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Abstract. The use of vector quantization for speaker identification is investigated. 
This method differs from the known methods in that the number of centroids is not 
doubled but increases by 1 at every step. This enables us to obtain identification re­
sults at any number of centroids. This method is compared experimentally with the 
method (Lipeika and Lipeikiene, 1993a, 1993b), where feature vectors of investigative 
and comparative speakers are compared directly. 
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1. Introduction. In speaker identification we come upon some problems 
that must be solved. First of all it is a selection of features, a choice of a 

distance measure for comparing two feature vectors and a decission rule. 

In Lipeika and Lipeikiene (1993a, 1993b) the speaker identification me­
thod is presented, where feature vectors are extracted from pseudostationary 

intervals of voiced sounds. Coefficients of the linear prediction model (LPC) 

and cepstral coefficients computed from the LPC coefficients are used as feature 

parameters. The LPC coefficients being taken as feature vectors, the likelihood 

ratio distance was used for comparing features, whereas the cepstral coefficients 

being as feature vectors, the Euclidean distance was used. 

For comparison of two speakers the average distance 

was calculated. Since symmetric dji(X, Y) were used, Dxy is symmetric, too. 

We can imagine that the feature vectors of a speaker X in a multivariate 

feature space form one cluster, that consists of subclusters. Similarly the feature 
vectors of a speaker Y form another cluster, that is also noncompact, but consists 
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of subclusters. Using the distance formula ( 1) for comparison of two speakers, 

each element of cluster X is compared with each element of cluster Y. 

But if we look upon the problem of speaker identification as the problem 

of cluster analysis, we can calculate the distance between two clusters by other 

ways. One of such ways is comparing not every element of cluster X with 

every element of cluster Y, but comparing the centres of subclusters X and 

Y. Speaker identification methods using vector quantization (VQ) are based on 

this principle. 

According to Song et al. (1985), Burton (1987), Zinke (1993), Irvine and 

Owens (1993), Xu et al. (1989), Rosenberg and Soong (1986), Soong and 

Rosenberg (1988), Buck et al. (1985) good results are obtained using vector 

quantization for speaker identification. As a rule, in vector quantization a cluster 

is devided into M = 2n subclusters, i.e., starting from one cluster (calculation 

of ~e :zero centroid) the number of subclusters is doubled at every step as long 

as it reaches the number M. It is not convenient because we obtain a very large 

number of subclusters, what is often not necessary and does not correspond to 

the real number of subclusters present in features to be clustered. Therefore we 

modified the clusterizing algorithm of Juang et al. (1982) so that the number 

of subclusters increases by 1, but is not doubled. 

2. Description of the clustering algorithm. Let 

be the vector of K features, where rj(O), ... , rj(p) are values of the autocor­

relation function of the j-th pseudostationary interval of the voiced sound of 

a speaker to be clustered; bJ is a gain of the LPC model, calculated from. the 

autocorrelation function rj(O), ... , rj(p); P is the order of the LPC model. 

Calculation of the :zero centroid. We may calculate a "gravity centre" or 

the so called :zero centroid of a cluster, that consists of feature vectors Rj. We 

update the :zero centroid calculating the statistics 

K 

r(O)(l) = ~L rj(I)/bJ, 1= 0,1, ... ,p 
j=l 

(2) 

and estimating the LPC model parameters Ao = (alO) , ... , a~O» from it. When 

estimating LPC model parameters according to the Durbin method (Rabiner and 
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Schafer, 1978) we obtain in paralell the reflection coefficients k~O), •.. , k~O) that 

correspond to the zero centroid. 

Determination of the average distortion while describing features by one 

reference pattern. When solving this problem we answer the question what an 

average error we are making if we describe all features by one reference pattern 

(3) 

where d(Rj, Ao) is the likelihood ratio distance between the feature vectors Rj 
and the centroid Ao. 

The likelihood ratio distance (Gray et aI., 1980) is calculated according 

to the formula 
1 p 

d(Rj, Ao) = b? L rj(k)rk(Ao) - 1, 
J k=O 

(4) 

where rk(Ao), k = 0, I, ... , p are autocorrelation coefficients of LPC parame­

ters of the zero centroid, which are calculated using the following relationships: 

ao = 1; (5) 

1= 1,2, . .. ,p. (6) 

The likelihood ratio distance has a spectral interpretation: 

(7) 

where S(w) is the spectral density, calculated from the LPC model, corre­

sponding to the autocorrelation function rj(O), ... , rj(p); S(w) is the spectral 

density, calculated from the LPC parameters Ao of the zero centroid. 

