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Abstract. A multiextremal problem on the synthesis of external circuit of a tunable 
subnanosecond pulse TRAPATT-generator was investigated using algorithms of local 
optimization and cluster analysis. 
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1. Statement of the problem. The goal of this paper is to investigate the 
efficiency of optimization and data analysis methods in the analysis of the real 
technical problem: the synthesis of external circuit of a tunable subnanosecond 

pulse TRAPATT-generator. Global optimization algorithms are often investi­
gated on various sets of test problems (e.g. [1]). Another goal of this paper 

is to find a multiextremal function such that actually arises, has known prop­

erties, is simple for computer realization, and is suitable for comparison of 

optimization algorithms. 

The TRAPATT-diodes are used to generate high-capacity and high-frequency 

pulses. The description of the problem can be found in [2-6]. The scheme of 

external circuit of the generator is shown in Fig. la, and the generated pulses 

are presented in Fig. lb. The external circuit involves two segments of the delay 

line. The resistance of segments is equal to Po ohms, and the lengths are equal 

to It and 12 centimeters, respectively. The inductance of the frame of diode is 

equal to Lk nanohenries, and its capacitance is equal to Ck nanofarads. The 

equivalent load capacity is equal to cH nanofarads. The resistance of connection 

is equal to Rnep ohms. 

Real Re;, and imaginary lID;, i = I, rn, parts of harmonics of external 

circuit impedance are the functions of seven parameters Xl, ... , X7. Our 
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Fig. 1. The scheme of external circuit of the generator (a), and the 

generated pulses (b): horizontally 20 volts per division, verti­
cally 0.2 nanoseconds per division. 
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problem was to find values of the parameters such that the obtained mean­

ings of Rei and Im;, i = 1, m, differ~ from the desirable ones (Rei and Im;) 

no more than by ei and d; percent, respectively. The function to be minimized 

was as follows: 

I(X) = f {[Rei - Rei] 2 + [Im; - rrn.] 2} , 
i=1 RejCt:j Im;8i 

where X = (Xl, ... , X7), Ct:j = e;/100 and 8i = d;j100 are multipliers,' 

R . _ RnepP6 [1 + tg2 (,Bi/I)] 
e, - A? +B~' , , , 

I [(x~ep + potg(,Bih))Ai - RnepBi]Po L 
mi = A? + B7 + Wi k, , , 

Ai = Po - x~eptg(,Bi/I) 

- [x~ep + potg(,Bi/l)] [WiCkPO - ctg(,Bi /2)] , 

Bi = Rnep [tg(,Bih) + WiCkPO - ctg(,Bi /2)] , 

,Bi = w;jC, C = 30, 

x~ep = -l/(WiCH), Wi = i27rF1' F1 = 1.064 gigahertz, 

Rnep = a1 + (b1 - adX1' 

CH = (a2 + c) + (b2 - a2 - c)X2' Po = a3 + (bs - as)xs, 

Ck = a4 + (b4 - a4)x4, Lk = as + (bs - as)xs, 

11 = [a6 + (b6 - a6)X6]/F1, 12 = [a7+(b7-c-a7)X7]jF1, 

c = 10-10 , Xj E [0,1], j = 1,'7, m = 9. 

From the technical point of view a solution is good if 

I Rei - Rei I 
~ Ct:i, 

Re· " 
i = I,m. (1) 

The values of ei, dj, Rei and Im; are presented in Table 1. The values of 

aj and bj , j = 1,'7, are presented in Table 2. 

The problem above may be formulated as a multiple criteria optimization 

problem with 2m criteria and additive utility function [32], too. The utility 

function is I(X), and 1/Ct:;, 1/6?, i = 1, m, are weights of critt<ria in this 

case. 
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Table 1. The values of ei dj, Rei and JII1j 

i ei di Rei III1j 

1 15 30 1.2 -2.4 
2 16.875 33.75 1.5 -3.9 
3 18.75 37.5 2.1 -7.1 
4 20.625 41.25 3.9 -15.0 
5 22.5 45 12.2 -40.0 
6 24.375 48.75 261.0 -113.0 
7 26.25 52.5 19.3 105.0 
8 28.125 56.25 5.6 70.2 
9 30 60 4.8 57.8 

Table 2. The values of aj and bj 

j aj bj 

1 1 20 
2 0 0.1 
3 20 80 
4 0 0.002 
5 0 2 
6 10 15 
7 10 15 

2. The strategy of investigation. Local descents were executed starting 

from 20 common random points and the obtained results were investigated 

using various clustering algorithms. The following question arises: maybe 

it would be better to use one optimization algorithm instead of 11, and to 

perform 220 descents? The experiments proved the correctness of our approach: 

descents from the same point gave from 3 to 8 different solutions due to various 

algorithms used. This is because the hyper surface of J(X) is very difficult. 

