
INFORMATICA, 1995, Vol. 6, No.2, 233-243

THE COMPARISON OF STANDARD PASCAL

AND TURBO PASCAL 7.0

Vladas TIJMASONIS

Department of Computer Science, Vilnius University
2006 Vilnius, Naugarduko St. 24, Lithuania

Abstract. The newest version of Turbo Pascal- Thrbo Pascal 7.0 - is concentrately
described in comparing with optimal language for programming teaching - Standard Pas­
cal. Data types, control structures, procedures and functions, parameters, new directions
of development are classified and discussed.

Key words: programming languages, Pascal, Turbo Pascal, data types, control
structures, procedures and functions, units, objects.

1. Introduction. The computer programming language Pascal was de­

signed by Niklaus Wrrth to satisfy two principal aims:

a) to make available a language suitable for teaching programming as a

systematic discipline based on certain fundamental concepts clearly and natu­

rally reflected by the language;

b) to define a language whose implementations could be both reliable and

efficient on then available computers.

However, it has become apparent that Pascal has attributes that go far

beyond these original goals. It is now being increasingly used commercially in

the writing of both system and application software.

In 1977 a working group was formed within the British Standard Institution

(BSI) to produce a standard for Pascal. In 1982 the standard for programming

language Pascal (Standard Pascal) was accepted. This standard helps to promote

the portability of Pascal programs between data processing systems and to

compare different versions and implementations of Pascal.

Pascal version for IBM PC (Turbo Pascal) was designed and implemented

by Borland International. The newest version Turbo Pascal 7.0 has appeared

in 1992. In this paper systematic comparison of Standard Pascal and Turbo

Pascal 7.0 (data types, control structures, parameters and so on) is described.

234 The comparison of Standard Pascal and Turbo Pascal 7.0

2. Data types. There are five predefined integer types in Turbo Pascal 7.0:

Integer, Shortint, Byte, Word, and Longint. Each type denotes a specific

subset of the whole numbers (represented in 8, 16 and 32 bits). 10e type of

an integer constant is the predefined integer type with the smallest range that

includes the value of the integer constant. For a binary operator, both operands

are converted to their common type before the operation. The common type

is the predefined integer type with the smallest range that includes all possible

values of both types.

There are five kinds of predefined real type: Real, Single, Double, Ex­
tended, and Compo The real types differ in the range and precision they hold

(4, 6, 8 and 10 bytes).

There are four predefined boolean types. Boolean and Bytebool variables

occupy one byte, a Wordbool occupies two bytes, a Longbool ocupies four

bytes. Boolean is the preferred type and uses the least memory. Bytebool,
Wordbool and Longbool exist primaly to provide compatibility with other
languages and the Windows environment.

In Turbo Pascal it is possible to declare untyped files - file types without

component types:

var f: file;

Why do we need untyped files when we don't know the structure of their com­

ponents (the logical structure of the file) and we can't read, write and process

in usual way? Untyped files are low level input/output channels primarily used

for direct access to the disk regardless of component type and structuring. The

portion of read/write is a physical record (block). Instead of standard proce­

dures Read and Write, two procedures BlockRead and Block Write are used
for high speed data transfers.

In addition to usual pointer types Turbo Pascal allows untyped pointers.

The predefined type Pointer denotes un untyped pointer; that is a pointer that

doesn't point to any specific type. Variables of type Pointer can't by deref­

erenced. Generic pointers, however, may be typecast to allow dereferencing.

Like the value denoting by the word nil, values of type Pointer are compatible

with all other pointer types.

There are three new data types: string type, object type and procedural
type.

The newest ideas of object-oriented languages are reflected and imple-

V. Tumasonis 235

mented in Turbo Pascal through object type. An object type is a structure

consisting of a fixed number of components. Each component is either a field,

which contains data of a particular type, or a method, which perfonns an oper­

ation on the object. Similar to a variable declaration, the declaration of a field

specifies data type and an identifier that names the field. Similar to a proce­

dure or function declaration, the declaration of a method specifies a procedure,

function, constructor or destructor heading.

