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Abstract. An algorithm for the sequential analysis of multivariate data structure is 
presented. The algorithm is based on the sequential nonlinear mapping of L-dimensional 
vectors from the L-hyperspace into a lower-dimensional (two-dimensional) vectors such 
that the inner structure of distances among the vectors is preserved. Expressions for 
the sequential nonlinear mapping are obtained. The mapping error function is chosen. 
Theoretical minimum amount of the very beginning simultaneously mapped vectors is 
obtained. 

Key words: dimensionality reduction, sequential nonlinear mapping, sequential 
detection of changes. 

1. Introduction. The purpose of this paper is to present essential inves­

tigations of the sequential nonlinear mapping algorithm which has been found 

to be highly effective in the sequential analysis of multivariate data structure. 

Technological process or dynamic system (further - DS) can be described ei­

ther by various parametric models, consisting of L parameters: aI, a2, ... , aL, 

or by random process generated by this OS. Then the OS state is represented 

by L data characterizing the random process too. When the OS state changes 

the L parameters describing the OS change as well. The OS can have several 

unknown states and we need to identify the states and to detect their changes 

sequentially and independently of the history. It is convenient to watch the 

OS states and their changes marking them by some mark on PC screen and, 

having in mind the existence of particular states, to identify the current state, 

a deviation from it or a transition to other state when the mark changes its 

position. 

For solution of this problem it is necessary to have a method of sequential 

detection of many changes in several unknown properties of random processes. 
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There are many methods of detection of changes in the properties of random 

processes in the scientific pUblications (Kligiene and Telksnys, 1984; Basseville 

and Benveniste, 1986; Nikiforov, 1983), but there are no methods to solve the 

above mentioned problems, because DS can have several unknown states, the 

DS states can change themselves abruptly or slowly and we need to watch 

many changes of DS states sequentially and in a real time. In Montvilas (1993) 

the sequential nonlinear mapping for data analysis is presented and it has been 

found to be effective in sequential analysis of DS. This method is based on 

the sequential nonlinear mapping onto the plane of vectors of the L parameters 

representing the DS states. In this paper the sequential nonlinear mapping 

is considered, the mapping error function is chosen and theoretical minimum 

amount of at the very beginning simultaneously mapped vectors is obtained. 

The last is of great theoretical and practical importance, because it let us avoid 

theoretically possible mistakes of sequential mapping when the amount of the 

first M simultaneously mapped vectors of parameters is taken to be the smallest 

(M = 2). 

2. Sequential nonlinear mapping. Let a DS be in any state Si of the set 

of possible states: Si E S. We can watch vector of L parameters at the output of 

the DS. If these parameters are of different physical nature, we must introduce 

the scale coefficients for each parameter. For identification of states of the DS 

or detection their changes it is necessary at discrete time moments to map the L­
dimensional vectors sequentially and nonlinearly into two-dimensional vectors 

in order to reflect the present state by some mark on the PC screen. According 

to the mark position on the screen we can make a decision of DS state and its 

abrupt or slow change if the mark position changes. The main requirement of 

mapping the L-dimensional vectors into two-dimensional vectors is to preserve 

the inner structure of distances among the vectors. This is achieved using a 

nonlinear mapping procedure. 

A sequential mapping requires existence of earlier on mapped vectors, so 

at the very beginning we have to carry out the nonlinear mapping of the M 

vectors (M ~ 2) simultaneously. The expressions in Sammon (1969) were 

used for that. Afterwards we map sequentially and nonlinearly the receiving 

parameter vectors, and, in such a way, we can identify the states and detect 

their various changes for a practically unlimited time. In order to formalize 

the method we denote by N this practically unlimited number of the arriving 
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vectors. 

Now we present the sequential nonlinear mapping algorithm and choose 

the mapping error function. Let us have M + N vectors in the L-hyperspace. 

We denote them Xi, i = 1, ... ,M; Xj, j = M+ 1, ... ,M+N. The 

M vectors are already simultaneously mapped into two-dimensional vectors 

Y;, i = 1, ... , M, using expressions in Sammon (1969). Now we need to 

map sequentially the L-dimensional vectors Xj into two-dimensional vectors 

}j, j = M + 1, ... , M + N. Here the simultaneous nonlinear mapping expres­
sions will change into sequential nonlinear mapping expressions, respectively. 

First, before performing iterations it is expedient to put the two-dimensional 

vectors being mapped in the same initial conditions, i.e. Yjk = Ck, j = 
M + 1, ... , M + N; k = 1,2. Note, that in the case of simultaneous map­
ping of the first M vectors the initial conditions are chosen in a random way 

(Sammon, 1969). Let the distance between the vectors Xi and Xj in the L­
hyperspace be defined by di) and on the plane - by d~, respectively. This 
algorithm uses the Euclidean distance measure, because, if we have no a priori 

knowledge concerning the data, we would have no reason to prefer any metric 

over the Euclidean metric (Sammon, 1969). 
For computing the mapping error of distances E we can find at least three 

expressions. 

1 ~ X Y)2 
E1 = ,,:"I (dK)2 ~(dij - dij , 

L..",=1 IJ ,=1 

j=M+l, ... ,M+N; (1) 

function E1 reveals the largest errors independently of magnitudes of di); but if 

di) is small then the mapping error can be comparable with the same distance. 

E2 = t (df5 ~ d~) 2 , 

i=l dij 
j=M+l, ... ,M+N; (2) 

function E2 reveals the largest partial errors independently of magnitudes of 

Idf5 - dlj I; but in this case big distance will have rather big mapping error. 

