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Abstract. Two-dimensional signals of physical phenomena may be inadvertently 
altered before recording through the system whose bandwidth is smaller than that of the 
signal. It is often desired to restore later such data by removing the effects of the linear 
system. This restoration may be accomplished by synthesizing two-dimensional (2-D) 
inverse filters on computers. Approximations are necessary to insure the stability of the 
inverse filter. 
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1. Introduction. The restoration of a signal that has been distorted is one 
of the most important problems in signal processing applications (Andrews, 
1977). Iterative signal restoration is a common and simple approach in recov
ering degradated signals. If matrix F presents a linear deterministic distortion, 
y and x represent, respectively, blurred and original signals, then the distortion 
may be due to motion between the camera and the scene or due to atmospheric 
turbulence. The signal restoration problem is then to find a signal as close as 

possible to the original one, subject to a suitable optimality criterion. Itera
tive restoration algorithms have a number of advantages over direct restoration 

techniques, and they have been used extensively (Abramatic, 1982; Dudgeon, 
1980; Katsaggelos, 1990; Parruck, 1983; Perry, 1994; Sanz, 1983; Thomas, 

1981; Thomas, 1991). 

The organization of the paper is as follows. The model of a 2-D system is 

reviewed in Section 2. In Section 3, we define intervals in which the restored 

signal exists. Then, using the expansion of the 2-D inverse operator into a 

power series, we derive formulas for calculating an approximated inverse filter 
and signal restoration in the time and frequency domains. It is shown that if 
the number of iterations or the number of the power series terms N -+ 00, 
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then the limit of the restored signal sequence is the input signal. The extension 

of that method to the case when the 2-D frequency response is normalized is 

addressed in Section 4. Unfortunately, the iterative algorithm is slowly con

verging, and the convergence point is usually not the best restoration because 

of noise amplification. In Section 5 a stopping rule is imposed to maximize 

the effectiveness of the iterative algorithm. The normalized error is used as 

a measure of the restoration quality. We analyse convergence conditions and 

define the optimum number of iterations. We briefly analyse restoration in a 

noisy environment in Section 6. 

An advantage of the iteration algorithm is that some matrix sequence can 

be computed in advance. The solution sequence is then computed on-line after 
the distorted signal is available. 

2. 2-D digital filters. The transfer function of a 2-D digital filter is 

(1) 

where aij and bk1 are constants; Zl and Z2 are 2-D Z transform variables. 

If x(nl' n2) is input, then Z transform of the output is 

(2) 

where Y(Zl, Z2) = Z{y(nl, n2)}, X(Zl, Z2) = Z{x(nl' n2)}, Z is the 
sign of 2-D Z transform. 

Without loss of generality, we can also assume that Eq. 1 is normalized so 

that all = 1. In such a case fromEq. 1, and assuming that zll = e-jw1 , z2"l = 
e-jw2 , we have a 2-D rational frequency response 

where aij = aij/all, bkl = bkdall; Wl and W2 are spatial frequencies. 
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3. Inverse filtering. For the ideal measurement system F (W1' W2), it fol

lows that y (n1' n2) = x (n1' n2) (see Fig. 1). 

In all practical cases y(n1' n2) '# x(n1' n2), and y(n1' n2) is corrupted 

with noise ~ (n1' n2)' So the purpose of inverse filtering is to process the signal 

v ( n 1, n2) so that we get a restored signal x (n 1, n2) as close to the input signal 

x (nl' n2) as possible. 

Fig. 1. Input signal restoration 

As follows from Fig. 1 

Restoration of the signal x (n 1, n2) by the inverse filtering method is car

ried out dividing both sides of Eq. 4 by frequency response F (W1' W2) and 

calculating a 2-D inverse Fourier transform, i.e., 

x(n1' n2) =;:-1 {V(W1' w2)/F(W1, W2)} 

=x (nl' n2) + ;:-1 {~(Wl' W2) / F (Wl' W2)} , 
(5) 

if F (WI' W2) '# O. 
Eq. 5 cannot be evaluated numerically because of the zeros of F (WI' W2)' 

An approximation must be made. On the basis of the information available, if 

there is no knowledge of x (T/I' n2) other than that obtained in y (nI, n2), the 

most one can do is to restore up to their value those frequency components of 

x(nl' T/2) which have been reduced by the convolution with !(nl' n2). On 

this basis, the solution is defined in the following section. 

