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Abstract. We apply some concepts of Infonnation-Based Complexity (mC) to 

global and discrete optimization. We assume that only partial infonnation on the ob­
jective is available. We gather this partial infonnation by observations. We use the 
traditional mc definitions and notions while defining fonnal aspects of the problem. 
We use the Bayesian framework to consider less fonnal aspects, such as expert knowl­
edge and heuristics, 

We extend the traditional Bayesian Approach (BA) including heuristics. We call 
that a Bayesian Heuristic Approach (BHA). 

We discuss how to overcome the computational difficulties using parallel com­
puting. We illustrate the theoretical concepts by three examples: by discrete problems 
of flow-shop sheduling and parameter grouping, and by a continuous problem of batch 
operations scheduling. 
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crete. 

1. Outline of me 
1.1. General objective. We introduce some concepts of Infonnation Based­

Complexity (IBC) (Packel and Wozniakowski, 1987). We follow Traub and 

Wozniakowski (1992) while using the IBe notation and definitions. Let 

S: F-+G, (1) 

where F is a subset of a linear space and G is a nonned linear space. We wish 

to compute an approximation to S(f) for all f from F. 

1.2. Infonnation operations. Typically, f is an element from an infinite­

dimensional space and it cannot be represented on a digital computer. We 
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therefore assume that only partial information 1 about f is available. We gather 

this partial information about f by computing information operations L(J), 
where LEA 2. The class A denotes a collection of information operations that 

may be computed. 

For each f E F, we compute a number n of information operations from 

the class A. Let 

(2) 

be the computed information about f. We stress that Li can be chosen adap­

tively. That is, the choice of Li may depend on the already computed L1 (I), 
L2(1), ... , Li-1(1). We do not consider termination criteria, thus we fix the 

number n of information operations. 

N(I) is called the information about f, and N is the information operator. 

In general, N is many-to-one, and that is why it is impossible to recover the 

element f, knowing y = N (I) for f E F. For this reason, the information N 
is called partial. 

1.3. Algorithm of approximation. Having computed N(I), we approxi­

mate S(I) by an element U(I) = ¢(N(I)), where ¢: N(F) --+ G. A mapping 
¢ is called an algorithm. 

The definition of error of the approximation U depends on the setting. In 

the worst case setting 

e(U) = sup IIS(I) - U(I)II, 
/EF 

(3) 

and in the average case setting, given a probability measure J.l on F, 

e(U) = J IIS(I) - U(I)IIJ.l(df). (4) 

/EF 

1.4. Cost of computing. Suppose that for each LEA and for each f E F, 

the computation of L(I) costs a unit. We call that an observation cost. Let the 

cost ( N, f) denote the cost of computing the information N (I). Note that the 

1 For simplicity, we do not consider contaminated information. 
2 Later we call those operations as observations. 
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cost ( N, f) ~ n, and the inequality may occur since adaptive selection of L; 
may require some operations in addition to the cost of n observations. 

Knowing y = N(f), we compute U(f) = ljJ(y) by combining the infor­

mation Li (f). Let the cost ( 1jJ, y) denote the cost of operations from those to 
be computed ljJ(y). 

The cost of computing U (f), the cost (U, f) are given by 

cost (U, f) = cost (N, f) + cost (1jJ, N(f)). (5) 

In the average case setting 

cost(U) = J cost(U,f)J-t(df). (6) 
F 

Later on we shall divide the cost (U, f) into two parts: the cost of ob­

servations n and the cost of auxiliary computations a necessary for adaptive 

selection of Li and for computation of the algorithm ljJ(y). Usually we are 
certain how to define the observation cost but are not certain about the cost 
of auxiliary computations. Therefore later on we shall consider the cost of 

auxiliary computations just in general terms, such as "low", "high" etc. 

In the IBe framework the c-complexity is defined as a minimal cost among 

all U with error at most c 

comp(c)=inf{cost(U): U such that e(U)::::';;c}. (7) 

1.5. Radius of information. The traditional IBe theory makes a distinc­

tion between information and algorithm. As we have already explained, the 

approximation U (f) is computed by combining information operators from the 

class A. Let y = N(f) denote the computed information. The set S(N-l(y» 
consists of all elements from G which are indistinguishable from S(f). Since 

U(f) is the same for any f from the set N-1(y), the element U(f) must serve 

as an approximation to any element 9 from the set S( N- 1 (y). The quality of 

approximation U(f) depends on the "size" of the set S(N-l(y). Therefore 

IBe defines the radius of information radinf(N) considering the set S(N-1(y) 
for y E N(F). In the worst case setting that means the maximal radius 

radinf(N) = sup rad (S(N- 1 (y))). 
yEN(F) 

(8) 
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Here rad(A) = infxEG sUPaEA IIx - all· 
In the average case setting radinf(N) means the average radius. A formal 

definition of the average radius is more complicated. 

1.6. Bayesian risk. We shall not use the information radius while consid­

ering the optimization problems. We mentioned the information radius just as 

an elegant concept of IBe. We shall minimize the Bayesian risk R(J.I) defined 

by the condition 

R(J.I) = inf e(U). u 
(9) 

We stress that we take the infimum over all possible U. We see that U 
can be identified with a pair (N, I), where N is the information and tP is the 

algorithm that uses this information. It means that we take the infimum over 

all the information N consisting of information operators from the class A, and 

over all the algorithms tP that use N. Now we apply those concepts to a global 

optimization example. 

2. me and global optimization 

2.1. Observations. Let F be a family of continuous real functions f 
defined on an m- dimensional cube A = [-1, l]m C Rm, thus G = Rm. Let 

S(J) = x*(J) = x* = arg minf(x). 
xEA 

The information is obtained by the information operator 

with the points Xi adaptively chosen and the number n given. 

