
INFORMATICA, 1995, Vol. 6, No.2, 123-166 
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Abstract. This paper investigates the progress made in the field of dynamic systems 
with delays over the last two decades. In particular, it is focused on the simulation and 
control techniques, which include also modelling, numerical solvability and stabilization 
procedures. 
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1. Introduction 

1.1. What is a delay system. Mathematical models with time delay con­

stitute a natural way to represent a wide range of real systems. For example, 

it is not always the case that the time taken for measurement of some physical 

variable is negligible compared with the time constants of the system. Associ­

ated with this problem is the problem of sampling for purposes of measurement. 

This is not sampling in the random sense, but at fixed intervals of time. 

Because of remote working there will be cases of delay in control. This 

obviously occurs in space technology where even the finiteness of the velocity 

of electromagnetic radiation causes significant delay. In radar this delay is 

used as the basis for distance measurement, and the corresponding electronic 

techniques need to be extremely accurate. 

All systems include delays. Many industrial processes, particularly ther­

mal processes and distillation processes may be represented by including time 

delay in the system model. It is well known that many man-made physical sys­

tems, including control systems, have these analogues in Nature. In fact many 

of the control techniques including computer control, adaptive and optimal, are 

to be found in human biology. Time delays are also important in the study 
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of epidemics. It is also the case that time delays occur in economic systems, 

and the application of control theory to these areas has been attempted (see, 

for instance, Bateman, 1945; Tustin, 1953; Howarth and Parks, 1972; Howarth, 

1973). 

1.2. Different kinds of delays: point delay, distributed delay. From 

a purely mathematical viewpoint, there are mainly two ways a delay can be 

considered in a differential equation: point delay or distributed delay. Both 

types of delay can be applied on the state- or on the control-vector. A point 

delay applied on the state vector, for example, represents the dependence of 

such a vector with respect to the same vector in a previous moment, being the 

lapse of that previous moment and the current instant defined by the numerical 

value of the point delay at each time. More specifically, if one considers a point 

delay h in the state and a point delay k in the control, one has: 

x(t) = Aox(t) + AIX(t - h) + Bou(t) + Bl u(t - k). (1.2.1) 

In the general case, as the state- and control-matrices can be time-depen­

dent, the delay dependence also varies dynamically. 

On the other hand, a distributed delay (usually defined by using an integro­

differential Volterra term) applied on the state vector, represents the dependence 

of such a vector with respect to the same vector during a previous (finite or 

infinite) interval of time, being the limits of such an interval defined by the 

integral of the Volterra tenD, provided that such a term is used to deseribe 

the distributed delay. More specifically, if one considers a system with one 

distributed delay in its state and one distributed delay in its control, one gets: 

t t 

x(t) = Ax(t) + J Ao(r)x(t - r)dr+ Bu(t) + J Bo(>.)u(t - >.)d>., (1.2.2) 
o 0 

where the lower and upper limits of the integrals (i.e., 0 and t) mean that the 

delay term is distributed during the interval beginning at !i!ro up to the current 

instant. Eq. (1.2.2) shows only a kind of distributed delay, but depending on 

the specific Volterra term being used, different types of distribution of delay 

can be established. 

1.3. Influence of delays on the dynamic behaviour of a system. The 

presence of delays can incide dramatically on the dynamic behaviour of a sys­
tem. For instance, a system with only a pole in an open-loop situation, when 
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having a single point delay in cascade with the plant with unitary feedback, 
presents infinite poles, as was shown by many authors. From this fact it can 

be easily understood that the study of delays is of crucial importance when 
dealing with the dynamics, stability and observability of a system, among other 
characteristics. 