Contrary to other types, an object type can be declared only in a type

declaration part in the outermost scope of a program or unit. Therefore, an

object type can't be declared in a variable declaration part or within a procedure,

function, or method block. The component type of a file can't be an object

type, or any structured type with an object-typed component.·

Standard Pascal regards procedures and functions as program parts that can

be executed through procedures and functions calls. Turbo Pascal allows proce­

dures and functions to be treated as entities that can be assigned to variables and

passed as parameters. Such actions are made possible through procedural types.

A procedural type declaration specifies the parameters and, for a function, the

result type.

All data types are presented in the Table 1.

3. Strings. Only static strings there are in Standard Pascal (declared as

packed array [1 ... n] of Cllar, n ~ 1). A character string of n characters

may be assigned to the variable of such type.

In Turbo Pascal dynamic strings (that is of variable length) are imple­

mented - string strings. A string type value is a sequence of characters with

a dynamic length attribute (depending on the actual character count during

program execution) and a constant size attribute from 1 to 255.
Turbo Pascal supports a class of character strings called null-terminated

strings. Such string has no length byte; instead it consist of a sequence of

non-null characters followed by NULL (#00) character. The upper limit length

is 65 535 characters. Null-tenninated strings are stored as an array of the form

array [0 ... n] of Char;

Turbo Pascal has a predefined type, Pchar, to represent a pointer to a null­

terminated string:

type Pchar = AChar;

There are no built routines specifically for null-terminated string handling.

236 The comparison of Standard Pascal and Turbo Pascal 7.0

Table 1. Classification of data types

Data type Pascal Turbo Pascal 7.0

Integer + +
Shortint - +
Byte - +
Word - +
Longint - +

Real + +
Simple type Single - +

Double - +
Extended - +
Comp - +
Boolean + +
Bytebool - +
Wordbool - +
Longbool - +

Char + +
subrange type + +
enumerated type + +

array type + +
Structured record type + +

type set type + +
string type - +
file type + +*
object type - +

pointer type + +**
procedural type - +

* Also untyped files
** Also untyped pointers

V. Tumasonis 237

Instead such functions are in the Strings unit. You can perform main oper­

ations with strings: to assign (copy), connect, compare, search and so on.
All types of strings are presented in the Table 2.

Table 2. Classification of strings

The kind of string Pascal Turbo Pascal 7.0

Simple strings (type + +
packed array [1 ... n] of Char)

string strings (type string) - +
Null-terminated strings - +
(type Pchar = AChar)

4. Control structures. Traditionally used control structures (if, case,
while, repeat, for, goto statements in Standard Pascal) in Turbo Pascal 7.0
are extended by flow control procedures Exit, Halt, Break and Continue.

Exit exits immediately from the current block. Executed in a subroutine
(procedure or function), Exit causes the subroutine to return. Executed in the
statemant part of a program, Exit causes the program to terminate. A call to
Exi t is analogous to a goto statement addressing a label just before the end of

a block. Halt procedure stops program execution and returns to the operating
system. Note that Halt initiates execution of any Exit procedures.

Break and Continue are used within a for, repeat, or while statements.
Break procedure terminates the innermost enclosing for, repeat, or while state­
ment. Break is analoguos to a goto statemant addressing a label just after the

end of the innermost enclosing repetitive statemant. Continue procedure causes

the innermost enclosing for, repeat, or while statement to immediately proceed

with the next iteration.
The Turbo Pascal compiler will report an error if a call to Break or

Continue is not enclosed by a for, repeat, or while statement.
All types of control structures are presented in the Table 3.

5. Procedure and function parameters. Constant parameter (it is de­
clared with reserved word const, for example, function !(const i: Integer):
Integer) is local variable which value can't be changed during the execution of

238 The comparison of Standard Pascal and Turbo Pascal 7.0

Table 3. Classification of control structures

Control structures Pascal Turbo Pascal 7.0

IT statement + +
While statement + +
Repeat statement + +
For statement + +
Case statement + +
Goto statement + +
Exit procedure - +
Halt procedure - +
Break procedure - +
Continue procedure - +

a procedure or function. Thus the behaviour of constant parameter is similar
to value parameter. But assignements to a formal constant parameter aren't

allowed. Thus the compiler can generate more efficient code when constant

parameters are used instead value parameters.