(10) 

(11) 

We call a pair Zi = (Yi,Xi), where Yi = f(Xi), an observation. We call 

the vector z(n) = (Zl' Z2, ... , Zn) an observation vector. 

Denote the final decision by Xn+1 and the result of the final decision by 
Yn+1 = f(xn+t). 

We consider adaptive information, thus the point of the next observation 

Xi+l may deper;tdon the already observed results z(i) = (Zl' Z2, ... , Zi-l). The 
observation vector z(n) = I(N, I) is the information about f obtained after n 
observations. In general, z(n) is many-to-one, and that is why it is impossible 

to recover the element f, knowing z(n) = N(J) for f E F. 
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2.2. Decision algorithms. Having computed z(n) = N(J), we approxi­

mate S(J) by an element Xn+l = U(J) = ¢(N(J», where ¢: z(n) -+ A. We 

call X n+! the final decision. 

If we wish to make each observation in an optimal way we have to define 

the algorithms of sequential decisions, too. We call a mapping ¢?: z( i) -+ A 
an algorithm of sequential decision if i < n. Thus we define each observation 

Xi+l = ¢?(z(i», i = 1, ... , n 3 

2.3. Errors. The error of the approximation U in the average case setting 

e(U) = J w(S(J), U(J»)p(dJ). (12) 
F 

We assume a linear loss function: 

w(S(J), U(J» = f(U(J») - f(S(J». (13) 

Here f(S(J» = f(x*) is the global minimum of f, and f(U(J» = 
f(xn+d is its approximation after n observations. 

The second component f(S(J» of expression (14) does not depend on 

the decision algorithms ¢ and ¢? Therefore we omit this component 

w(U(J» = f(U(J») = f(xn+d· (14) 

In the average case setting, given a probability measure p on F, 

e(U) = J f(U(J»p(dJ). (15) 

JEF 

3. Bayesian approach (BA) 
3.1. Sequential decisions. After the observation i we choose the next 

Xi+l E A the infimum to be attained: 

Xi+! = arg inf J f(U(J»)p(dflz(i»). 
rEA 

(16) 

N-l(z(i» 

3 The notion of sequential decisions is indirectly included while defining the adaptive 

information operations L; in the traditional me framework (Packel and Wozniakowski, 

1987. 
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Condition (16) defines the sequential decision rule ¢1i: z( i) -+ A. 
Using the statistical language, we may say that the measure J1lz( i) is an a 

posteriori measure that represents our belief in the distribution of elements f E 

N-l(z{i)) which are indistinguishable after the information z(i) = Ni(J) has 

been obtained. Here Ni (J) = (J ( Xl, ... , f ( Xi)) denote information operator 

(11) truncated at the observation i ~ n. 
We see that when defining algorithm (16) we have to solve a kind of 

multi-dimensional nonlinear dynamic programming problem. The reason is that 

making a decision at some stage i < n we have to predict what information we 

will get later. It means that we should predict all the pairs Zj = (Xj, Yj), i < 
j < n + 1. We cannot expect to obtain the complete multi -stage solution. Thus, 

we consider various ways to simplify the problem. 

3.2. Simplified decisions. Assuming that the current observation is the 

last one (i = n) we may reduce the sequential decision rule (16) to a sequence 

of non-sequential problems 4. We call the non-sequential decision based on the 

assumption that i = n as a "zero-step" approximation (Mockus 1. and L., 1991) 

In doing so we may oversimplify. If the minimal conditional expectation 

happens to be at some observation point, then the optimization stops. An 

example is a Wiener process. 

Consider a family of continuous functions equipped with the classical 

Wiener measure J1 (Zilinskas and Zygliavsky, 1992). Usually 

where J1i(X) is the conditional expectation of f(x) given z(i), and 

Xj(i) = arg mjn f(xj). 
l';;;;J';;;;n 

From (16) and (17) it follows that 

Xi+! = Xj(i)· 

(17) 

(18) 

(19) 

It means that the optimization stops here, (see condition (17». And we 

may be far away from any minimum. 

4 Corresponding to the optimal error algorithm ¢1 defined by Packel and Wozniakowski 

(1987). 
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Therefore, further we consider a "one-step" approximation assuming that 

the next observation is the last one: i = n - 1. It means that we use sequential 

decisions, but we look only one step ahead. . Theoretically we can see two 

steps ahead, three steps ahead, and so on. However we do not see any specific 

advantages to see more than one step ahead. Besides, we do not know any 

practical means to do that. 

4. A posteriori measure 

4.1. Traditional case. If N (I) is a measurable mapping and if F is a mea­
surable subset of a separable Banach space (Packe1 and Wozniakowski, 1987), 

then we may define the a posteriori measure Jllz(i) by an a priori measure Jl. 
A definition of the measure Jllz(i) by the measure Jl is useful for theoretical 

investigation. This way we keep Kolmogorov's consistency conditions and so 
get a powerful analytical tool. For example, we may show how the sample 

behavior depends on the a priori measure Jl, etc. The conditions on Jl provid­

ing the continuity, differentiability, and the Lipschitzian properties of sample 

functions are well known (Cramer and Leadbetter, 1967). 

Namely, the sample functions f(x) of some stochastic process e are con­

tinuous (mod P) on [0,1] if the difference 

Ph(t) = p(t + h, t + h) - p(t + h, t) - p(t, t + h) + p(t, t) (20) 

satisfies the condition 
Klhl 

Ph(t) < "log Ihllq ' 
(21) 

where q > 3, K > 0, and P is a probability measure defining the stochastic 

process e. 
Those results are important while using the proper sequential decisions as 

defined by recurrent equations (16). 

4.2. Replacing consistency conditions. It is less clear why we need to 

keep the consistency conditions when we apply the one-step approximation. 

