
INFORMATICA, 1995, Vol. 6, No. 3,265-276 

INVESTIGATION OF THE RELATIONSHIP 
BETWEEN PROGRAM CORRECTNESS 

AND PROGRAMMING STYLE 

Gintautas GRIGAS 

Institute of Mathematics and Infonnatics 
Akademijos St. 4, 2600 Vilnius, Lithuania 

Abstract. The results of investigation of computer programs written by school stu­
dents during the 6th International Olympiad in Informatics are presented. Pascal program 
texts are analyzed on the lexical level. A certain relationship is indicated between pro­
gram correctness and usage of some programming constructs as well as readability of the 
program text. The results are discussed from the standpoint of programming teaching. 

Key words: programming style, program metrics, teaching of programming, Turbo 
Pascal. 

1. Introduction. It is widely accepted that the programming style has some 

impact on program correctness and the efficiency of programmer's work., How­

ever, it is difficult to define rigorously the elements of programming style and 

to express such impact quantitatively. We p~nt here some results of our in­

vestigation. We choose the programs written during the International Olympiad 

for a number of reasons namely: 

1. All programs are written, tested and evaluated in the uniform environ­

ment. 

2. The authors of the programs are from different countries and gained their 

knowledge and experience in programming by different ways. So, they 

represent a world wide community of skilled school students. 

3. The programs are graduated exclusively by the results of the tests. So 

the programming style has no direct effect on the points and the student 

wrote the program text only for himselflherself, freely expressing hislher 

own program writing habits. 

The 6th International Olympiad in Informatics was held in Stockholm, July 

3-10, 1994. 189 school students from 49 countries took part in this event. 



266 Program correctness and programming style 

The students worked two days. Each of the two days the students were 

asked to write programs for 3 problems within five-hour time limit~. They used 

AST'486 33 MHz computers operating under MS-DOS 6.2. 

2. Programming languages. Four programming languages have been used 

by the students: Turbo Pascal release 7.0, Turbo C++ release 3.0, LCN Logo 

release 3.0, and Quick Basic release 3.0. Each participant could freely choose 

any language. Programming languages, actually used by the participants, are 

shown in Table 1. 

Table 1. Programming languages used by participants according to their 

success, expressed by the sort of medal 

Programming 
Gold Silver Bronze None Total 

Language 

Pascal 17 25 38 56 136 
C ° 9 8 10 27 
Pascal/C 0 0 0 1 1 
Basic 0 0 0 13 13 
LCN Logo 0 0 0 2 2 
? (no data 0 0 4 6 10 

available) 

Total 17 34 50 88 189 

The most popular language was Pascal. 

The percentage of Pascal progranuners according to the medals they were 

awarded is as follows: 

gold 100.0% 

silver 73.3% 

bronze 76.0% 

none 60.2%. 

So Pascal was the most successful language. 

The students were asked to present their compiled programs (EXE files) for 

testing and evaluation. This did not ensure saving all source code texts. Indeed, 

we have no records of source code programs of 10 participants (4 of them have 

gained total 0 points, and somebody have not presented programs for testing at 



G. Grigas 267 

all). However, we are sure that the missed programs have no noticeable impact 

on the statistical results of our investigation. 

3. Programming problems and evaluation of their solutions. The formu­

lation of programming problems as they were given to the student-; may be 

found elsewhere (e.g., in: 6th International Olympiad in Informatics, 1995; 

Stromberg, 1994). 

Some figures describing the problems are given in Table 2. All the problems 

are of numerical nature. All input and output data have to be nonnegative 

integers or letters. It was required to find the unique solution or one of possible, 

in some cases, optimal. 

Table 2. The characteristics of problems and their solutions (programs) 

Number of problem 1 2 3 4 5 6 

Maximum run time of test 
in sec 30 30 90 30 30 30 

Number of test 6 5 4 5 6 8 

Number of points per test 5 6 10 6 5 5 

Maximum number of points 30 30 40 30 30 40 

Average number of points 
assigned to a program 20.9 21.9 8.3 10.3 8.8 14.4 

,. 