It is possible to use formal parameters without its types - so called untyped

parameters (parameter x in declaration procedure p(var x; c: Char)). The
corresponding actual parameters can be any variable, regardless of its type.

Within the procedure ar function, the untyped parameter is typeless; that is

incompatible with variables of all other types. It means that it is impossible to
use such parameter. This a little strange situation is corrected: the variable can

get a specific type through variable typecast.

Another new sort of formal parameters in Turbo Pascal 7.0 - open-array

parameters. They are, in some sense, similar to Standard Pascal conformant

array parameters. Open-array parameters are declared using reserved words

array, of and the type of array elements (function S(m: array of Real):
real;). Actual parameter must be an array of any index range variable whose

elements type is real. Within the procedure or function the formal parameter
behaves as if it was declared as

array[O .. n - 1] = of Real,

where n is the number of elements in the actual parameter. The index range of
the actual parameter is mapped onto the integers 0 to n - 1. The High standard

V. Tumasonis 239

function returns the index of the last element in the actual parameter. Thus if

we have the function call S(a) and the actual array

var a: array [p .. q] of Real;

corresponds to formal open array m, then m[i] means a[p + i], i = 0,1, ... ,
high(m); high(m) = p - q.

The same situation can be modelled in Standard Pascal. Function heading

function S(m: array [u .. v: Integer] of Real): Real;

has two extra parameters u and v. After the call S(a) these parameters have the

value of p and q. Thus the formal conformant array parameter m corresponds

to the actual array a and m[i] means a[iJ, i = u, u + 1, ... , v.

Open-string parameters are declared with standard word (not reserved!)

OpenString (procedure k(var s: Openstring». The actual parameter can be

a variable af any string type.

Notice, that there not procedural and functional parameters in Turbo Pas­

cal 7.0. But such parameters could be expressed by procedural type variables

in following way.

In Standard Pascal:

procedure P(n: Integer;

function I(i: Integer): Integer;

var m: Integer);

function III(n: Integer): Integer;

The call to the procedure P(5, 111, s).
In Turbo Pascal 7.0:

type Func = function(i: Integer): Integer;

var fvar: Func;

function Ill(n: Integer): Integer; far;

procedure P(n: Integer;

I: Func;

var m: Integer);

The call to the procedure Ivar := 111;

P(5, Ivar, s)

or P(5, 111, s).
All types of parameters are presented in the Table 4.

240 The comparison of Standard Pascal and Turbo Pascal 7.0

Table 4. Classification of parameters

Kind of parameters Pascal Turbo Pascal 7.0

Value parameters + +
Variable parameters + +
Procedural parameters + -
Functional parameters + -
Confonnant array parameters + -
Constant parameters - +
Untyped parameters - +
Open-array parameters - +
Open string parameters - +

6. Procedures and functions. Turbo Pascal supports two procedure and
function call models: near (short two bytes address is used) and far (long

four bytes address is used). The near call model is more efficient, but near
procedures and functions can only be called from within the module they are
declared in. The compiler automatically selects the correct call model based on
a procedure and function declaration.

The Turbo Pascal run-time library and the code generated by the compiler
are fully interruptible. Also, most of the run-time library is reentrant, which
allows to write personal interrupt service routines in Turbo Pascal - interrupt
procedures.

External declarations let to interface with separately compiled procedures
and functions.

With assembler declaration it is possible to write procedures and functions

in assembly language. The inline directive enables generate machine code
instruction instead of procedure or function call.

All types of declarations are presented in the Table 5.

7. Standard procedures and functions. First of all we should like to

notice the different status of standard procedures and functions in Standard
Pascal and Turbo Pascal. In Standard Pascal they are the part of language.
There is no need to declare them. You can imagine that they are declared in the
imaginary block surrounding the program. It is possible to redefine the same

V. Tumasonis 241

Table 5. Classification of declarations

Kind of declaration Pascal Turbo Pascal 7.0

Procedure and function + +
Forward + +
Far - +
Near - +
External - +
Assembler - +
InUne - +
Interrupt - +

identifier within the program. The user of Standard Pascal only uses standard

procedures and functions. There is no need for him to know where are these

procedures and functions, how to search them and so on. In fact we don't care

about of implementation of while statement, for example.