4. An iterative implementation of 2·D inverse filters. Real filters don't 

pass those frequencies ,of the input signal x (nI, n2) for which F (WI' W2) = O. 
In the case, when we·· have no information about the input signal x (n I, n2) 
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and noise e (nl, n2) = 0, it is expedient to restore the input signal only in the 

intervals where F (Wl, W2) -# O. We define the restored. signal as 

if F (Wl' W2) i= 0, 
if F (Wl' W2) = o. 

In Eq. 6 we separate a non-ideal part of the filter F (Wl' W2) 

(6) 

where 1/ F (Wl' W2) - 1 characterizes the distortion of th~ filter F (Wl, W2)' 
For the ideal filter 1/ F (Wl' W2) - 1 = O. 

Expanding a 2-D inverse filter, we have 

Then 

where 

1/ F (Wl' W2) = 1 + [1- F (Wl' W2)] 

+ [1 - F (Wl, W2)]2 + ... 
11- F (Wl' w2)1 < 1. 

X (Wl' W2) = Y (Wl' W2) {1 + [1- B (Wl, W2)] 

(8) 

+ [1- B (Wl' W2)]2 + .. , }, (9) 

11- B (Wl' w2)1 < 1, 

In all practical cases we can calculate only a finite number of power series 

terms, i.e., 

N 

XN (Wl' W2) =Ya (Wl, W2) 2: [1- B (Wl' W2)t , (10) 
i=O 

or in the time domain 



K. Kazlauskas 

Also 

where 

Ya (nI, n2) =y(nl, n2) * *a (nI, n2), 

IN (nI, n2) =8 (nI, n2) + [8 (nI, n2) - b (nI, n2)] + .. . 
+ [8(nl, n2) - b(nl, n2)t .... , 

and 

8 (nI, n2) = 1, if nl = n2 = 1 and 8 (nI, n2) = 0, in other cases, 

* is the sign of the convolution operation. 

Define 

and 

Then 
N 

XN (nI, n2) = Ya (nI, n2) + E I; (nI, n2) 
i=l 

or, in the frequency domain, 

where 

N 

XN (Wl' W2) = Ya (Wl' W2) + Eh (wr, W2), 
;=1 

li (wr, W2) =Ya (Wl, W2) [1- B (wr, W2)]i, i = 1, N, 

11- B (Wl' w2)1 < 1. 

From Eq. 14 we can calculate estimates of the input signal 

xo (nI, n2) =Ya (nI, n2), 

xl (nI, n2) =xo (nI, n2) 

+ [Ya(nl' n2)-b(nl, n2)**xo(nl, n2)], 

XN (nI, n2)=XN ... l (?lI, n2) 

+:[Ya(nl, n2)-b(nr, n2)**XN-r(nl, n2)], 

281 

(12) 

(13) 

(14) 

(15) 
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or 

Xo (nl' n2) =Ya (nb n2), 

Xl (nl' n2) =Xo (nl' n2) + [0 (nl' n2) - b (nl' n2)] * *Ya (nl' n2), 

(16) 

XN (nl' n2) =XN-l (nl' n2) 

+ [0 (nb n2) - b (nl' n2)t** * *Ya (nl' n2). 

If the sequence of restored signals Xo (nl' n2) , ... , X N (nl' n2) has a 

limit as N -+ 00, then the Fouier transform of this limit is X (Wl' W2) = 
Y (Wl' W2) / F (Wb W2), if the condition X (Wl' W2) = 0 when F (Wl' W2) = 0 
is satisfied. We can get the same result as in Eq. 16 solving the Fredholm 

equation of the first type by a sequential substitution method. As we can see 

from Eq. 16, the first estimate of the input signal is equal to the output signal. 

The following estimate is calculated by adding the previous estimate with a 

correction member. The correction member is equal to the difference between 

the output signal of the filter F (Wl' W2) and the output signal of the filter 

B (Wb W2) (see Fig. 2). 

