculated, too. 

11=1 
Nuclear estimates were constructed with the kernel of 

type 

w(x) = {I-lxi, 
0, 

Ixl < 1, 
Ixl > 1 

(22) 

for different values of h. Projective estimates and the estimate 
of least squares were calculated for the number of coefficients 
of expansion (10) m = 2, 3, ... ,16 (in the case n = 1) and 
m = 2, 3, ... ,55 (in the case n = 2), where for PE2 m1 = 
m2 = m was accepted. In the capacity of the base functions 
e k (x) the orthonormalized Lagrange polynomials were used, 
while for the recurrent functions 11 and 14 the estimates were 
constructed with the base from trigonometrical functions. For 
the estimate h a smaller error was obtained on the base of 
ek(x) from Lagrange polynomials, while for h on the base 
from trigonometrical functions. 

Estimates PEl, PE2 and LSE are defined if the base 
ek(x) and number m are given. These estimates are rather 
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sensitive to the value m. In the paper the following method 
of the optimal selection of m by the sample {Xt, t = 1, N} is 
investigated. By the first half of the sample {Xt, t = 1, Nj2} 
for m = 2,3, ... the corresponding estimates i (Vi, Tn) are cal­
culated, further, in the second half of the sample {Xt, t = 

~ N 
= Nj2,N} for the obtained f(Vi,m) p2(m) = 'tv L: [Xt -

t=N/2 

-i(Vi,m)]2 are calculated, while m* is defined by the equal­
ity 

m* = arg{min p2(m)}. (23) 
m 

The variable m* was compared with the variable m, whe­
re by number m such a number m E {2, 3, ... } was denoted, 
for which the variable 8-2 is minimal. 

Results of investigation. Due to the limited volume 
of the paper one part of the results is presented here. 

One-dimensional case (n = 1). From the simulation 
results (Fig. 1, 2) it follows that the exactness of estimation 
of the functions of type h(x), i = 1,3, little depends on the 
type of the estimates and, naturally, it strongly depends on 
the length of the realization N. In short realizations (hundreds 
of discretes of N -order) for projective estimates and LSE the 
approximating polynomical optimal degree m oscillates from 
2 to 6, while for 10000 > N > 1000 the variable m, corre­
sponding to the minimum of the variable 8-2 , varies within 
the limits 6, 16. 

The way to define m* by formula (23) is reliable. Ac­
cording to the simulation results either m* = m or the value 
82 for m = m* little differs from the value 82 for m = m. 

Two-dimensional case (n = 2). From the simulation 
results (Fig. 3, 4) it follows that for all the cases under consid­
eration N E {500, 1000,5000, 10000} nuclear eS,timates have 
the best accuracy, characterized by the variable (j2 and the 
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Fig. 1. Dependence of the statistics {; for m = m on 
the length of the realization N for the functions: a) - hex), 
b) -hex), c) -hex). Functions approximated: 1 - LSE, 
2 - PEl, 3 - PE2, 4 - NE 
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Fig. 2. Dependence of approximation accuracy (values of 
the statistics {;2 for m = m) of process (1) on the length of re­
alization N for the functions: a) - f4(X}, X2), b)- f5(Xl, X2), 
c)- f6(Xl, X2). Functions approximated: 1 - LSE, 2 - PE2, 
3 - NE 
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Fig. 3. Shape of the function !4( Xl, X2) = cos 7r( Xl + 
+X2) in the rectangular axonometric. view (di­
metric) a) and its approximations for N = 5000: 
b) - NE, c) PE2, m = 28, d) - LSE, m = 28 
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Fig. 4. Shape of the function fS(XI, X2) = IXI + x21· (2-
-lxI + x21)·1{l x l +X21~2} a) and its approxima­
tions: b) - NE c) - PE2, m = 36 d) - LSE, 
m = 28, N = 5000 
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Fig. 5. Shapeofthefunction!6(xl,X2) = 0.6sign(xl)+ 
+0.3 sign (X2) a) and its approximations: 
b) - NE, c) - PE2, m = 28, d) - LSE, m = 36, 
N = 5000 
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smallest empirical dispersion "62 of the estimates j; (Xl, X2) for 
the functions Ii (Xl, X2), i = 4,6. Further according to the ac­
curacy follows the estimates of least squares, which for Nx 
X 10000 according to the accuracy are close to nuclear es­
timates. The projective estimate PE2 is more rough. It is 
connected with the fact that the denominator's values in ex­
pression (14) are close to zero or even more scattered. There­
fore the dispersion of the estimates PE2 is larger than that 
of the remaining. The optimal degree m at which the statis­
tics "62 is minimal for the estimates PE2 and LSE strongly 
depends not only on N but also on the function shape. For 
14 the variable "62 achieves minimum for sufficiently large val­
ues m E {15, ... , 45}. For 15,16 when N E {500,1000} the 
statistics "62 is minimal for a small m E {3, ... , 10} Fig. 3, 4. 
Almost in 'the cases NE have the least empirical dispersion 
("62 from 10-3 to 10-5 for N = 500 and of order 10-5 -

10-6 for N = 10000). LSE dispersion slightly differs from 
NE. PE2 dispersion for all N is of order 10-3 - 10-4 . The 
same as one-dimensional case the estimation of the variable 
m* according to (23) is reliable. 

Conclusions 
1. In one-dimensional case (n = 1) all the considered 

estimates (NE, PEl, PE2, LSE) are approximately identical 
by accuracy and may be used for practical applications. In 
two-dimensional case (n = 2) the most exact is the nuclear 
estimate, for N X 10000 the estimate of least squares approx­
imates to it by accuracy. 

2. The approximating polynomial optimal degree m for 
which the variable "62 is minimal, in the case n = 1 basically 
depends on the length of the realization N, while in the case 
n = 2 the optimal m essentially depends both on Nand .the 
estimated function. 

3. The way of defining the approximating polynomial op­
timal order m* according to expression (23) for the estimates 
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of LSE, PEl, PE2 is reliable and may be used for the analysis 
of physical processes. 

All the conclusions are obtained for the sample size 100 ~ 
~ N ~ 10000. 
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