The situation in Turbo Pascal is quite different. A lot of usefull procedures

and functions are in different a priori created units so called standard units. All

these units are in the run-time library. Standard procedurs and functions of

Standard Pascal are in the System unit (read and write procedures, arithmetic

functions, floating point and string handling and so on).

The Dos and WinDos units implement a number of very usefull operating

system and file handling routines. None of the routines in these units are defined
by Standard Pascal, so they have been placed in their own modules.

The Crt unit permits to write programs that send their screen directly to

the BIOS or to video memory. The result is increased speed and flexibility.

The Printer unit lets send standard Pascal output to printer using Write

and Write/no

The Overlay unit enables to reduce program's total run-time memory

requirements. In fact, you can write programs that are larger than total available

memory because only part of your program will reside in memory at any given

time.

With Turbo Pascal extended syntax and the Strings unit programs can use

null-terminated strings, so that they are more compatible with any Windows

programs.

242 The comparison of Standard Pascal and Turbo Pascal 7.0

Table 6. Classification of development directions

Development New notions and facilities
direction

Units Unit, interface part, implementation
part, initialization part, uses clause,
modular programming, standard units

Objects-data and actions, private
Objects part, public part, methods, inheritance,

constructors, destructors, dynamic
objects, virtual methods, virtual
objects, polymorphism, object-oriented
programming

Absolute variables, interruptions,
Low level interrupt procedures, Intr and MsDos
facilities procedures, CPU registers declaration,

direct access to memory and ports,
assembler code and machine code inside
Pascal programs.

The Graph unit supplies a set of fast, powerfull graphics routines. It

implements the device independent graphic handler. Notice that some units

represent their own notions system, own environment. You can study these

possibilities independently of the language.

The System unit is used automatically by any unit or program. Other

units are not used automatically. You must include them in the uses clause.

8. Development directions. Main Pascal development directions, realized

in Turbo Pascal 7.0:

1. Units;

2. Objects;

3. Low level programming facilities.

All development directions are presented in the Table 6.

V. Tumasonis 243

REFERENCES

Specification for Computer Programming Language Pascal. (1982). British Standards
Institution.

Thmasonis, V. (1993). Paskalis ir Turbo Paskalis 7.0. Ukas Publishing Company,
Vilnius. 382 pp. (in Lithuanian).

Turbo Pascal. Version 7.0. Language Guide. (1992). Scotts Valley: Borland Interna­
tional.

Turbo PascaL Version 7.0. User's Guide. (1992). Scotts Valley: Borland International.
Turbo Pascal. Version 7.0. Programmer's Reference. (1992). Scotts Valley: Borland

International.
Wirth, N. (1971). The programming language Pascal. Acta Informatica, 1(1).
Wirth, N. (1972). The Programming Language Pascal: Revised Report .. Zurich: ETH.

Received January 1995

V. 1'umasonis is an associate professor of Department of Computer Sci­

ence at Vilnius University. He received the Degree of Candidate of Physical and

Mathematical Sciences from Moscow University in 1972. His research inter­

ests include programming languages, symbolic computation system, computer

algebra.

PASKALIO KALBOS STANDARTO IR TURBO PASKALIO

LYGINAMOJI ANALIZE

Vladas TUMASONIS

Straipsnyje lyginamas Paskalio kalbos standartas, kuri 1982 metais prieme Bri­
tanijos Standartizacijos institutas (British Standard Institution), su Thrbo Paskaliu 7.0.
Pastarasis turi did:liuli programavimo priemoniq rinkini (modulius, objektus, papildomas
eilu~iq apdorojimo priemones ir kt), kuris gali tenkinti net ir reikliausill programuotojll.
Lenteliq forma sistemingai pateikiamos visos papildomos Thrbo Paskalio 7.0 priemones

(duomenq tipai, valdymo struktiiros, procedUros ir funkcijos, parametrq rii~ys, naujos
i~pletimo kryptys), gretinant su Paskalio standartu. Toks gretinimas turetq padeti geriau
pajusti Paskalio ir Thrbo Paskalio dvasill.