Fig. 2. Iterative input signal restoration 

Note that the input signal restoration by inverse filtering is similar to the 

input signal restoration using the pseudoinverse method (Kazlauskas, 1977). By 

substituting Xo (nl' n2) into Xl (nb n2), and so on up to N, from equations 
(15) we obtain the following expression 
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where 

(N + I)N (N + I)N(N - 1) 2** 
UN(ni, n2) = 2! b(ni, n2) - 3! b (ni, n2) 

+ ... (-I)NbN**(ni,n2),· (18) 

in which bN**(ni, n2) is the N-time 2-D convolution of b(nl, n2)' Thus, for 

the filter F(Wl,W2), we can compute UN(ni, n2) in advance and use it in the 

restoration process. 

Equation (17) can be written as a 2-D convolution of Ya(ni, n2) with the 

impulse response of the restoration system bN(ni, n2) 

(19) 

where 

(N + I)N 
bN(ni, n2) =(N + 1)6(nl, n2) - 2! b(nl, n2) 

+ (N + 1)~(N - 1) b2**(ni, n2) _ ... (-I)NbN**(ni, n2)., 

Partial case. Let bii = 1. Then the restored signal in a frequency domain 

where 

Mb Nb 

E(Wi,W2) = - L: L: bkl exp [ - jWi(k - 1) - jW2(l- 1)]. 
11:,1=1 
"'I;tl 

By expanding equation (20) into a power series, we get 

00 

(20) 

X(Wi,W2) = Ya(Wl,W2) L: Ei(Wl,W2), !E(Wi,W2)! < 1. (21) 
i=O 

The inverse filter frequency response is 

00 

F(Wi,W2) = A(Wl,W2) L:Ei (Wi,W2), !E(Wi,W2)! < 1. (22) 
i=O 
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Using N terms of the power series, from equation (21) we obtain 

XO(Wl,W2) = Ya (Wl,W2), 

X1(Wr,W2) = Ya(Wl,W2) + E(Wl,W2)XO(Wl, W2), 

XN(Wl,W2) = Ya (Wl,W2) + E(Wl,W2)XN-l(Wl,W2). 

(23) 

It follows from equation (22) that the rational frequency response of the inverse 

filter can be theoretically implemented by applying iterative computation an 

infinite number of times, providing the convergence criterion is met. In practice, 

naturally the iterative computation is applied only a finite number of times, 

so the frequency response that is actually realized is an approximation to the 

original inverse rational frequency response. 

The iterative implementation seems well suited to digital processors that 

have the ability to convolve a 2-D signal with a filter kernel of limited extent. 

5. DetenninationoCtheiterationnumber. In any practical implementation, 

the number of iterations actually computed is finite. we can take the ratio 

(24) 

as a measure of the spectral error introduced by terminating the iterative com

putation after N iterations. Rhe ratio is complex, in general. However, 

XN(Wl,W2) =FN(Wl,W2)Y(Wl,W2) 

=FN(Wl, w2)F(Wl, W2)X(Wl, W2), (25) 

where 

(26) 

(27) 

Analogously, for the normalized case, we have 

(28) 
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If we specify a tolerable degree of spectral error by fixing c, we can use these 

relations to tell us how many iterations will be needed for a given value of 

IE(Wl, w2)1 or 11 - F(Wl, w2)1. Conversely, it can be used to determine how 

IE(Wl, w2)1 or 11 - F(Wl, w2)1 must be restricted, if the number of iterations 
N is preassigned. 