Using the one-step approximation means that we change the statistical model 

after each observation. The consistency conditions mean that we update the 

information while keeping the same statistical model (considering the same 

stochastic function). Consequently, the traditional consistency conditions seem 

almost irrelevant using the one-step approximation. Therefore we replace them 
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by some weaker conditions. Namely, the continuity of Bayesian risk and sim­

plicity of expressions (Mockus, 1989). 

5. Bayesian Heuristia; Approach (BRA) 

5.1. Why heuristics? An important advantage of the Bayesian approach 

is that we may include some expert knowledge. That is the main reason why 

we use the Bayesian approach. Applying the traditional Bayesian setup we may 

include the expert knowledge while defining an a priori measure JJ. Looking at 

many real life decision techniques we may notice that the expert knowledge is 

. usually exploited via some expert decision rules, so called heuristics. 

There are hundreds of well known heuristic optimization techniques in 

engineering design and many other fields (Pardalos et al., 1993; Helman et 

al., 1993). Therefore we may extend the application of the Bayesian approach 

if we find the ways how to include heuristic optimization into the Bayesian 

framewoIk. Later on we will consider one of such ways . 

5.2. Defining heuristia;. Using the BHA we denote the original objective 

not by f but by v: 
v = v(d), dE A c Rm. 

Denote the original optimization problem by 

d* = min v(d). 
dED 

(22) 

(23) 

A different notation of the objective helps to recognize what approach we 

use: the objective v means the BHA, and the objective f means the BA, or 

some other traditional approach not involving any heuristics. 

Denote some auxiliary objective by 

h = h(d, v) E H, dE D = D(v) CA. (24) 

Call function (24) a heuristics. 

Call the following mapping a randomized heuristic decision: 

6~: H -+ D. (25) 

Mapping (26) defines the variable dn E D as a function of heuristics h 

depending on some randomization measure 'If' and the stage n: 

dn = 6~(h). (26) 
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We call some sequence of heuristic decisions dn 1I"-consistent if the se­

quence converges to the global minimum x*: 

lim dn = x" (mod 11"). 
n .... oo 

(27) 

We consider the randomized heuristic decisions because the randomization 

is an easy way to get the convergence. Condition (27) holds if the probability 

11" to hit any c-neighborhood in a continuous case (or any point in a discrete 

case) is positive. 

Usually we cannot specify exactly what heuristics h and what randomiza­

tion 11" we would prefer. In such cases it is natural to consider some "mixture" 

of heuristics h. and/or some mixture of randomizations 11"/. However, we are 

not certain about the best "weights" of the mixture. The "weight" of a mix­

ture component means the probability to use this component. It is a sort of 

lottery where we may "win" some particular heuristics orland some specific 

randomization procedure. In this lottery the weights define the probabilities to 

"win". 

We represent heuristics as a vector h = (h., s = 1, ... , S) and random­

ization measures as a vector 11" = (11"/, I = 1, ... , L). Denote the weights of 

the components h. and 11"/ as a vector x E X: 

x = (Xi, i = 1, ... , n), L = 1, Xi ~ 0, n = S + L. (28) 

A convenient way to represent the uncertainty about the mixture of weights 

is by some a priori measure /lH on X. 
Applying the Bayesian Heuristic Approach (BHA) we divide the solution 

of original optimization problem (23) into two parts: 

• in the first part we get the optimal mixture of randomized heuristics 

x* = arg minf(x), 
xEX 

given an a priori measure /lH of weights x EX; 

(29) 

• in the second part we optimize original objective (22) using randomized 

heuristic decisions (26) defined by this mixture. 

53. Optimizing heuristics. We may regard this two-part procedure as a 

reduction of the original problem of objective v( d) optimization to an auxiliary 
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problem of mixture of weights x optimization. By mixture of weights we 

define the probabilities of using different heuristics orland randomizations. We 
define by f( x) the results of the repeated Monte Carlo simulation applying 

some consistent heuristics h to the function f using weights x. We call those 

techniques as Bayesian Heuristics Approach (BAH) (Mockus J. and L., 1994). 

We may see that the number of weight vector components is defined just by 

the number of different heuristics and different randomization procedures. 

The dimensionality m of the original problem mind v(d), dE Rm is not 

directly related to the dimensionality n of the corresponding BHA problem. 

Usually m > n. 

5.4. Discrete optimization. There are some additional difficulties defining 
an a priori measure on a set of the original discrete optimization problem. The 
reason is that the neighborhood relations are not uniquely defined on discrete 
sets. Those relations are important defining the a priori measure. It is natural 

to assume the statistical relation to be weak between distant points and strong 
between the close ones. We may apply this assumption only if we know the 
neighbors. The problem is that the a priori measure in discrete cases depends 
on the neighborhood definition which is not always clear. 

We avoid this problem using the Bayesian Heuristics Approach. Here 
we define the a priori measure on a continuous set of weights of randomized 
heuristic decisions. This is the an additional advantage in applying the BHA to 
the discrete optimization problems. 

5.5. "Teaching" heuristics. We may enhance the efficiency of the Bay­
esian Heuristics approach by "teaching" techniques, common in pattern recog­
nition, neural networks, etc. By "teaching" we mean the optimization of x 

by some selected members of the objective function v family V. We apply 

those parameters to the other members of the family V later on Kuryla and 
Mockus (1995). The teaching is important in designing a "on-line" techniques. 

We investigate the effect of teaching later on, while considering the flow-shop 

problem, see Fig. 1. 

5.6. Comparison with traditional approaches. In traditional approaches 

(both the IBC and the BA) we define the a priori measure J-t on a set of original 
objective functions. The optimal decisions are determined by expressions (16). 

Using the BHA we consider a different framework: we define the a pri-
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ori measure PH on a set of randomized heuristic decisions directly, skipping 
condition (16). It means that we skip the most difficult part of the problem. 