2. Modelling, simulation and approximation for delayed systems 

2.1. Modelling a delay system by m~trix-state equations. One of the 
main motivations for utilizing matrix-state equations when dealing with delay 

systems is to exploit the digital computer as a design tool. In analogue comput­
ing, the reduction of nth-order differential equations to a set of simultaneous 
first-order differential equations as a preliminary step to systematic analogue 
computing follows a similar procedure. Once the nth-order differential equa­
tion corresponding to a delay system has been described in matrix terms, it 
is possible to apply matrix decomposition. From the several ways in which 
such decompositions may be performed, arose equivalent ways of describing 
the dynamics of the given system. Such methods are useful both for system 
simulation as well as for the analysis of system behaviour. A further extension 
which is necessary for the solution of dynamic problems by computing meth­
ods is that the time variable must be broken into discrete steps. Sampled-data 
techniques arising from this approach become a natural part of control theory 
where the computer is no longer just used as a design tool but as a part of the 

control scheme itself. 

The counterpart for the advantages of the matrix formulation is that the 
variables to be used are not as directly related to physical quantities as in 

the transfer function description. The transfer-function approach preserves the 
system structure, which is an advantage. In a sense the structure of the origi­

nal problem is mirrored in the "structure" of the state matrix A in the matrix 
description, as was pointed out by Marshall (1979). The problems of controlla­

bility and observability, arising specifically by using this approach, are inherent 

to matrix representation. 

2.2. Exact solvability of delay-differential equations. Limitations. Al­

though there are some results providing exact solutions for some limited number 
. of differential equations with delays, in general there is no way to compute an 
exact explicit solution for equations of that kind. Even in those few cases for 
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which an exact solution might be available, the provided solution is not explicit, 

but implicit, depending on an equation that contains the state vector - or other 

equivalent quantity, such as a solving or fundamental matrix - explicitly in the 

left side and under an integral in the right side of the equation. In practice, 

the given solution is not an explicit one: it involves a transcendent equation 

or a subsequent differential equation that is not directly solvable. In general, 

to obtain an exact and explicit solution for a delayed dynamical system is not 

possible, or up to now nobody knows a method for it. In the case of a general 

system with inner delays, it cannot be reduced to a delay-free dynamical expres­

sion; if the delay is inherent part of the system, some kind of delay always will 

appear in any subsequent transformation done on the original system. In the 

following, it is illustrated how the exact solvability of delay-differential equa­

tions is strongly limited by computational difficulties (Alastruey and Gonzalez 

de Mendivil, 1994a). 

Let us consider the following general MIMO linear system with multiple 

point delays in its state and in its control law. 

r 

x(t) =A(t)x(t) + L Bj (t)x(t - Tj) 

x(t) =F(t), 

U(t) =G(t), 

j=l 

k=l 

t E [-max{Tj},O), 

t E [- max{6d, 0). 

(2.2.1) 

In principle, there are two approaches in order to compute an exact solution 

for system (2.2.1), depending on what one is defining as its associated free 

system. 

First approach. The system composed by all the terms related to the state 

variables could be considered as the associated free system. It is called Delayed 

Free System: 
r 

x(t) = Ax(t) + LBjx(t - Tj). (2.2.2) 
j=l 

In this case its forcing term is 

$ 

CU(t) + L D"U(t - 15k). (2.2.3) 
k=1 
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Second approach. The system composed by all the terms related to the 

state variables without delay also could be considered as the associated free 

system. It is called Non-Delayed Free System: 

x(t) = Ax(t). (2.2.4) 

In this second case, its forcing term is 

r 5 

L Bjx(t - Tj) + C U(t) + L DkU(t - Ok). (2.2.5) 
j::1 k::l 

In both cases the fundamental matrix w(t) must satisfy the equation of its 

respective free system. 

Delayed free system approach. As it was pointed out, the fundamental 

matrix must satisfy the equation of the free system. In this case: 

r 

q,(t) = AW(t) + L BjW(t - Tj) => 
i::l 

w(t) = ,A' [1 + t. (j ,-A< Bjw(r - rj )U(t - ")dr) ] . (2.2.6) 

Eq. 2.2.6 involves a transcendental relation for the fundamental matrix. 

The solution for the state vector of system (2.2.1) by using this method, there­

fore, must be of the form: 

r Tj 

x(t) =w(t)xo + ~ J w(t - T)Bj<p(T - Tj)dT 
J::l 0 

+ i w(t - r) [c U(r) + t. D, U(r - .,)] dr, (2.2.7) 

where <p(O) = Xo and the transition matrix w(t) has been used as it appears in 

(2.2.6). When one is trying to solve Eq. (2.2.7) several problems arise. There 

are mainly two procedures for solving Eq. (2.2.7). 