Number of programs assigned 
p points 

a) p = max (i.e. all points) 75 63 12 20 0 5 
b) 0 < p < max 36 41 20 77 93 49 
c) p = 0 21 19 72 24 33 26 
d) total 132 123 104 121 126 80 

Length of program (in lines) 
a) min 22 55 64 32 40 50 
b) max 202 285 591 376 305 560 
c) average 66 148 200 162 116 154 

The programs were evaluated by points for successful tests. The tests reflect 

the correctness and partly effectiveness of programs. Execution of programs 

have to fit in the particular time limits. However, the limits were not so critical. 



268 Program correctness and programming style 

So the number of points assigned for a program may be considered as a suitable 

parameter which express the measure of program correctness in this context. 

, The complexity (difficulty in programming) of problems was estimated by 

assigning different number of points for a particular problem. The complexity 

of a problem may be also illustrated by the length of its program text, as shown 

in Table 2. 

4. Program set or investigation. We have selected only Pascal programs 

for this investigation. We included all Pascal programs that were compiled 

and their compiled code (EXE file) was presented by the author for the jury 

to evaluate. However, we excluded two programs from the set the main part 

of the text of which ,was generated automatically (they included large constant 

arrays of prime numbers and their size exceeded by 10-20 times the size of 

programs written in the conventional way). 

The total number of programs investigated was 686. The programs were 

written by 135 students from 46 countries. 

5. Parameters of programs. Over fifty parameters of the program text were 

investigated. For illustration the majority of them is presented in Table 3. The 

numbers of the parameters are used for references later in this paper. 

No 

1 
2 

3 

4 
5 

Table 3. The list of program parameters and their average values calcu­

lated for all students and in accordance with the number of their 

points expressed by the sort of medal they are awarded 

Program parameter Average Gold Silver Bronze None 

Lenght of: 
program 846.3 913.5 812.9 852.5 832.7 
block 165.5 175.0 147.2 172.4 166.5 

Turbo lexic % 14.0 13.6 14.7 13.2 14.3 

Number of: 
functions 1.3 1.0 1.1 1.4 1.3 
procedures 4.0 4.2 4.0 4.1 3.8 

to be continued 



G. Grigas 269 

Table 3. Continuation 

No Program parameter Average Gold Silver Bronze None 

% of programs with: 
6 heading (program) 68.5 74.3 59.9 81.0 60.9 
7 uses 40.8 19.8 28.9 34.0 62.1 
8 const 50.4 61.4 61.3 49.0 40.7 
9 type 52.6 53.5 57.7 53.0 49.0 

10 pointers 8.3 10.9 7.0 12.0 4.9 
11 goto 5.5 9.9 3.5 3.0 7.0 
12 boolean 65.3 65.3 54.9 69.5 67.9 
13 longint 24.3 37.6 23.2 21.0 22.2 
14 char 16.0 10.9 16.2 17.0 17.3 
15 string 16.3 10.9 6.3 15.0 25.5 
16 record 19.5 21.8 18.3 21.0 18.1 
17 set 5.5 5.9 8.5 4.0 4.9 
18 object 1.6 0.0 0.7 1.5 2.9 
19 comments for compiler 40.1 50.5 39.4 47.0 30.5 

Number of statement'> 
20 for 8.9 9.9 8.9 9.2 8.3 
21 while 1.0 1.2 1.2 1.0 0.7 
22 repeat 0.5 0.2 0.4 0.6 0.8 
23 if 10.7 11.0 9.9 10.4 11.2 
24 case 0.2 0.2 0.2 0.2 0.3 
25 exit 1.4 2.0 1.7 1.4 1.0 

Ratio of statements 
in % 

26 for: all cycles 85.1 87.7 85.4 85.6 83.3 
27 repeat : all cycles 5.2 1.3 3.5 4.9 8.2 

28 Comments % 3.5 2.0 6.7 2.6 3.0 

29 Line density % 90.9 93.2 89.1 91.7 90.5 

30 Character density % 90.4 90.7 90.5 89.7 90.9 

31 Lines per identation 2.5 2.1 2.3 2.6 2.7 

32 Lenght of identation 2.8 2.5 2.8 2.7 3.1 

33 Text layout 3.1 3.2 3.4 3.1 2.7 



270 Program correctness and programming style 

Let us comment some of the parameters. 