When applying the BA to optimize the original problem directly we: 

• consider equations (16) of the same high dimensionality as that of the 
original problem; 

• include the expert knowledge while defining an a priori measure on a 
set of functions to be optimized. 

When applying the BHA to solve the original problem indirectly by opti­
mizing the "mixture" of heuristics we: 

• consider equations (16) of lower dimensionality that is equal to the 
number of different heuristics and randomization techniques which is 
usually not too large. 

• include the expert opinion in a natural and efficient way while defining 
heuristics. 5 

Now we discuss in short how to "restore" the traditional BA problem, 
given the BHA problem. Theoretically we may describe a BHA problem by 

the triplet (PH, 7r, h), where PH is an a priori measure of mixture (28), 7r is a 
randomization measure, and h is a heuristic. We may describe the BA problem 
just by an a priori measure p. 

We may "restore" the BA problem in some simple cases. By restoring we 
understand a definition of the a priori measure P on a set of objective functions 
such that the optimal solution of two parts of BHA problem (26) and (29) 
satisfy optimality conditions (16) of the BA problem. 

In other words, restoring the BA problem we are looking for a measure P 

such that gives the BA decisions the same as the BHA triplet (PH, 7r, h). 
Consider a trivial example of the "irrelevant" heuristic h. We call a heuris­

tic irrelevant if there exists no relation between h and the original objective v. 
In this case, under some obvious conditions, the randomized heuristic decision 
(26) of the BHA corresponds to a simple the Monte Carlo search. It is easy to 

see that the Monte Carlo search satisfies optimality condition (16) of the BA, 

too, if the a priori measure P is of "white noise" type. It means that the "white 

5 In addition to that we also include the expert knowledge while defining an a priori 

measure on the "mixture" of heuristics. It means that the BHA provides two ways of 

including the expert knowledge. The traditional BA provides only one way. 
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noise" decisions in the traditional BA framework correspond to the decisions 

of irrelevant heuristics using the BHA. 

We doubt the possibility of restoring BA problems from BHA problems 

in nontrivial cases. However we see no practical reason for such a restoration. 

6. Parallel Bayesian algorithms 

6.1. Outline. Bayesian algorithms need a lot of computing that we may 

paralleIize in a natural way. 

Bayesian algorithms perform three types of computations: 

• the observations: here we define the objective f ( x) given x = x n E A;. 
• the forecasting: here we optimize the Bayesian risk R( x), thus defining 

the next observation point Xn +l;. 
• the heuristics estimation: here we define the best results of a random­

ized heuristics by Monte Carlo simulation. 

We may apply parallel algorithms in all the three cases. Suppose that we 

may use K parallel processors. 

6.2. Parallel risk optimization. Usually we optimize the risk R( x) de­

fined by condition (16) generating M points x by some simple covering tech­

niques (such as Monte Carlo or LP sequences). If we got K processors, then 

we may calculate R( x) at K different points x at the same time. Obviously 

M ~ K and M should be divisible by K. 
The result of risk optimization is a set IR(K) of K best points: 

(30) 

That is one iteration. We repeat the same procedure at each iteration. 

6.3. Parallel observations. At each iteration we observe K points defined 

by condition (30). We perform each observation in parallel by different pro­

cessors. We use all available observations defining the risk R( x) in the next 

iteration. We continue the optimization until we reach the limit observation 

number N which has to be divisible by K. 
We assume that the processor number K is much less as compared with the 

total observation number N. Otherwise we should consider different techniques. 

6.4. Parallel heuristics. Denote by f K ( x) the best results we have got 

repeating K times the "mixture" of randomized heuristics defined by the pa­

rameter vector x (Mockus A. et al., 1994). For example, Xo may denote the 
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"weight" of a uniform component of randomization, Xl may denote the weight 
of a linear component, and X2 may denote the weight of a quadratic component. 
If there are J{ processors, then we may perform all the J{ ''r repetitions" at the 

same time. If we need more repetitions, then we may choose any repetition 

number divisible by J{. 

7. Randomizing heuristics. Let us consider discrete optimization prob­

lems. In those problems we denote decisions by m instead of the general 
notation d which we used in the previous sections. We keep the same notation 

for the original objective, namely v(m). 
Suppose there exists a simple function hi ( m) that roughly predicts the 

consequences of decisions m. If we prefer a synunetric minus-one-plus-one 
case, then 

minhj(m) =-1, maxhi(m) =+1, i=1, ... ,I. (31) 
m m 

If a non-synunetric zero-one case seems more convenient, then 

minhj(m) = 0, maxhi(m) = 1, i = 1, ... , I. (32) 
m m 

We call such a function a "heuristics". Usually the heuristics hi are defined 
as priority rules. We prefer the decision m which appears to be best now, at 
the stage i. We disregard future consequences of the decision m. 

The so called "greedy" heuristics are an important family of heuristics. 
For example, (Helman et al., 1993) says that "a greedy algorithm, when run 
on a set of systems, builds a solution by beginning with the empty set and 
successively adding the best remaining element while maintaining feasibility:' 

Here the number of decision stages I is equal to the number of the system 

elements. 
We may call another family of heuristics as the "permutation" heuristics. 

We can start from some initial state of the system and then perform a number of 

permutations. We stop, if using the given set of permutations, we can't improve 

the results. In such a case the number of stages may be much larger than the 

number of system elements. 
Using the permutation heuristics, the set of decisions Di at each stage i 

sometimes consists of only two decisions: after and before the permutation. 

The simplest permutation heuristics would be 

(33) 
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Here the conditions of heuristics normalization (31) and (32) do not hold. 

The objective v( m) is with the sign minus, because it is convenient to regard 

the greater heuristics as a better one 6. 