First procedure. If one tries to deduce an associated matrix A (one of the 

traditional approaches) such that it satisfies the differential relation 

d AeAt = _ (eAt) 
dt ' 

(2.2.8) 
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and considering the simplest case - a unique point delay in the state - one gets: 

4;(t) = A W(t) + Bl W(t - rd, (2.2.9) 

then 

(2.2.10) 

The main difficulty is that one cannot assert that the matrix solution for 

Eq. 2.2.10 has all its eigenvalues being real or complex by pairs. To say, 

dissaccopled complex eigenvalues could exist leading to the situation, theref<;>re, 

that the computed solution is a formal one but not valid, as was pointed out by 

Fiagbedzi and Person (1990). 

Second procedure. Another way to obtain an explicit solution would be to 

integrate by parts Eq. 2.2.6 in order to get an expression for the transition matrix. 

This expression would be substituted in (2.2.7) to get an explicit solution for the 

system dynamics, this is, the state vector. In order to illustrate the complexity 

of the problem, let us consider the scalar case; it would imply to solve the 

integral 

If one takes 

t 

I(r) = J e<lTb1W(r - rI)dr. 

h 

1 e<lT dr = dv :::} v = _e<lT, 
A 

(2.2.11) 

u = b1W(r - rI) => du = b1 (aw(r - rI) + bW(r - 2r!)), (2.2.12) 

then 

t 

J e<lt bw( r - rddT = !e<lt bw( r _ rd] t 
a Tl 

t , -J ~e<ltb (aw(r - rd + bw(r - 2rd) dr. (2.2.13) 

Tl 

It must be noted that Eq. 2.2.13 is now more complex than the original 

one (2.2.11). The integral term containing the transition function with delay 

is not eliminated and, in addition, it is accompained by a new integral term 
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containing the transition function with the double of the delay value. To say, 

firstly one had a problem with a unique point delay, and now one has a problem 

with two point delays. Subsequent integrations would lead to the appearance 

of new delays. 

Non-delayed free system approach. In this case, also, the fundamental 

matrix must satisfy the free system equation: 

4f(t) = Aq,(t) => q,(t) = eAt. (2.2.14) 

The solution for the state vector of system (2.2.1) by using this method must 

be of the form: 

t r 

x(t) = eAtxo + J eA(t-T) [~BjX(T - Tj) + CU(T) 
o J=l 

+ ~DkU(T-Dk)]dT. (2.2.15) 

The explicit and exact solution of (2.2.15) is not possible in the general case, 

and therefore approximate methods are needed. 

2.3. Simulation of delay systems via polynomial and Taylor series 

2.3.1. Introduction to simulation via Taylor series. Let's consider the 

following MIMO linear system with point and distributed delays: 

T' r r J 

x(t) =A(t)x(t) + ~ Bj(t)x(t - Tj) + ~J Rj(t, T)X(t - T)dT 
J=l J=lO 

6 

+ C(t)U(t) + l: Dk(t)U(t - Dk) 
k=1 

for all t > 0. 

The initial conditions are: 

x(t) = F(t), t E [-max{Tj},O), 

U(t) = G(t), t E [-max{Dj},O), 

(2.3.1.1) 

(2.3.1.2) 

where Tj, Dk are real numbers in (0, 1), and, without loss of generality, the 

following order is assumed: 
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If 8 < r: Tl < 01 < T2 < 02 < ... < T& < 0& < T&+1 < ... < Tr • 

If r ~ S: T1 < 61 < T2 < 62 < ... < 6r -l < Tr < 6r < ... < 0,. 
Furthermore: x(t} ERn, U(t} E RP,dim(A(t» = nxn, dim (Bj (t» = 

n X n, dim(C(t}} = n X p, dim (Dk(t» = n X p, dim(Rj(t,T» = n X n. 

And x(O} = Xo is known. 