Assumptions on J(X) in the optimization algorithms also influenced the results. 

The results of local search starting from the same points allow us to compare 

the efficiency of the used methods, too. So, the investigation also showed the 

best algorithm for solving problems of this type. 
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The problem was investigated using 11 algorithms of local optimization: 

1. POLC31.2 - the steepest descent using a projected gradient (Shah, 

Buehler and Kempthome [9]); 

2. POLC32.1 - a conjugate projected gradient (Fletcher and Reeves [10], 

Hestenes and Stiefel [11]); 

3. POLC36.1 - a variable metric (Davidon [12], Fletcher and Powell [13], 

Goldfarb [14]); 

4. POLC36.2 - a variable metric (Goldfarb [14, 17], Broydenn [15], Fletcher 

[16], Shanno [18]); 

5. POLC39.4 - a variable metric (Oren and Spedicato [19]); 

6. POLC41.2 - the steepest descent using a reduced gradient (Shah, Buehler 

and Kempthome'[9]); 

7. POLC42.4 - a conjugate reduced gradient (Hestenes and Stiefel [11]); 

8. POLC47.2 - a variable metric (Gill and Murray [20]); 

9. POLC51.5 - quasi-Newton (LukSan [21]); 

10. WMCWD - a variable metric (Schittkowski [22]); 

11. MNAR4 - a variable metric (TieSis [23]). 

The first nine algorithms are taken from the system SPONA-82 [28, 29]. The 

algorithm MNAR4 is from [30]. These algorithms differ in their complexity: 

from the gradient-type to a variable metric. The search for the best values 

of parameters for the programs realizing the algorithms above has not been 

performed. These values were used as suggested in the examples prepared by 

authors. Only the maximum number of function calculations was fixed to be 

the same in all the programs: 5000, In SPONA-82 this number is used as 

a default value. The other parameter rather frequently used is the number of 

iterations. The optimization process was never terminated due to this parameter 

during our experiments. 

The results of optimization were analyzed using four clustering algorithms: 

1. The centroid clustering algorithm (CCA) [25]. 

2. Ward's minimum variance clustering algorithm (WCA) [25]. 

3. The average linkage hierarchical clustering algorithm (ALCA) [25]. 

4. The algorithm proposed in [7] and theoretically based in [8] (DCA). 

A lot of investigations in the field of cluster analysis indicates that WCA 

and ALCA are the best among the hierarchical clustering algorithms (e.g., see 

[26]). The programs realizing CCA, WCA and ALCA are taken from SAS 
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[25]. Some details on DCA may be found in [31]. 

3. The results 

3.1. Local descents. The following results are presented in Table 3: 

1. S is the averaged number of calculations of f(X) for a single local 

descent. 

2. N is the number of results of local descents satisfying conditions (1). 

3. SI is the averaged number of calculations of f(X) used to obtain the 

results satisfying conditions (1). 

4. S2 is the averaged number of calculations of f ( X) used to obtain the 

results not satisfying conditions (1). 

5. Sl/ S2 is the ratio of SI and S2. 

Table 3. Results of local descents 

Algorithm S N SI S2 Sl/S2 

POLC31.2 3968 8 5000 3279 1.52 
POLC32.l 3977 10 5000 2954 1.69 
POLC36.1 934 3 1553 824 1.88 
POLC36.2 692 3 748 682 1.10 
POLC39.4 689 5 1025 577 1.78 
POLC41.2 4431 5 5000 4242 1.18 
POLC42.4 4044 3 5000 3875 1.29 
POLC47.2 826 1 957 819 1.17 
POLC51.5 834 3 953 813 1.17 
WMCWD 454 6 425 467 0.91 
MIVAR4 852 7 1056 742 .' 1.42 

From Table 3 we observe a tendency of using a greater number of function 

calculations for obtaining solutions satisfying (1) in comparison with the solu­

tions not satisfying (I). The best optimization results are obtained by POLC32.1 

and POLC31.2, which are the simplest among the algorithms. A bit worse are 

MIVAR4 and WMCWD. But they are significantly better from the view point 

of the used number of function calculations. 