Following a similar reasoning we can design many different heuristics 

which improve the given feasible solution. This can be regarded as an advan­

tage in comparison witJi the greedy case (when we start from the empty set). 

Applying the permutation heuristics we usually define the objective function 

for each feasible permutation. 

An advantage of pennutation heuristics is that we can use the expert knowl­

edge by selecting the initial solution. Another advantage is a wide choice of 

different feasible pennutations. 

We may optimize twice. The first time we use greedy algorithms which 

start from the empty set. The second time we improve the solution by feasible 

pennutation. We can eliminate the first part of optimization, if we have a good 

expert solution. 

8. Algorithm of randomized heuristics. We may take advantage of the 

expert knowledge by relating the probabilities rj(rn) to the heuristics hj(rn). 
The usual assumption is that the probabilities rj(m) are proportional to heuris­

tics hj(m). This assumption means linearity of rj as a function of hi' If we 

wish to make the relation more "adaptive", then we have to consider nonlinear 

functions rj = r(hj), too. We shall define a family of functions rj = r(hi) 
by a fixed number of parameters x = (Xn, n = 1, ... , N). Then we can write 

ri(m) = r(rn, hi, x). Here 

L rj(m) = 1. (34) 
meD; 

For example, we can implement the chosen algorithm including condition 

(34) in the following three steps: 

• divide the unit interval into Mj parts U(m) = rj(m), 111 E.: Di ; 

• generate a random number e E [0,1] uniformly; 

• choose the decision m, if e E U(m). 
In this case the problem is to get the best expression of probabilities rj as 

a function of heuristics hi' 

6 We minimize the objective v. 
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8.1. Polynomial randomization. An ordinary polynomial may be good 

if we prefer the probabilities rj to be expressed as some monotonous functions 

of the heuristics hi. Here we use zero-one condition (32), 

where 

N-l 

r? = rO(hi, x) = L ainxnhi(m), 
n=O 

N-l 

L Xn = 1, Xn ~ 0, n = 0, ... , N - 1 
n=O 

and from condition (34) 

(35) 

(36) 

If r? (m) < c; for some m, then we correct the probabilities (Mockus A. 

et at., 1994). 

The number n in expression (35) may be regarded as the "degree of greed". 

The number n = 0 means no greed, because all feasible decisions are equally 

desirable.· If the number of greed n is large, then we prefer the decisions with 

the best heuristics. Optimizing x we define degrees of greed such that provide 

the most efficient randomized decision procedure. 

8.2. Non-smooth randomization 

8.2.1. Delta randomization. If we wish to consider a "mixture" of pure 

and randomized heuristics, then we may apply the "delta" randomization. Here 

the randomized heuristics: 

where 

and 

~(h(m)) = { I, 

0, 

if h(m) = maXkE{l, ... ,M} h(k), 
otherwise, 

1 1 
ao = M' ai = M ,a2 = l. 

Lm=l h(m) 

(37) 

(38) 

(39) 
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8.2.2. Simulated annealing. The most popular method of global optimiza­

tion, namely, the simulated annealing, may be considered in the framework of 

the BAH, too. We use the following heuristics, specific for simulated annealing, 

Here 

hi(m) = -(v(m) - v(m)). 

v(m) is the objective after the permutation i, 

v( m) is the objective before the permutation i, 

Di = {m, m}, what means that IMil = 2. 
The randomized permutation heuristics: 

() e r/ln(.+i) { 
hem} 

rj m = , 
1, 

i is the iteration number; 

x is the "initial temperature". 

if h(m) < 0, 
otherwise, 

(40) 

( 41) 

The main difference from the usual simulated annealing is that we opti­

mize the parameter x for some fixed number of iterations. We disregard the 

asymptotics because the asymptotic properties are beyond the framework of the 

Bayesian heuristics. 

9. Flow-shop problem 

9.1. Definition. The flow-shop problem is important in various applica­

tions and convenient for investigation of the BHA (Mockus A. et ai., 1994; 

Kenneth and Baker, 1974). 

Denote by 7j,3 the duration of operation U, s), where j E J denotes a 

job and s E S denotes a machine. We denote by J and S the set of jobs and 

machines, respectively. The assumption 7j,3 = 0 means that the operation (j, s) 
is irrelevant. 

Suppose the sequence of machines s to be fixed for each job j. One 

machine can do only one job at a time. Several machines cannot do the same 

job at the same moment. 

The decision diU) E Di means to start a job j E Ji at the stage i. We 

define a set of feasible decisions Di as the set Ji of jobs available at the stage 

i conforming to the flow-shop rules. 

The objective function is the make-span v. Denote by Tj(d) the time 

when we complete the job j (including the gaps between operations) using the 

decision sequence d. Then the make-span for d is v(d) = maxjeJ 1j(d). 
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9.2. Heuristics. We can see that the number of feasible decisions is very 

large. We can reduce this number considering only a small subset of schedules, 

the so-called permutation schedules. 

The permutation schedule is a schedule with the same job order on all 

machines, - a schedule that is completely characterized by a single permutation 

of job indices 1,2, ... , n. We assume the first operation to be on the first 

machine, the second-one on the second, and so on. The expert opinion is that 

using permutation schedules we can approach the optimal decision well enough 

(Kenneth and Baker, 1974). 

Denote 
• lSI 

Tj = LTj,o, 

0=1 

where lSI stands for the number of machines. 

Here 

We call Tj the length of the job j. 

Define the greedy heuristics by expression (32) 

Ai = J;llin Tj , 
;EJi 

Thus, the greedy heuristics prefer longer jobs at each stage i. 

and 
ej = {+1, if Tj,l ~ Tj,ISI, 

-1, otherw18e. 