If the LPC model parameters are (ao, al, ... , ap , b), then the spectral den­

sity is calculated in a such way (Box and Jenkins, 1970): 

(8) 
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If the average distortion D(Ao) exceeds the given threshold 6, then we must 

form two centroids from the zero centroid, which would represent the feature 

vectors Rj, j = 1, ... , k, more exactly to make the average distortion less. 

Formation of two new centroids. Formation of new centroids is an itera­

tive procedure. The initial point of this process is the reflection coefficients, 

corresponding to the zero centroid. We "distort" the reflection coefficients, mul­

tiplying them by multipliers 0.99 and 1.01, respectively. Thus, from the zero 

centroid we get two new initial centroids, whose coordinates determine two 
11 · f th fl· fft . (k(l) k(l») d (k(2) k(2») co ecttons 0 e re ectlon coe clents l' ... , p an l' ... , p • 

From the latter, using the recurrent relation (Rabiner and Schafer, 1978), one 

may calculate LPC model parameters, corresponding to these initial centroids. 

The LPC model parameters are calculated in such a way: 

a~ i) (j) = k}j), 
(i)( .) _ (i-1)(.) k(i) (i-1)(.) a1 J - a1 J - i a i _ 1 J, 1= 1, ... , i-I. 

When solving (9) ir (10) for i = 1, ... ,p; j = 1, 2, we obtain that 

a~j) = a~p)(j), 1= 1, ... ,p; j = 1,2. 

(9) 

(10) 

The coordinates of these two centroids, expressed by the LPC model coefficients 

(ali), ... , a¥»), j = 1,2, are used to determine the distaI).ce of each feature 

vector Rj, j = 1, ... , J{ from these centroids (4)-(6). Further, using the 

nearest neighbour rule, on the basis of calculated distances we classify the 

features Rj, j = 1, ... , J{. Every feature is attached to a centroid which is 

closer to this feature. 

According to (3), the average distortion is assesed, which caused by the 

description of Rj, j = 1, ... , J{ by two reference patterns, corresponding to 

the two initial centroids. For that we rewrite (3) in the following way: 

K 

D (A(l) A(2») = ! '" d* (R- A(l») , J{ ~ J' , 
j=l 

(11) 

where for each j smaller oftwo values of d(Rj, A(1»), d(Rj, A(2») is taken as 

d*(Rj, A(l»). 
As a result of classification by the nearest neighbour rule we obtain that 

features Rj, j = 1, ... , J{, are devided into two initial clusters. As we have 
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done in the case of the zero centroid (2), we find centres of gravity of these 

clusters or the so called two improved initial centroids and their representation 

by LPC parameters. Further, according to the same formulas, we again calculate 

the distances of features Rj, j = 1, ... , K, from the imprOVed initial centroids 

and classify the features according to the nearest neighbour rule. On the basis 

of classification results, the average distortion is calculated according to (11), 

which is due to the replacement of two reference patterns, describing the features 

Rj, j = 1, ... , K by the LPC parameters, corresponding to the two initial 

centroids. If the average distortion decre.ases more than the given threshold c, 

a further specification of centroid position is continued. If it increases less than 
c, the iterative procedure is terminated. At the same time the procedure of LPC 

parameter estimation is stopped too. If the average distortion is less than the 

given threshold 6, the clustering process stops too. If it is more than 6, the 

cluster, which caused the largest average distortion, is divided into two clusters 

and the clustering process continues. It terminates only when the average 
distortion is less than the given quantity 6 or when the number of centroids 

coincides with the largest given number of centroids. All the calculations are 
carried out according to the same formulas as in the case of two centroids. 

Logical diagram of the clustering algorithm. The process of the clustering 

algorithm may be divided into such stages: 

1) determine the zero centroid; 

2) determine a distance of each feature vector from the zero centroid; 

3) determine the average distortion D( Rj , Ao) caused when describing 

the features Rj, j = 1, ... , K by one reference pattern; 

4) if the average distortion exceeds the given threshold 6, then two new 

centroids are formed from the zero centroid; otherwise the clustering process 

terminates; 

5) D = D(Rj, Ao); for each centroid determine a distance from the 

features Rj, j = 1, ... , K; classify the features by the nearest neighbour 

rule; calculate the average distortion; find the centroid with the largest average 

distortion; 