As the function F (t) is given, for every Tj it is possible to expand F (t - Tj ) 
in a Taylor series and compute vectors \tio, ... , V;(m-l) with dimension ?l X 1: 

~T [T T T ]T F(t - Tj} = T (t) ~o ~1 ... ~(m-l) , j = 1, . .. ,r. (2.3.1.3) 

In the same way, as function G(t} is given, for every Ok it is possi­

ble to expand G(t - Ok) in a Taylor series expansion and compute vectors 

WkO, ... , Wk(m-l) with dimension p X 1, in such a way that: 

~T [T T T ]T G(t - Ok} = T (t) Wko Wk1 ... Wk(m-1) , k = 1, ... ,8. (2.3.1.4) 

The first difficulty we find when we try to represent Eq. 2.3.1.1 by Taylor 

series is the presence of a double integral with two integration variables for the 

distributed delayed term. Note that if (2.3.1.1) is integrated over the interval 

(0, 1) the following expresion is obtained: 

t t r 

x(t) = J A(t')x(t')dt' + J ~Bj (t'}x(t' - Tj )dti 
° 0 ;=1 

t r Tj 

+ J~J Rj(t',T)X(t'-T)dTdt' 
o ;=1 0 

t t 3 

+ J C(t')U(t')dt' + J L Dk(t')U(t' - ok}dt'. (2.3.1.5) 

° 0 k=1 

By this reason in the algorithm it will be necessary to establish a double 

step in order to find the Taylor series expression for the double integral of the 

distributed delay. This question is not evident - because of the presence of the 

delay - and it involves a very interesting method of resolution. This situation is 

different with respect to the case with point delays only, because for any time t 
such that 0 < t < Tr , the method cannot provide an expression for the solution 
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of the state vector; only it can provide values in specific points. And only after 

instant t = rr the method can provide an approximate analytical expression. 

This is due to the fact that the integral corresponding to the distributed delay 

of the j tenn for 0 < t < rj has two different terms for every instant of the 

interval. For example, for an instant tl such that 0 < tl < rj, the j-th tenn of 

the distributed delay in (2.3.1.1) presents the form: 

Tj t1 J Rj(t',r)x(t'-r)dr= J Rj(t',r)x(t'-r)dr 
o 0 

Tj 

+ ! Rj(t', r)F(t' - r)dr. (2.3.1.6) 
, t 1 

Therefore in this case the situation is quite different from a situation with 

only point delays. When the instant is lesser than the value of the upper limit of 

the particular distributed delay, the contribution of that distributed delay to the 

global state vector only can be computed point by point. Nevertheless, when 

the instant is greater than such a limit. its contribution can be computed for an 

interval of values, to say, there will exist an approximate analytical expression, 

there will exist a constant Taylor expansion, valid for the whole interval. 

2.3.2. Main results and algorithm structure. A method to represent 

(2.3.1.1) by Taylor series is introduced, by using the Taylor operationals of 

integration, delay and multiplication, that are common in the literature (Raz­

zaghi and Razzaghi, 1989). This method consists in rewriting the differential 

Eq. 2.3.1.1 as an algebraic equation, by substituting the integrals by integra­

tion operational matrices, and the delayed terms by delay operational matrices 

multiplied by the terms without delays. In this case the increased difficulty 

consists in the fact that we need to do a double Taylor representation for the 

same functions: the first with respect to the inner variable of the distributed 

delay, and the second with respect to the general variable of time. 

The initial conditions for state vector x must be expanded as follows: 

(2.3.2.1) 

Remark: in this case subindex i denotes that the expansion depends upon 

the considered instant. 
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The matrix of distributed delay can be developed as follows: 

Rj(t', r) = [Rjo(t') Rjl(t') .. . Rj(m-l)(t')] 1'{r). (2.3.2.2) 

Then for an instant ti such that 0 < ti < tj, the term of distributed delays 

in (2.3.1.1) becomes: 

~ ti ~ J Rj(t',r)x(t'-r)dr= J Rj(t',r)x(t'-r)dr+ J Rj(t',r)F(ti-r)dr 
o a ti 

t; 