(42) 

(43) 

In both cases we define the randomized decision function ri by expression 

(35). We optimize it by solving the stochastic optimization problem (Mockus 

A. et aI., 1994). 

9.3. Results. 

Table 1 shows the results of the Bayesian method after 100 iterations using 

heuristic (42) and different randomization procedures. The number of jobs J, of 

machines S, and of operations 0 each of them being equal to 10. We define the 
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Table 1. The results of Bayesian methods using heuristics (42) 

R = 100, K= 1, J = 10, S= 10, and 0= 10 

Randomization IB dB Xo Xl X2 

Delta 6.183 0.133 0.283 0.451 0.266 
Taylor 3 6.173 0.083 0.304 0.276 0.420 
CPLEX 12.234 0.00 

lengths and the sequences of operations generating random numbers uniformly 

from 0 to 99. We estimate the expectations and the standard deviations for 

each type of randomization using the results of 40 optimizations of the same 

randomly generated problem. 

In Table 1 the symbol IB denotes the mean, and dB denotes the standard 
deviation of span. "Delta" denotes randomization (37), "Taylor 3" denotes ran­

domization (35) with the number of terms N = 3 , and "CPLEX" denotes 
the results of the well known general discrete optimization software after 2000 

iterations (one CPLEX iteration is comparable with one Bayesian observation). 

The bad results of CPLEX show that the standard MILP technique is not effi­

cient solving a specific problem of discrete optimization. It is not yet clear how 

much one may improve the results using specifically tailored branch-and-bounds 

techniques. We have some doubts about that. 

We see that the Bayesian adaptation of heuristics significantly imprOVed 

the results. The results of Table 1 in general correspond to the theoretical 

predictions. 

Usually we compare the Bayesian and other methods neglecting the "learn­

ing" potential of the Bayesian methods. Fig. 1 estimates the teaching effect by 

showing the density of optimal values of the parameters Xl and X2. Those val­

ues correspond to 100 different randomly generated flow-shop problems. We 

see that the maximal density of optimal values of Xl and X2 exceeds the aver­

age density several times. It means that the optimal parameters of the Bayesian 

methods are rather robust and thus could be applied to other related problems. 

For a different approach to the flow-shop problem, see (Biegler et aI., 
1988). 
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Fig. 1 The density of optimal parameters in solving different randomly 

generated flow-shop problems. 

10. Parameter grouping 

10.1. Definition. Parameter grouping is important in the cluster analysis 

and empirical data processing (Andenberg, 1973). Besides it is a good example 

to show how to apply the BHA improving the traditional techniques of simulated 

annealing. 

A good partition means: 

• strong interaction inside the groups; 

• weak interaction outside the groups. 

We describe the partition by a discrete vector d = (d(l), ... , den»~. Here 

d( i) = j means that the parameter Si belongs to the group gj. We maximize 

the sum of parameter-group interactions (Dzemyda and Senkiene, 1992) . The 

pennutation m means adding or subtracting a unit to d( i). We change only one 

component at a time (Mockus J., 1993). We stop the "line" search after k steps. 

We optimize the initial "temperature" x (see (41». We apply the one­

dimensional Bayesian algorithm defined by the Wiener a priori measure J-l. 

10.2. Results. The number of randomly generated problems is 20. 

The number of iterations is 20. The initial partition is: 

gl {SI, ... ,Ss}, g2 = {S6, ... ,SlO}, ga = {Sll, .•. ,SlS}, 

g4 = {SI6, ..• , S20}. 

The optimal value is x· = 0.08; see Fig. 2. 
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FIg. 2. The relation of simulated annealIng results with the initial tem­

perature z. 

11. Scheduling or batch OperatiOIW 

11.1. General desc:rlption. Scheduling problems occur in a wide range 
of industries, including the chemical processing industries. Batch production 
has long been the accepted procedure for the manufacture of many types of 
chemicals, particularly those which are produced in small quantities and for 
which the production processes or the demand pattern are likely to change. 
These products are frequently fine chemicals of high commercial value and it is 
important that sufficient manufacturing flexibility should be available to avoid 
the loss of potential sale by a failure to meet the customer's requirements in due 
time. As a result there has been an increasing interest in the development of 
procedures for scheduling batch process operations (Musier and Evans, 1989). 

We consider here a simplified version of the scheduling problem (Moc-
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kus L. and Reklaitis, 1994). We use the state-task-network (S1N) representation 

of the batch process. Fig. 3 and Fig. 4 show simple examples. We consider 

three types of states: feed, intermediary, and product. We regard four types 

of events, correspondingly: start, finish, receipt, and delivery. We repeat the 

description of the batch scheduling problem (Mockus A. et al., 1994). Then 

we describe the new solution algorithm and the new results (Mockus L. and 

Reklaitis). 

11.2. Notation. Initial data are the processing time, the receipt and deliv­

ery of material, the unit price and the unit cost of material, the running cost of 

storing, the utility cost, the input ratio, and the output ratio. 

Tis is the processing time for the output of taski to the state s for each 

feasible pair (i, s); 
x,!lk is the receipt of material in the feed state s at the time tk, usually 

",R - a . 
"'$k - .k, 

X~k is the delivery of material in the product state s at the time tk. usually 
",D - d . 
"'$k - $k. 

Psk is the unit price of material in the state s at the time Xk; 

C$k is the unit cost of material in the state s at the time Xk; 

c~k is the running cost of storing a unit of material in the state s over a 

unit interval 7 starting at the time x k ; 

c~k is the unit cost of utility u in the state s over a unit interval 8 starting 

at the time tk; 

pf. is the input ratio of the task i from the state s; 
The main variables are starting times t = (tf;) and amounts of materials 

x = (Xij). 

tf; is the starting time of the task i in the unit j; 

Xij is the amount of material involved in the task i in the unit j. 