6) determine the decrease of average distortion, caused describing the 

features by these centroids; 

7) on the basis of classification improve the position of centroids; 

8) repeat 5), 6), 7) as long as the decrease of the average distortion exceeds 
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the given threshold g; if it becomes less than g, go over to 9); 

9) if the average distortion is less than the given in advance quantity 8, 

the clustering process terminates. Otherwise, go over to 10); 

10) for the centroid with the largest average distortion calculate the reflec­

tion coefficients; with the aid of multipliers 0.99 and 1.01 obtain two sets of the 

reflection coefficients; from these coefficients calculate LPC model parameters, 

corresponding to the initial position of the two new centroids; afterwards, go 

over to ~). 

3. Experiments. After calculating the centres of clusters (centroids) by 

the described clustering algorithm. the identification was carried out comparing 

codebooks of investigatives and comparatives by algorithm (I) which was used 

in the previous identification method. 

The "reliability reserve" (Lipeika and Lipeikiene, 1993a. 1993b) was used 

as a criterion of identification quality. It enables us to compare different iden­

tification methods when there are no identification errors or their number is the 

same. The greater the reliability reserve, the better the identification method. 

For experiments we have designed the software in C language. Speech 

signals used in the experiments were digitized by a 12 bits AlC converter at 

the rate of 10 KHz. Feature vectors were calculated from the pseudostationary 

intervals of voiced sounds (Lipeika and Lipeikiene, 1993a. 1993b) under such 
conditions: 

- frame length 25 ms; 

- frame step 5 cm; 

- threshold for detecting of pseudostationary segments 0.07; 

- threshold for a pseudostationary segment length - 25 ms; 

- order of the LPC model 10. 

A. Identification by a keyword. Phonograms of five speakers were recor­

ded. Each speaker in two sessions repeated a Lithuanian word "namas" in 

two sessions for 10 times. The aim of the experiment was to investigate how 

the reliability reserve depends on a number of reference patterns when the 

identification is carried out by vector quantization. 

The experimental results are given in Table 1. The reliability reserve as 

a function of a number of reference patterns is presented in Fig. I. Negative 
values of the reliability reserve are restricted to -0.01. 
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Table 1. Dependence of reliability reserve on the number of reference 

patterns when identifying by the vector quantization method 

Number Reliabil. Number Number Reliabil. Number 
of ref. reserve ofiden. of ref. reserve of ideo. 
patt. errors patt. errors hfil 

1 -0.588 2 17 -0.002 I 
I 

2 0.022 0 18 0.009 0 

3 -0.072 2 19 -0.002 1 

4 -0.087 1 20 0.012 0 

5 -0.006 1 21 0.028 0 

6 0.043 0 22 0.030 0 

7 -0.041 1 23 0.041 0 

8 0.001 0 24 0.039 0 

9 0.038 0 25 0.034 0 

10 0.052 0 26 0.027 0 

11 0.043 0 27 0.032 0 

12 0.035 0 28 0.029 0 

13 0.037 0 29 0.023 0 

14 -0.009 1 30 0.026 0 

15 -0.009 1 31 0.024 0 

16 0.002 0 32 0.026 0 

The results show that when the number of reference patterns is less than 

10, the reliability reserve varies in a wide range, but identification errors are 

more frequent. When the number of reference patterns varies from 9 to 13, 

there are 00 identification errors at all. Further there is an interval of unstable 

decisions again and the reliability reserve fluctuates about zero. Only when the 

number of reference patterns is over 20, the identification results become stable 

and there is quite a large reliability reserve. 

If we compare these results with the identification results of the method 

(Lipeika and Lipeikiene, 1993a, 1993b) where the reliability reserve is 0.038, 

we see that only when the number of reference patterns is 6, 9, 10, 11, 23, 
24, the reliability reserve exceeds 0.038. Since the reliability reserve becomes 
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Table 2. Dependence of reliability reserve on the number of reference 
patterns when identifying by the vector quantization method (text 

independent) 

Number Reliabil. Number Number Reliabil. Number 
of ref. reserve ofiden. of ref. reserve of iden. 
patt. errors patt. errors hfil 

1 -0.585 10 17 .0.048 0 -

2 -0.462 10 18 0.035 0 

3 -0.143 1 19 0.019 0 

4 -0.029 1 20 0.047 0 

5 -0.008 1 21 0.060 0 

6 -0.071 1 22 0.040 0 

7 -0.009 1 23 0.005 0 

8 -0.050 1 24 0.029 0 

9 0.019 0 25 0.038 0 

10 -0.076 1 26 0.034 0 

11 -0.010 1 27 0.015 0 

12 0.006 0 28 0.041 0 

13 0.012 0 29 0.036 0 

14 0.005 0 30 0.048 0 

15 0.059 0 31 0.052 0 

16 0.055 0 32 0.044 0 

stable only if the number of reference patterns is large and is less than of method 

(Lipeika and Lipeikiene, 1993a, 1993b), we make a conclusion that using of 
vector quantization for speaker identification by a keyword we don't achieve 

better results. 