Convergence conditions. The power series in (9) converges, if 11 -
B(Wl,W2)1 < 1. If the condition 11 - B(Wl,W2)1 < 1 isnot satisfied, then 

we can choose a ration B(Wl,W2)/k, where k = const, such that the inequal

ity 11- B(Wl,W2)/kl < 1 be satisfied. In such a case we must multiply the 

restored signal xN(nl, n2) by l/k. 
The power series l+[l-B(wl ,w2)]+[I-B(Wl,w2)J2+ ... is nonuniformly 

converging in the domain 11- B(Wl,W2)1 < 1, therefore a partial amount of 

the power series 

(29) 

is unristrictedly growing as N -+ 00 and B(Wl,W2) -+ O. The same power 

series uniformly converges in the domain 11- B(Wl,W2)1 ~ r < 1. Clearly the 

inequalities 11-[I-B(Wl, w2)]1 ~ 1-II-B(Wl, w2)1 ~ l-r are satisfied for all 
~ ~ N 

B(Wl,W2), ifI1-B(wl,w2)1 ~ r. Then !FN(Wl,W2)-F(Wl,W2)1 < r /(l-r) 
for all B(Wl,W2) in the domain 11- B(Wl,W2)1 ~ r. 

Conclusion. The power series in (9) uniformly converges if 11 -
B(Wl,W2)1 ~ r < 1. The filter F(Wl,W2) is stable, because B{Wl,W2) #1. 

6. Restoration in the presence of noise. The previously developed results, 

in general, are applicable to the signal restoration problem when output of the 

filter is observed with additive noise. We present an approach of modifying the 

previous filter. We analyze the case when there is no apriori information on the 

noise. In the presence of noise, an inverse filter can be obtained by applying 

the Wiener filtering method. 

Minimizing the mean-square error between the input signal x(nl, n2) and 

the restored signal x( nl, n2), we get the Fourier transform of the inverse filter 

impulse response f(nl, n2) : 

(30) 
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where e(Wl, W2) is the noise power density spectrum; F(Wl, W2) and X(Wl, W2) 
are the Fourier transfonn of f( nI, n2) and x( nI, n2), respectively. For the case 

e(Wl,W2) = 0, (30) reduces to the inverse filter 1/F(wl,w2). 
If no statistical properties of the process are known, we assume the ratio of 

the noise and signal power density to be constant. Then equation (30) is of the 

fonn: 

(31) 

where c is constant. The second term on the right side of equation (31) is a 

smoothing function which additionally smoothes the restored signal, in order 

to provide an acceptable signal enhancement in the presence of noise. 

7. Concluding remarks. Theoretically we obtain the frequency function of 

IF by accomplishing iterative computation an infinite number of times. How

ever, in fact we calculate only a limited number of iterations, consequently, the 

frequency function of IF, that is realized, is an approximation to the original 

frequency function of IF. The iterative implementation of IF is quite convenient 

in processors that may entail a convolution of 2-D signals with a pulse char
acteristic of the filter of limited size. Since the same calculations are iterated, 

such processors are able to operate with longer characteristics of the filter. 

The method ensures a sufficiently good quality of restoring signals in thc 
cases when noise is not the main source of distortion. The presence of noise re

stricts the maximal N to be used. For small N one may essentially increase the 

informaticity of an output signal even in the presence of noise. The possibility 

of choosing the optimal number of iterations N depends on a priori information 

on an input signal of the system. If the noise is great with respect to the input 

signal, then the output signal of the system is processed by Wiener's filter. 

In the iterative realization of 2-D filters a recursive IF is replaced by a 

feedback filter. Afterwards the feedback filter is represented by the sum of 2-D 

nonrecursive filters, and instead of the stability condition of the recursive filter 

the convergence condition is verified. 

In addition, this method unlike other methods, gives an experimentator a 

possibility of controlling the restoration process to a certain extent by varying 

the amount of iterations N. 
The results of the work can be successfully applied in design of 2-D IF's 

and restoration of 2-D signals. 
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DVIMACIQ SIGNALQ ATSTATYMO 

ITERATYVUSALGORrTMAS 

Kazys KAZLAUSKAS 

Fizinill proceSll dvima~iai signalai kei~ia savo formll praej\l per tiesin\l sistemll, ku
rios pralaidumo juosta siauresne negu signalo. Da!lnai reikia atstatyti siuos signalus, 
ivertinant sistemos poveiki. Signalll atstatymll galima atlikti kompiuterio pagalba, sin
tezuojant dvimaq inversini filtrll. Inversinis filtras aproksimuojamas tarn, kad u!ltikrinti 
jo stabilumll. 