(1). The length of program is given in lexems. The lexem is an indivisible 

entity of a program text. The lexem may not be split by blank spaces or end­

of-line characters. Examples of lexems: an identifier, a number, an operator, a 

reserved word. Comments, empty lines or blank spaces are not lexems. The 

number of lexems does not depend on splitting the text into lines, the length of 

comments or strings. 

(2). The length of block is expressed in lexems. The function, procedure 

as well as constructor or destructor for those who use object-oriented features 

of Turbo Pascal, the main program body, or the unit (each) is considered as a 

block. 

(3). The ratio between Turbo Pascal and Standard Pascallexic expresses the 

level of deviation from Standard Pascal towards Turbo Pascal. It is measured 

by the amount of percents of Turbo Pascal words (reserved words and Turbo 

Pascal identifiers) in the total number of reserved words and standard identifiers. 

(28). In order to consider only the comments for the reader, the draft pieces 

of program texts enclosed within comment parentheses, were excluded from the 

program texts. The comments for compiler (marked by $ in the program text) 

were also not included here for the same reason (such comments are considered 

as separate program parameter (see 19)). 

(29). Line density is a ratio (expressed in %) between the number of 

nonempty lines and the total number of lines. Empty lines (resulting lower 

line density) may increase program readability. 

(30). Character density is a ratio (expressed in %) between the number of 

nonblank characters and the total number of characters including blank spaces. 

Extra spaces (resulting lower character density) may increase program readabil­

ity. Leading identation blanks in the left of lines are not included here. 

(31). Lines per identation is an average number of lines within the single 

identation step. 

(32). Identation length is an average number of leading spaces for a single 

identation. 

(33). Text layout of program text is evaluated by points from 0 to 5 and 

expresses the readability of the program text from the aesthetical and typograph­

ical points of view, as described in Baecker and Marcus (1992). The parameter 

was evaluated by the experts. 



G. Grigas 271 

All parameters but the last one (33) were examined automatically by the 
program of lexical and limited syntax analysis. 

We did not include in the Table 3 the parameters used by all (or almost all) 

authors in every programs (e.g., integer and array types), or those used in a 

very small fraction (less than 1 %) of programs (e.g., units, the assembler code 

pieces, reals, statement with). 

It would be of interest to pick out from Table 3 the parameters the values of 

which monotonously decrease or increase in line with the skill of the authors 

of programs. They are collected and presented in Table 4. 

Table 4. The values of some selected program parameters expressed by 

% relative to average value (considered as 100%) 

No Program parameter Gold Silver Bronze None 

7 uses 48.5 70.7 83.3 152.2 

8 const 121.7 121.5 97.2 80.8 

14 char 67.9 101.0 106.0 107.8 

18 object 0.0 43.9 93.6 179.6 

21 while 122.2 120.8 102.0 77.0 

22 repeat 30.9 69.8 101.8 144.9 

25 exit 140.5 118.6 102.9 70.0 

27 repeat : all cycles 25.5 66.7 92.7 156.4 

31 lines per identation 83.8 93.3 103.7 107.6 

7. Correlation coefficients. The level of linear dependence between two 

parameters may be expressed by the correlation coefficient. Three coefficients 

were calculated for each parameter: 

1) Parameter p of a program relative to the number of points gained for 

the program of a particular problem (kp ). It characterizes the dependance 

between the parameter and program correctness for the given problem. There 

is a separate value· of the coefficient for each problem. The values of the all 6 

coefficients are given in Table 5. 