3.2. Application of cluster analysis. The results of 220 local descents were 

analyzed using cluster analysis. The goal of such an analysis was to determine 

groups of points located around different local minima. 
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The analysis was made in two stages: 

1. Analysis of the results satisfying (1) (54 points). 

2. Analysis of all the results (220 points). 

Analysis of the results satisfying special conditions. The first question to be 

answered was as follows: do the points form one cluster or more? If more, 

then how many? 

Fig. 2 shows the densities of appearance of the values of different variables 

and the function f(X). Intervals of change, i.e., the intervals between the least 

and the greatest value obtained in 54 descents, were divided into 7 parts. The 

values of X3, Xs and X6 make two obvious clusters. The densities for other 

variables are more fu~zy. Thus, it is necessary to use additional information 

for determining the number of clusters. 

We introduce a term of an "unreliable" point. These are points where the 

optimization stops due to the restriction on the number of function calculations. 

These points may be far enough from the local minima. Formal criteria devoted 

to determine the number of clusters may also be used. 

1be analysis was made using the algorithm DCA [7, 8, 31]. The values 

of variables were normalized seeking the same influence in the analysis. The 

normalization was made as follows: the values of any variable were divided by 

the length of the interval of change in this variable. 

The partition into two clusters gave the following result: 28 points were 

attached to the first cluster, and 26 points were attached to the second one. 

'This partition coincides with the optimal visual partition of X3, Xs and X6 into 

two clusters. The partition into three clusters gave the following result: 28, 20, 

6. The thifd cluster contains "unreliable" points only. The partition into four 

clusters gave the following result: 28, 18, 6, 2. Two last clusters here contain 

"unreliable" points only. Thus, the most reliable optimal partition is that of 

two clusters. Note that the clustering results have a hierarchical structure while 

DCA is not a hierarchical procedure. 

The number of clusters was examined using a gamma-criterion. It is 

proposed in [24]. In [27] it gave very good results in the search for the 

optimal number of clusters. The value of the gamma-criterion was calculated 

for partitions into 2, 3, and 4 clusters. The maximum of the criterion was 

obtained in the case of clustering into two groups. This is the second motive 

that the number of clusters is equal to 2. 
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Fig. 2. The densities of appearing values of different variables and the 
function f(X). 
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So, the function J(X) is multiextremal and has two minima near to zero: 

1. J(XI ) = 0.393896, Xl = (0.31861,1.,0.95557,0.22026,0.80798, 
0.61446,0.73354). 

2. J(X2) = 0.447964, X2 = (0.22120,1.,0.48568,0.26192,0.49754, 
0.66697,0.69334). 

The surface of J(X) is shown in Fig. 3a. The values of J(X) vary in a 

wide range, so the values of Ig[J(X)] were used in Fig. 3a. The values of 

Xl, ... , X 5 were fixed at the middle point between X 1 and X 2, and the values 
of X6 and X7 were varied in [0,1]. Fig. 3b details a part of Fig. 3a. We can 
observe here the existence of two local minima. 

Complete analysis. The results of 220 local descents were analyzed 
using three hierarchical clustering algorithms: the centroid clustering algorithm 
(CCA), Ward's minimum variance clustering algorithm (WCA), the average 
linkage hierarchical clustering algorithm (ALCA) [25]. The data were not nor­

malized because the obtained values of all variables vary in the similar ranges: 

X1, •.• ,X6 E [0,1], X7 E [0,0.909]. 
'The clustering was proceeded until the moment of appearance of X 1 and 

X2 in different clusters. The clustering results are presented in Table 4. The 
minimal values of function J(X) and the corresponding points for different 
clusters are presented in the rows 1 - 23. The symbol "*" indicates "unreliable" 
points. The symbol "+" indicates that this minimum has been picked out by 
corresponding clustering algorithm. Symbol "-" indicate that this minimum has 
not been picked out by the corresponding clustering algorithm. The ~lustering 
results indicate that the greatest number of clusters has been chosen by CCA. 