Auxiliary variables are output times, event times, event indicators, the 

amount of material stored, and the number of operating units. 

trs = tf; + T;$ is the output time of the task i to the state s; 
t k is the time of event k 9; 

ytk = 1, if the unit j starts the task i at the time tk; ytt = 0, otherwise; 

7 We assume that the running cost does not change between events. 
8 We assume that the unit cost does not change between the events. 
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Prod2 

Feed 

Prod! 

Fig. 3. State task network for example BATCHl. 

Prod3 

Feed3 Prod4 

Feed2 

Feed! 

Prod! Prod2 

Fig. 4. State task network for example BATCH4. 
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Yl:k = 1, if the task i outputs to the state s at the time tk; Yl:k = 0, 

otherwise; 

B 8 k is the amount of material stored in the state s at the time t k (see 

(48»; 

Njk is the number of units j operating at the time tk (see (45». 

We order the events k by the inequality 

(44) 

11.3. Allocation constraints. At any time a unit may perform one task at 

most. If the item starts performing a given task, then it cannot start any other 

task until the current one is finished, i.e., the operation is nonpreemptive. These 

requirements can be expressed in the following terms 

(45) 

(46) 

11.4. Material balance. The net increase in the amount of material stored 

in the state s at the time t k is given by the difference of the amount produced 

in this state and that used. 

j j 

Y~k = 1, iff tk = t~, 
1If;k = 1, iff tk = t~. 

(48) 

11.5. Capacity constraints. The amount of material stored in the state s 

must not exceed the maximum storage capacity B 8 at any time 

(49) 

9 The time when we start (finish) some task, or when we receive (deliver) material. It 

means that tk=tf;, or tk=tf., or tk=t~, or tk=t;' correspondingly. 
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The amount of material when starting the task i in the unit j at the time 

tk is limited by the minimum and the maximum capacity of that unit: 

s Bmin ~ s ~ S Bmax Yijk ij '<: YijkXij '<: Yijk ij . (50) 

11.6. Objective function. The objective P(x, t) is the profit, given both 

delivery and receipt: 

P(x, t) =(.L: L Pskdsk - L c~kask - LL c~kBsk(tk+l - tk) 
• kED kER k • 

- L L L UuikC~k L(tk+l - tk)) (51) 
i k u j 

We denote by Uuik the amount of utility u needed for the task i in the 

interval starting at time tk' We express it as follows 

Uuik = aui + {3ui LY~kX;j. 
j 

We denote by D and R the set of delivery and receipt events, respectively. 

We should satisfy conditions (44), (48), (49), (SO), and (4S). 

We optimize only the last two components of expression (SI) describing 

the storage and the utility cost. The first two components are constants, since 

both delivery and receipt are given. We may use the same algorithm to optimize 

the delivery and the receipt, too. 

11.7. Penalty function. The penalty function Ln ( x, t) is a convenient way 

to reduce the feasible region to the rectangular form. We define the penalty 

function by three components: 

L(x, t) = -P(x, t) + P~(x, t) + P~(x, t). (52) 

Here P~(x, t) is a penalty for the violation of Boolean constraints in the 

iteration n, and P~(x, t) is a penalty for violation of continuous constraints in 

the iteration n. Further we call those functions as a Boolean and a continuous 

residual, respectively. 

From (4S) the Boolean residual: 

P~(x, t) = {r~ Lj Njk - 1, if Lj Njk ~ 1, 
0, otherwise, 

(53) 
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(54) 

From (48), (49), and (50) the continuous residuals: 

(55) 

(56) 

Of S '- Bmax S 
1 XijYijk ~ ij Yijk> 

otherwise, 
(57) 

Of Bmin S '- S 
1 ij Yijk ~ XijYijk, 

otherwise, 
(58) 

k=3 

P~(xt) = LP~k(X,t), (59) 
k=O 

(60) 

The right choice of penalty parameters r~ and r~ is an important problem 
using penalty functionso If we set too large values of those parameters, then the 

optimization problem may degenerate into the search for the "nearest" feasible 

decision. If we set too small values for rn , then we may violate the constraints. 
We may reach some compromise by decreasing penalty parameters after each 
iteration (see inequalities (54) and (60». 

The Boolean penalty parameter r~ must be much greater than the contin­

uous one r~. The reason is that we may allow some violation of continuous 

constraints, if the constrains are defined by economical considerations. If not, 

then we may include some "safety margin" while defining continuous con­

straints of strict engineering or legal nature. Unfortunately, we can't do such 

things in the case of Boolean constraints. We may ignore the strict nature of 

Boolean constraints at the initial stages of global optimization, when the op­

timum is still far away. We have to keep to those constraints exactly when 

approaching the global optimum. 

11.S. Algorithms. A direct way of optimizing the penalty function L( x, t) 
is by the usual continuous global optimization technique..<;. Unfortunately, those 

techniques are designed for the case when the penalty parameters rn don't 

depend on the iteration number. 
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If the number of variables is not large we may apply the exact Branch­

and-Bounds techniques. However, if the number of variables is great, then the 

Bayesian heuristics approach seems a good alternative. 

A simple way of applying this approach is by fixing some initial deci­

sion (xO, to) (not necessarily feasible), and then improving it by the optimized 

randomization techniques (Mockus A. et al., 1994). 

The permutation of the current decision (xn, t n) may be performed se­

quentially by adding some Gaussian (0, q) random variable to each component 

of x and t one by one. A more sophisticated permutation would be by adding a 

Gaussian random vector to several components at a time. In the latter case we 

need some expert knowledge for choosing the right combination of components. 

In the simplest simulated annealing case (see Subsection 5.3) we have 

to optimize only one randomization parameter, namely, the initial temperature. 

However, we may also optimize the penalty parameters r~ and r~. For example, 

the parameters rg, ro, where 

(61) 

Here n is the iteration number. 

Optimization of the permutation variance q2 could also be useful. 