B. Text independent identification. Analogously phonograms of five wo­
men were recorded and studied. The difference was only that text independent 

phonograms were recorded during two sessions. The identification results are 

presented in Table 2. The reliability reserve as a function of a number of 

reference patterns is presented in Fig. 2. Negative values of the reliability 

reserve are restricted to -0.01. 
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Table 3. Dependence of reliability reserve on the number of reference 

patterns when identifying by the vector quantization method (text 
dependent) 

Number Reliabil. Number Number Reliabil. Number 
of ref. reserve of iden. of ref. reserve of iden. 
patt. errors patt. errors hfil 

1 -2.555 7 17 -0.005 1 

2 -0.191 5 18 -0.017 1 

3 -0.063 3 19 -0.023 1 

4 -0.221 4 20 -0.012 1 

5 -0.047 5 21 -0.026 1 

6 -0.072 3 22 -0.024 1 

7 -0.150 3 23 -0.003 1 

8 -0.073 1 24 0.000 0 

9 -0.013 2 25 0.017 0 

10 -0.004 1 26 0.017 0 

11 -0.015 2 27 0.010 0 

12 -0.001 1 28 0.011 0 

13 -0.007 1 29 0.014 0 

14 -0.025 1 30 0.D11 0 

15 -0.006 1 31 0.014 0 

16 -0.006 1 32 0.019 0 

As we see, the results are similar as in the case of identifying by a keyword. 
When the number of reference patterns is small, we obtain identification errors. 

When this number is over 11, there are no identification errors at all. But the 

reliability reserve is less than that of method (Lipeika and Lipeikiene, 1993a, 

1993b), where the reliability reserve is 0.074. Note that when the number of 

reference patterns is 1,2,3, we obtain 10 identification errors. At any number of 
reference patterns the reliability reserve does not exceed 0.074 (method Lipeika 

and Lipeikiene, 1993a, 1993b). 
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C. Text dependent identification of telephone speech. Text dependent pho­

nograms of four men and one woman have been recorded over a telephone. The 

identification results are presented in Table 3. The reliability reserve as a func­

tion of a number of reference patterns is presented in Fig. 3. Negative values 

of the reliability reserve are restricted to -0.01. 

In this experiment errors are obtained all the time, as long as the number 

of reference patterns varies from 1 to 24. Starting from 25 reference patterns, 

there are no more identification errors, but the reliability reserve is less than 

that of method (Lipeika and Lipeikiene, 1993a, 1993b) where the reliability 

reserve is 0.024). 

4. Conclusions. The speaker identification method has been developed 

based on feature vector quantization. This method differs from known methods 

in that the number of reference patterns is not doubled but increases by 1 at 

every step. This enables us to obtain identification results at any number of 

reference patterns not only at number M = 2n , where n is an integer. The 

experimental investigation showed that by this method the identification results 
obtained were no better than by the method Lipeika and Lipeikiene (1993a, 

1993b). 
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KALBANCIOJO IDENTIFIKAVIMAS NAUDOJANT 

VEKTORINIO KVANTAVIMO METOD1\ 

Antanas LIPEIKA, Joana LIPEIKIENE 

Darbe nagrinejarnas vektorinio kvantavimo metodo taikymas kalban~iojo identi­
fikavimui. Sis metodas skiriasi nuo 2inom\! metod\! tuo, kad kiekviename vektorinio 
kvantavimo 2ingsnyje centroid\! skai~ius ne dvigubinarnas, 0 didinamas vienetu. Taip 
gaunami rezultatai, esant bet kokiam centroid\! skai~iui. 

Sis metodas yra eksperimentiskai sulygintas su metodu [1, 2], kur tiriamojo ir 
lyginamojo kalban~i\ij\! p02ymi\! vektoriai yra sulyginami betarpiskai. 