= J [Rja(t') Rjl(t') ... Rj(m-l)(t')] 1'(r)fT(r) [xl? xIT ... x;;,_?( dr 
a 

1"j 

+ J [Rja(t') Rjl(t') .. . Rj(m-l)(t')] f(r)fT(r) 
tl 

x [YiaT YilT ... ViCm-I)Tr dr 
tl 

= J fT(r)liJ(t') [x~T xIT .. . x;;,-?f dr 
a 

1"j 

+ J fT(r)liJ(t') [YiaT YilT ... YiCm-1{r dr 
h 

=fT(r) [pT(O) - pT(tI)] liJ(t') [x~T xrT ... X;;'_IT]T 

~T [~T ~T] -T , [ 1"T 1"T 1" T]T +T (r) P (tl)-P (rj) Rj(t) Yia Yil ···Yi(m-l) , (2.3.2.3) 

where superindex r denotes that the development has been made with respect 

the variable r, liJ(t') is defined as in Razzaghi and Razzaghi (1989), and T 
is the Taylor series basis vector. 

Let 

Kj[r](ti) = fT(r) [pT(O) - pT(td] RJ(t') [x~T xlT ... X;;'_IT( 

+ fT(r) [pT(td - pT(rj)] RJ(t') [YiaT YilT ... YiCm-l{r (2.3.2.4) 

Matrix K j [r](t;) is the solution for instant ti < rj of integral (2.3.1.6). In 

order to compute this matrix, an estimation for the state vector is required. Nev­
ertheless it is possible to avoid using such an estimation by rewriting J{j [r](ti) 
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as follows: 

Kj[r](ti) =TT(r) [pT(O) - pT(t l )] RJ(t' ) [x~T xrT ... X:;"_IT]T 

where 

+ fT(r) [pT(td - pT(rj)] RJ(t') [VieT ViIT ... Vi(m-I)Tr 

=fT (r)Klj [r](ti) [x~T xrT ... X:;"_l T( 

+ fT (r)K2j [T](ti), (2.3.2.5) 

Matrices (2.3.2.6) are expressed as Taylor series expansions with respect to an 

inner variable of distributed delay, this is, r. Let Klj[t](ti) and K2j[t](t;) be 

those matrices but now expressed as Taylor series expansions with respect to 

the general variable of time t. Now one finds that: 

'Tj J Rj(t',r)x(t'- r)dr =TT(r)Kl;[t](ti) [x6' xi·· .X~_l( 
o 

(2.3.2.7) 

As matrices Kl;[t](ti) and K2;[t](t;) are computed by using expressions 

(2.3.2.6), for any instant ti such that 0 < t; < Tj it is possible to represent their 

corresponding distributed delay by using Eq. 2.3.2.7 in the general solution. 

This is the second step. 

Now we will proceed to the resolution of the full state equation. We start 

with integral equation (2.3.1.5) and every element is substituted by its corre­

sponding Taylor series expansion with respect to variable t. In the following 

paragraphs, for the sake of briefness, only solutions for different intervals are 

listed, but in the first one the mathematical development is specified. 

ForO~t~n: 

[ T T T]T ~T -T [T T T]T 
Xo Xl .. . Xm-l = P (O)A Xo Xl ..• Xm-l 
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r T 
" ~T -T [T T T ] + L.J P (O)Bj ~o ~1 ... V}(m-l) 

i=1 
r 

+ LpT(O)Kl;[t](ti) [x~ xi· .. x~-lf 
j=l 

r 
" ~T ~T -T [ T T T]T + L.JP (0)K2;[t](ti)+P (O)C Uo U1 "'Um - 1 

i=l 

~ ~T -T [ T T T ]T + L.J P (O)Dk wkO Wu ... Wk(m-l) 

k=l 

[ T -T -T]T + X (0) 0 ... 0 . (2.3.2.8) 

Define 

o (1) ~ -T ~ "'T 
R =Imn - pT (O)A - L.J P (0)K1; [t](ti), 

i=l 

o (1,1) ~ "'T [T T T ] T 
Q = L.J P (0) ~O ~1'" V}(m-l) 

j=l 
r 

" ~T * "'T -T [T T T]T + L.J P (0)K2j [t](ti) + P (O)C Uo U1 ... Um - 1 

j=l 

~ "'T -T [ T T T ]T + L.J P (O)Dk WkO WU'" Wk(m-l) 
k=l . 