If we wish to optimize the penalty parameters we ought to finish the opti­

mization of the penalty function by searching for the nearest feasible solution. 

It is a difficult additional problem, especially for the Boolean constraints. How­

ever it is a less difficult problem than the global optimization. It may be solved 

by various techniques. For example, by fixing a very large Boolean penalty 

parameter, or. by repeating the random search as long as we hit the feasible 

Boolean values, or by changing the starting times by a specific heuristic rule. 

There are several publications using simulated annealing in different she­

dulling problems (Tandom et al., 1991; Fioquet et al., 1993; Das et al., 1990; 
Patel et al., 1991). No regular optimization of simulated annealing parameters 

was performed. 

11.9. Results. We compared the BHA algorithm with branch and bound 

enumeration (B&B), (see (Zentner et al., 1994)), using examples BATCHI and 

BATCH4 from (Sahinidis and Grossmann, 1991). Fig. 3 and Fig. 4 show the 

corresponding state-task networks. Table 2 and Table 3 show the data. We mod­

ify the examples so that the uniform time discretization interval length be much 
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smaller than the scheduling horizon. We may do that by some insignificant 

changes in the processing times of their original values. 

Table 2. Data used for example BATCHI 

Units, tasks 

Units Size Unit suitability Processing times 

Unit 1 1500 Task 1 0.9 

Unit2 1000 Task2 1.1 

Unit3 1000 Task3 0.8 

States 

States Capacity limits Prices 

Feed Unlimited 5 
Int 5000 

Prod 1 Unlimited 10 
Pr0d2 Unlimited 8 

Demands 

Time 

States 4 6 7 10 11 12 

Prod 1 200 300 400 100 
Prod2 50 150 200 100 

Cost data 

o:u; = 200 /3u; = 0.6 c~ = 0.18 

We summarize the results (Mockus L. and Reklaitis (to appear)) in Table 4. 

There are three lines for each example. The lines relate to stopping B&B 
enumeration after 10000, 20000, and 30000 nodes, correspondingly. We did 

get close enough CPU times for the Bayesian algorithms, too, by modifying the 

stopping conditions accordingly. We were surprised to see that the "optimal" 

B&B profit remains the same in all the three lines. The "optimal" Bayesian 

profit increases with the number of observations, as expected. 

We see that the proposed approach is undoubtedly more efficient as com­

pared with the branch and bound enumeration in the cases when the uniform 

time discretization interval is small. 
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Table 3. Data used for example BATCH4 

Units, tasks 

Units Size Unit suitability Processing times 

Unitl 1000 Task 1 0.8 
Unit2 2S00 Task3,7 1.2 
Unit3 3S00 Task4 0.9 
Unit4 IS00 Task2 1.1 
UnitS 1000 Task6 0.8 
Unit6 4000 TaskS,8 1 

States 

States Capacity limits Prices 

Feedl,2,3 Unlimited 0 
Int4 1000 
IntS 1000 
Int6 1500 
Int7 2000 
Int8 0 
Int9 3000 

Prod 1 Unlimited 18 
Prod2 Unlimited 19 
Prod3 Unlimited 20 
Prod4 Unlimited 21 

Demands 

Time 

States 3 4 S 6 7 8 

Prod 1 110 110 133.3 100 33.3 33.3 
Prod2 233.1 260 360 360 
Prod3 116.6 S6.6 116.6 
Prod4 333.3 333.3 68S.8 

Cost data 

Qui = 200 (3ui = 0.6 c~ = 0.18 
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Table 4. Comparison of BHA and B&B 

B&B BHAq 

Profit Time Profit Time 

BatcH 1 2744.5 584.9 3007 232.3 
same 1217.5 3079 925.7 
same 1901.2 3079 1396.5 

BATCH4 60224 944.8 60306.2 882.1 
same 1919.7 
same 2944.5 60318.8 20981.3 

12. Conclusions. We may apply the traditional IBC definitions and no­

tions directly while fonnulating the global optimization problem in general. If 
we wish to include less fonnal aspects, such as expert knowledge, then the 

Bayesian framework seems more and natural. 

Bayesian Heuristics Approach (BHA) is convenient for parallel comput­
ing. The flow-shop and parameter grouping examples show the computational 
advantages of the BHA. 

Applying the BHA technique to solving batch scheduling problems we 

used the well-known and rather common simulated annealing randomization 

techniques instead of some specific heuristics as a first step of investigation. 

And we have got encouraging results. 

In theory the polynomial type randomization or a random mixture of dif­

ferent heuristics should be better since we get more parameters to tune up. The 

Bayesian randomized heuristics techniques are designed for the optimization 

of stochastic problems, too. Therefore those techniques may work well while 

solving problems with stochastic processing times, with random demands, etc. 

These and other related issues are the topics of our further research in this area. 
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VIDUTINIS SUDETINGUMAS IR BAYESO HEURISTINIS 

POZrURIS DISKRETINIAME OPTIMIZAVIME 

J. Mockus 

Taikomos informacines sudetingumo teorijos (ffiC) koncepcijos globalinio bei 
diskretinio optimizavimo u~daviniams apra~yti. Tradiciniai IBe apibre~imai naudojami 
apra~ant gerai formalizuojamus u~davinil.\ aspektus. Aprabnt sunkiai formalizuojamus 
aspektus, tokius, kaip ekspertines ~inios bei heuristikos, naudojamas Bayeso po~iuris 
(BA). 

Tradicinis Bayeso po~iilris pritaikomas naudojant heuristikas. Tai pavadinama 
heuristiniu Bayeso po~iuriu (BHA). Aptariamos lygiagre~il.\ skai~iavimll galimybes nau­
dojant BHA. 

Teorija iliustrllojama trimis praktiniais uMaviniais: vienu tolydiniu ir dviems 
diskretiniais. 