272 

No 

7 

8 

13 

15 

19 

22 

25 

26 

27 

33 

Program correctness and programming style 

Table 5. Correlation coefficients kp between program parameter p and the 

number of points gained for the program of particular problem 

Program Problem No 

parameter 
1 2 3 4 5 6 

uses -0.44 -0.39 -0.37 -0.36 -0.27 0.02 

const 0.20 0.22 0.21 0.30 0.09 0.17 

longint -0.05 -0.05 0.17 0.18 0.22 0.46 

string -0.38 -0.28 -0.15 -0.09 -0.24 -0.01 

comm. comp. 0.19 0.18 0.18 0.12 0.15 0.11 

repeat -0.39 -0.14 -0.13 -0.26 -0.19 -0.22 

exit -0.01 0.06 0.28 0.08 0.22 0.29 

for % 0.42 0.17 0.09 0.02 -0.08 0.23 

repeat % -0.38 -0.17 -0.23 -0.22 -0.23 -0.25 

text layout 0.23 0.28 0.15 0.08 0.20 0.15 

2) Parameter p of a program relative to the total number of points gained by 

the author of the program under investigation (k t ). It characterizes the program 

together with its author. 1bere is a separate value of the coefficient for each 

problem. The values of the all 6 coefficients and their average are given in 

Table 6. 

3) Average value of the parameter of all programs written by the same 

author relative to the total number of points gained by their author (ku). It 
characterizes mostly the skills and the programming style of the author. The 

values of the coefficients are given in Table 7. 

The correlation coefficients of most parameters are close to zero. E.g., there 

is no linear dependence of program correctness and that parameter. 

Only the coefficients of the parameters, whose absolute values exceed 0.1 

for at lea'>t in one of the coefficients kp or kt are given in the Tables. 

8. Interpretation of statistical results. Let us discuss the results given 

in Tables 4, 5, 6, and 7 from the standpoint of the programming style and 

programming teaching. 



No 

7 

8 

13 

15 

19 

22 

25 

26 

27 

33 

G. Grigas 273 

Table 6. Correlation coefficients kt between program parameter p and the 

total number of points gained by the author of the program 

Program Problem No 

parameter 
1 2 3 4 5 6 

uses -0.35 -0.26 -0.33 -0.43 -0.04 0.13 

const 0.09 0.35 0.10 0.13 -0.01 0.15 

longint -0.05 -0.11 0.11 0.06 0.28 0.33 

string -0.31 -0.1" -0.04 -0.03 -0.17 0.01 

comm. for comp. 0.07 0.19 0.10 0.04 0.14 0.04 

repeat -0.46 -0.12 -0.05 -0.24 -0.11 -0.28 

exit 0.05 0.01 0.12 -0.10 0.37 0.34 

for % 0.44 0.19 0.05 0.16 -0.15 0.30 

repeat % -0.44 -0.16 -0.10 -0.25 -0.06 -0.30 

text layout 0.27 0.29 0.13 0.10 0.09 0.19 

Table 7. Correlation coefficients ku between average parameter p of all 

programs written by the sane student and the total number of 

points gained by the author of the program 

No 
Program 

ku parameter 

7 uses -0.41 
8 const 0.29 

13 longint 0.25 
15 string -0.37 
19 comm. for comp. 0.20 
22 repeat -0.34 
25 exit 0.26 
26 for % 0.13 
27 repeat % -0.37 
33 text layout 0.22 



274 Program correctness and programming style 

Correlation coefficients show the existence of some dependence between 

program correctness and the programming style expressed by some formalized 

parameters of the program text. However, the dependencies are not very strong 

or some of them not very stable (the values are changing from problem to 

problem). So the conclusions may be not very categorical. 