4. Conclusions. The local descents from random starting points formed a 

set of solutions which may be considered as local minima of the TRAPATT­
generator design problem. Data analysis methods were applied to the optimiza­

tion results. There are no general methods suitable to determine the number 

of clusters - minima. The human decision is the final one in this paper. The 
investigation showed that the problem has many local minima. However, only 

two minima satisfy technical restrictions (1). These two minima are near to 

zero. The values of other local minima are considerably greater. 

The problem of computer-aided synthesis of the external circuit of the 
tunable subnanosecond pulse TRAPATT-generator may be used as a test for 

comparison of the efficiency of optimization methods. 
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Fig. 3. The surface of !(X). 
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Table 4. The appearance of local minima during cluster analysis 

f(X) :1:1 :1:2 :1:3 :1:4 :1:5 2:6 X7 

+ + + 0.39390 0.31861 1. 0.95557 0.22026 0.80798 0.61446 0.73354 

+ + + 0.44796 0.22120 1. 0.48568 0.26192 0.49754 0.66697 0.69334 

+ + 10.760· 0.17811 1. 0.17743 0.10982 0.19104 0.71817 0.75039 

+ 11.781· 0.23025 0.68393 0.19796 0.45920 0.27033 0.66085 0.68431 

+ + + 21.077· 1. 1. 1. 0.17940 0.48921 0.58138 0.86487 

+ + + 46.642 0.17270 0.91101 0.20983 0.71157 0.32420 0.67.186 0.56522 

+ + 63.308 0.04937 0.65308 O. O. O. 0.94765 0.44999 

+ + 66.481" 0.79100 0.40447 0.70460 0.13916 0.19970 0.82659 0.89488 

+ 68.838 0.12854 0.55221 0.01321 0.61665 O. 0.92699 0.69371 

+ + 68.976 0.03056 1. 0.44369 O. 0.04028 0.95621 0.36175 . 

+ + 72.827 0.67927 1. O. 0.60539 O. 1. 0.86814 

+ + + 73.476 1. 1. O. 0.60962 0.03257 O. 0.84975 

to be continued 
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Table 4. The appearance of local minima during cluster analysis (continuation) 

No I Clustering algorithm I !(Xl Xl X2 %3 X4 :1:5 X6 X7 

I CCA I WCA I ALCA I 
13 + - + 87.101 0.07767 0.29702 O. 0.93343 O. l. 0.44907 
14 + - + 90.493 0.02380 1. 1. O. O. 0.98469 0.07379 
15 + - + 100.00 l. 0.02023 O. 0.53049 0.01652 O. 0.84187 
16 + - + 106.22 0.55520 0.73895 0.00490 0.01351 O. 0.24011 0.90204 
17 + - + 108.49 O. 0.76743 1. 1. O. 0.99549 0.25523 
18 + - - 124.07 0.02149 1. O. O. O. 0.93044 O. 
19 + - - 141.80 0.09631 0.71147 0.746g3 l. 0.47238 0.81684 0.16298 
20 + - + 155.43 0.35778 0.02097 O. 0.78976 0.13742 O. 0.68731 
21 + - + 330.68 O. 1. O. O. 0.36805 O. 0.69813 
22 + - + 350.75 0.32727 0.00632 0.10260 1. 1. 0.97789 0.29401 
23 + - + 1110.9 1. O. O. O. O. O. O. 
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DAUGIAEKSTREMALINIS AUTOMATIZUOTO 

PROJEKTAVIMO UZDAVINYS 

Gintautas DZEMYDA 

Analizuojamas subnanosekundinitt impulstt generatoriaus iSOrillf!S grandines projek­
tavimo u~davinys. Optimizuojama funkcija yra daugiaekstremali. Tyrime daugkartinitt 
lokalinitt nusileidimtt rezultatai, gauti pasinaudojant 11 lokalines paieskos algoritmtt, 

analizuoti 4 klasterizavimo. algoritrnais. Tyrimo tikslas - istirti funkcijos daugiaek­
stremaliskumo mas~. Siiiloma analizes metodika gali biiti naudojama ir kitiems opti­
mizavimo u~daviniams tirti. 