[ T -T -T]T + X (0) 0 ... 0 . (2.3.2.9) 

Therefore (2.3.2.8) leads to 

T 0 (1) 0 (1,1) 
[ ]

-1 

[xrxi ... x;:_l] = R Q, (2.3.2.10) 

from what the coefficients for the state variables Taylor expansion corresponding 

to an instant of the interval comprised between :zero and the first state delay, are 
computed. One must realize that Eq. 2.3.2.10 is not valid for the full interval, 
but for the considered instant (in this case ti). 

For 'T! ;§!; t ;§!; 6, : 

T 0 (2) 0 (2,1) 
[ ]

-1 

[xr xi·· .x;:-d = R Q, (2.3.2.11) 
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where 

r 

+ LpT(O)K2;[t](t;) + pT(O)CT [U[ U[ ... u;;_d T 
j=2 

~ ~T -T [ T T T ]T + L.J P (O)Dk WkO Wu'" Wk(m-i) 
k=i 

[ T -T -T]T [T -T -T]T +x(O)O ... O +zlO ... O , (2.3.2.12) 

from what the coefficients for the state variables Taylor expansion corresponding 

to an instant of the interval comprised between the first state delay and the first 

control delay, are computed. One must realize that, as well as (2.3.2.10), 

(2.3.2.11) is not valid for the full interval, but for the considered instant (in this 

case t;). 

After having computed the first expressions for the approximate solution 

of the state equation, in the following the solution is established for intermediate 

general instants (Eq. 2.3.2.13 and Eq. 2.3.2.14) as well as for instants after the 

value of the greatest delay (Eq. 2.3.2.15). 

For Tq ~ t ~ Oq: 

T [0 (q+i)]-i 0 (q+i,i) 
[xI xi·· .x~_d = R Q , 

o (q+1) ~ _ ~ '" 
R =Imn - pT(O)AT - L.J pT(O)Kl;[t](Tj) 

j=i 
r q 

- L pT(O)Klj[t](t;) - LpT(Tj)BJ$1'h), 
j=q+i j=i 

o (q+i,i) ~ "'T -T [T T T ] T 
Q = L.J P (O)Bj Vio Vii"· Vi(m-i) 

j=q+i 
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r 

+ E pT(O)K2j[t](ti) + pT(O)iJI' [UJ' u'[ ... U~_dT 
j=q+l 

q-l 

+ EpT(6k)Disr(6k) [UJ' u'[ ... u~-lf 
k=1 

~ ~T -T [ T nrT T ]T + L....J P (O)Dk WkO Wfl'" Wk(m-l) 
k=q 

[ 
q q-l 1 T 

+ XT(O) + f;zJ + {; wi OT ... OT (2.3.2.13) 

0(9+1•2) ~ ~T -T [T T T ]T 
Q = L....J P (O)Bj "io "il ... "i(m-1) 

j=q+l 
r 

+ 2: pT(O)K2j[t](ti) + pT(O)iJI' [UJ' u'[ ... u~-1f 
j=q+l 

~ ~T -T~ [T T T]T + L....J P (6",)D", ~- (6",) Uo U1 ••• Um - 1 

"'=1 
~ ~T -T [T T nrT ]T + L....J P (O)D", WkO WU'" VVf(m_1) 

"'=q+1 

+ [OTtO) + t,ZJ + t, wi W ... W r (2.3.2.14) 

And finally, for any t greater than any delay appearing in the state equation 
one gets: 

T [0 finj-1 0 fin 
[x~ xI .. . x;'_d = R Q, 

o fin r 

R =Imn - pT (O)AT - :E pT (O)K1j[t] ( Tj) 

j=1 
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k=l 

[ ]

T 
r r 

T T T -T -T + x (0) + t; Zj + {; wk 0 ... 0 , (2.3.2.15) 

being its fundamental characteristic that it is valid for all the interval, and not 

only for an specific instant. 