We observed that constant definitions (8) and cycles for (26) have the most 

positive correlation coefficients. While module definitions uses (7) and cycles 

repeat (22, 27) -- the most negative. The constant definitions is an indication 

of good programming style. Correlation coefficients of other parameters (7, 22, 

26, 27) advocate that it is better to rely on simple and well known programming 

language features (as the cycle for) rather than to use advanced but more com­
plicated or less common features, especially if they are not necessary for the 

problem solution (e.g., uses). Maybe for the same reason the usage of objects 

(18) have some negative effect (see Table 4). 

Long integers have positive coefficients. Ihe 16 bit integers are an obvious 

shortcoming of PC. It may be simply eliminated by declaring long integers. 

The statement goto has a bad reputation in programming. However, its 
coefficients trend to zero. The statement was used only by 5.5% of students 
(Table 3) - very advanced ones (they know what to do with goto) and those 

with moderate scores. 

Program texts were not examined by the jury. So the layout of the program 

text (33) and its readability did not have effect on the score. Students wrote 
program texts only for themselves. Extra efforts are required to make a program 

text more readable. This is not feasible in the limited time in the Olympiad. 

Nevertheless, the program readability has a positive coefficient. This confirms 

the idea that program readability has a positive impact on its correctness. 

We see (Table 3) that the layout of program text (33) and other parameters 

having positive effect on readability (e.g., comments (28» are higher of the 

winners of the silver medals. 1ne same parameters for gold medal winners are 

lower. This may lead to the hypothesis that those students who have achieved 

the highest results in the Olympiad have organized the work so that any extra 

efforts not affecting the score were minimized. 

Comparing values of all three coefficients of the sane program parameter 

we see that their values have a tendency to be ordered kp < kt < ku. From 
this observation we may conclude that usefulness of particular programming 



G. Grigas 275 

language constructs depends on the programmer in greater extent that this on 
programming problem. 

The interpretation of the results is rather of subjective nature. So we end it 
at this point and leave it for the reader. 

9. Acknowledgements. Many thanks to the President of the 6th Interna­

tional Olympiad in Informatics Mr. Yngve Lindberg and especially to the 
chairman of the Scientific Committee of the Olympiad Mr. Hakan Stromberg 

who ensured the availability of student programs for investigation. Thanks for 
Miss Jurate Bulotaite for expert evaluation of program texts. Thanks for all 
students - the authors of programs. 

REFERENCES 

6th International Olympiad in Informatics. (1995) INFO-STAR, 1, 14-24. 

Stromberg, H. (1994). International Olympiad in Informatics. Hanige, Sweden. 3-10 

July. Final Report. 
Baecker, R.M., and A. Marcus (1992). Human Factors and Typography for More 

Readable Programs. Addison-Wesley. 

Received July 1995 



276 Program correctness and programming style 

G. Grigas received the Ph.D. degree from the Kaunas Polytechnic Institute 

(Kaunas, Lithuania) in 1970. He heads the Department of Systems Program­

ming at the Institute of Mathematics and Informatics. His research interests 

include abstract data types, programming methodology and teaching. 

PRIKLAUSOMYBES TARP PROGRAMQ TEISINGUMO IR 

PROGRAMAVIMO STILIAUS TYRIMAS 

Gintautas GRIGAS 

Pateikiami programq statistines analizes rezultatai. Tyrimui imamos pro­

gramos, paraSytos Paskalio kalba SeStojoje tarptautineje olimpiadoje, vykusioje 

Svedijoje 1994 m. Analizuojamos 6 uzdaviniq 686 programos, kurias paraSe 

135 moksleiviai is 46 valstybiq. Pastebeta nedide1e, bet pastovi priklausomybe 

tarp programq teisingumo ir tam tikrq programavimo kalbos konstrukcijq varto­

jimo daZnio bei programos teksto isdestymo kulruros. Teigiamq itakq programq 

teisingumui dare konstantq apibreztys, ciklai "for" bei ilgi sveikieji skaiciai 

(longint), neigiamq - ciklai "repeat", moduliai bei kitos sUdetingesnes kalbos 

konstrukcijos. 