1 ~ (df5 - dlj)2 
E3= M x L..J dK ' j=M+l, ... ,M+N; (3) 

Li=l dij ;=1 I) 

function E3 is the useful compromise and reveals the largest product of error 

and partial error. So we choose the third expression for computing the mapping 

error of distances E. 
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For correct mapping we have to change the positions of vectors }j, j = 
M + 1, ... , M + N on the plane in such a way that the error E would be 

minimal. This is achieved by using the steepest descent procedure. After the 

r-th iteration the error of distances will be 

(4) 

where 

2 

d~(r) = I: [Yik - Yjk(r)]2, (5) 
k=l 

i = 1, ... , M, j = M + 1, ... , M + N. 

During the r + 1 iteration the coordinates of the mapped vectors }j will be 

Yjk(r + 1) =Yjk(r) - F~jk(r), (6) 

j = M + 1, ... , M + Nj k = 1,2, 

where 

~jk(r) = {)Ej(r) / 1 {)2 ~j(r) I. 
{)Yj k (r) {)Yj k (r) 

(7) 

F is the coefficient for correction of the coordinates and it is defined empirically 

to be F= 0.35; 

(8) 

(9) 

where 
2 X Y 

AI x' D = dij - dij , C = Yjk - Yik· 
2:i=l dij 

H= 

After some iterations the error of distances will be Ej < €, where € can be 

taken arbitrary small, the iteration process is over and result is shown on the PC 
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screen. In fact it is enough E = 0.01. In order to have equal computing time 

for each mapping we can execute constant number of iterations R. In practice 

it is enough R = 30. 

3. Minimum necessary value of the M. While executing experiments, in 

all generated situations, when amount of at the very beginning initial simulta­

neously mapped vectors of parameters of OS states was taken to be M = 2, at 

every time moments the marks of OS states got into their right places on the PC 

screen, and the states were identified correctly (Montvilas, 1992; 1993; 1994). 

Even marks of those states which were not involved into M initial vectors of 

parameters had got their own places on PC screen and at every time moment 

the places of marks on the screen corresponded to right OS states entiJely. 

However, theoretically there are possible such cases, when points (ends of 

parameter vectors) being in different places in the L-hyperspace can be mapped 
into one point on the plane, because these points have the same distances with 

M = 2 simultaneously mapped points. By way of illustration let us map 

points from three-dimensional space (L = 3) onto the plane. I..ct the initial 

simultaneously mapped points are A and B (see Fig. 1). Let they are being 

on the axis of cylinder. Then points C, D and E being on circle, which is 

on surface of cylinder, have the equal distances with point A and point B: 
dx -dx -dx anddx -dx -dx 

AC - AD - AE BC - BD - BE' 

y 

Flg.l. The case of three-dimensional space (L = 3). 
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So points C, D and E having the same initial conditions will be mapped onto 

the plane into the same point If points C, D and E reflect the different states 

of DS then we shall have a mistake. 

No let us have three points M = 3 as the initial points for simultaneous 

mapping: A, B and C. Then one can draw any straight line orthogonal to 

the plane ABC. Any two points of the line G and J{ being on different sides 

of the plane ABC have equal distances with points A, B and C: dlG = 
dlK, d~G = d~K and d2:G = d2:K' So in this case points G and J{ can be 
mapped into one point, too. 

When taking M = 4 points (A, B, C and D) so that the fourth D point 

would not be on the plane ABC and all M = 4 points would form the tbree­

dimensional space we have a situation when even theoretically one can not find 

any two points, which have equal distances with all simultaneously mapped 

M = 4 points. 

Thus, having analysis of various possible situations at diverse L and S 

values, we can draw a conclusion that for initial simultaneous mapping one 

need to take M = min(L + 1, S) when S is known or M = L + 1 when Sis 
unknown or dynamic system can have indeterminate or spoiled states, besides, 

these M = L + 1 points have to form the L-dimensional space. 

In practice, how it was mentioned above, it is enough to take M = 2 
vectors of DS states for the initial simultaneous mapping, because cases con­

sidered here can take place only under coincidence of unexpectedness. How­

ever, in order to avoid only theoretically possible complications, we need to do 

the following: after having simultaneous mapping of M = 2 and sequential 

mapping of L - 1 vectors we have got L + 1 vectors, already. Then we have 

to map simultaneously the available L + 1 vectors again and after that to map 

sequentially the receiving later vectors with respect to the initial L + 1 vectors. 

4. Conclusions. The considered method of sequential nonlinear mapping 

of vectors of parameters from the L-hyperspace onto the plane enables us 

either to sequentially detect many abrupt or slow changes in several unknown 

properties of random processes or to sequentially identify the dynamic systems 

states, their jumpwise or slow changes and to watch the situation on the PC 

screen. 

Before sequential identification of the states or detection of changes in 

properties of random processes, it suffices to map simultaneously only M = 2 
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state vectors. However, in order to avoid probably only theoretically possible 

complications one need to take M = L + 1, where L is the dimensionality 

of vectors of parameters which describe the dynamic system states or random 

process properties. Besides, these M = L + 1 points have to fonn the L­
dimensional space. 
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NUOSEKLAUS NETIESINIO ATVAIZDAVIMO DUOMENl,I 

STRUKTUROS ANALIZEI KLAUSIMU 

Algirdas Mykolas MONTVILAS 

Pateikiamas daugiama~ill duomenq struktiiros analizes algoritmas, kuris remiasi 
L-ma~ill vektorill, apra~an~ill duomenis, nuosekliu netiesiniu atvaizdavimu i dvima~ius 
vektorius, i~saugant vidin«; atstumq tarp jll struktiirll. Gautos nuoseklaus netiesinio at­
vaizdavimo i~rai~kos. Parinkta atvaizdavimo paklaidos funkcija. Gautas teorinis mini­
malus pa~ioje prad~ioje vienalaikiai atvaizduojamq vektoriq kiekis. 