3. Stability of delayed systems 

3.1. General stability of delayed systems. Criteria for stability of lin­

ear delay systems can be classified in two main categories, according to their 

dependence on the delay's size: (a) Criteria non including information about 

delays are called free-delay criteria (Kamen, 1980; Bourl, 1987; Mori et aI., 
1982; Lewis and Anderson, 1980; Wang et aI., 1992; Phoojaruenchanachai and 

Furuta, 1992). (b) Criteria containing information about delays are called delay 

criteria (Mori, 1985; Mori and Kokame, 1985; De la Sen, 1992; Alastruey and 

Etxebarria, 1992). These methods are of simple application. Chiasson (1986) 
developed a method to determine value ranges for delays without desestabilizing 

the system, but this method usually requires to solve trascendent equations. 

Free-delay criteria are particularly suitable when delays are small with 

respect to some measures. Thus, it is reasonable firstly to apply free-delay 

criteria and, if they are not appropriate, apply delay criteria. In practice these 

two types of criteria are complementary. 

3.2. Stability based on the delay measure 

3.2.1. Matrix measure and delay measure. Matrix measure has been 

widely used in the literature when dealing with stability of delay-differential 

systems (see, for instance, Mori, 1986; Mori and Kokame, 1989). The matrix 

measure J-I for matrix X is defined as follows: 

(X) = I' 111+ €XII - 1 
J-I - 1m . 

£-0 € 
(3.2.1.1) 
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The following lemma provides some properties for the matrix measure 

JJ(. ). 

Lem-.na 3.2.1.1 (Desoer and Vidyasagar, 1975). For any matrices X, 

Y E cnxn the following inequalities hold: 

(i) ReAi(X) ~ Jl(X), 
(ii) -JlUX) ~ ImAi(X) ~ Jl(-jX), 
(iii) Jl(X + Y) ~ Jl(X) + Jl(Y), 
(iv) Jl(X) ~ IIXII, 
(v) Jl(€X) = €Jl(X), for any € ~ O. 

(3.2.1.2) 

(3.2.1.3) 

(3.2.1.4) 

(3.2.1.5) 

(3.2.1.6) 

Consider the following class of linear delay-differential systems with a 

point delay in the state- and a point delay in the control-variables: 

x(t) = Ax(t) + Aox(t - h) + Bu(t) + Bou(t - q), h, q E R+, (3.2.1.7) 

where A, Ao, B, Bo EWe Rnxn, being W the set of n-matrices Q such 

that IIQII < 00. 

DEFINITION 3.2.1.1 (Alastruey and Gonzalez de Mendivil, 1993). The 
Delay Measure for system (3.2.1.7) is defined as follows: 

(;(h ) = IIAolih + IIBollq 
.. ,q - Jl(A) + Jl(B) . (3.2.1.8) 

REMARK 3.2.1.1. If there is no delay (i.e., h, q = 0, or Ao and Bo 
are null matrices), then the delay measure is zero. On the other hand, if the 

point delays h and q verify 0 < h < 00, 0 < q < 00, and there is not a 

delay-free term (i.e., A, B are matrices of zeros) then the delay measure is 

infinite. Therefore, the delay measure can be considered, intuitively, as a way 

to evaluate the effect of delay terms in a system compared with its delay free 

terms. 

Some properties of the delay measure are outlined. 

PROPERTY 3.2.1.1 (Alastruey and Gonzalez de Mendivil, 1993). Lower 

bounds for the first derivatives of the delay measure: 

= {)e(h, q) _ IIAoll ~ IIAoll 
{!h - {)h - Jl(A) + Jl(B) 7 IIAII + IIBII ' (3.2.1.9) 

= {)e(h, q) _ IIBoll IIBoll 
{!q - {)q - Jl(A) + Jl(B) ~ IIAII + IIBII ' (3.2.1.10) 
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PROPERTY 3.2.l.2 (Alastruey and Gonz3J.ez de Mendivil, 1993). Abso­

lute lower bound for the delay measure (supposing h, q variables): 

e(h ) = IIAolih + IIBollq ~ IIAolih + IIBollq 
,q Jl(A) + Jl(B) r II(A)II + II(B)II ' 

(3.2.1.11) 

with h = minh and q= minq. 

REMARK 3.2.1.2. Observe that property 3.2.1.1 helps to estimate bound­

edness conditions for the variations in value of the delay measure. Property 

3.2.1.2 gives absolute boundedness conditions for the delay measure, provided 

that n-matrices appearing in (3.2.1.7) belong to the class W. 
3.2.2. Stability conditions under delay-measure notation. In this section, 

some stability results for a class of free linear differential systems with two point 

delays in the state vector are introduced under delay-measure notation, by using 

a result due to Schoen and Geering (1993). 

Consider the free linear delay-differential system: 

(3.2.2.1) 

where ao, al and a2 are constant coefficients and h > 0. It is possible to 

extend the definition of delay measure (3.2.1.8) for system (3.2.2.1) as follows: 

DEFINITION 3.2.2.l. The Delay Measure for system (3.2.2.1) is defined 

as follows: 

(3.2.2.2) 

Now let's introduce a theorem that is used in the sequel to get the main 

results. 

Theorem 3.2.2.1 (Schoen and Geering, 1993). The time-delay system 

(3.2.2.1) with la21 < 7r/2h is asymptotically stable if and only if the fol­
lowing three conditions hold for some y E [0, 7r/h) 

(i) ao + al + a2 < 0, (3.2.2.3) 
( .. ) y. cos yh 
II ao = . (h + a2, (3.2.2.4) 

(iii) al > _Sl~ ~ h) - 2a2 cos(yh). (3.2.2.5) 
sm y 

The stability criteria introduced in Theorem 3.2.2.1 can be rewritten by 

using the delay measure as follows. 
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Theorem 3.2.2.2. Suppose that ao E R-, al, a2 E R+. System 

(3.2.2.1) is asymptotically stable if the following condition holds for some 

y E [O,ll'/h): 
e(h) + y. cos(yh) = _ al _ 2, 

h sin(yh) ao 
(3.2.2.6) 

where the delay measure function is that defined in (3.2.2.2). 

Proof. Condition (3.2.2.6) implies that 

therefore 

e(h) + y. cos(yh) = lall _ 2, 
h sin(yh) laol 

[~ _ 2 - y. ~OS(Yh)] h = e(h) => 
laol sm(yh) 

lallh -laol2h - y. ~or~~) 2h = ladh + la212h => 
sm y 

1 y. cos(yh) 1 
'2lall-laol = sin(yh) + '2 lall + la21 => 

(3.2.2.7) 

y. cos(yh) 
- laol = . (h) + la21· (3.2.2.8) sm y 

But expression (3.2.2.8) coincides with condition (ii) in Theorem 3.2.2.1. 

The main utility of Theorem 3.2.2.2 is that it substitutes one of the system's 

parameters appearing in condition (ii), Theorem 3.2.2.1, (i.e., a2) by another 

one (i.e., al)' Thus, Theorem 3.2.2.2 can be useful for evaluating asymptotic 

stability of system (3.2.2.1) when a2 is not available, or the use of al is more 

suitable for some design reason. 

Theorem 3.2.2.3. Suppose that ao E R-, al, a2 E R+. System 
(3.2.2.1) is asymptotically stable if the following condition holds for some 

y E [O,ll'/h): 
e(h) 21a21 y 
h > [cos(yh) - 1] ~ - laol sin(yh)' (3.2.2.9) 

Proof. Condition (3.2.2.9) implies 

yh la21 
e(h) > -I I' ( h) + [cos(yh) - 1]-1 12h => ao sm y ao 

lallh + la212h la212h [1 ( h)] yh 
"--'----;--';-----=-- + -- - cos y > - => 

laol laol laol sin(yh) 
y 

lall > - . ( h) - 21a21 cos(yh). (3.2.2.10) sm y 
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But expression (3.2.2.10) coincides with condition (iii) in Theorem 3.2.2.1. 

Similarly to Theorem 3.2.2.2, the main utility of Theorem 3.2.2.3 is that it 

substitutes one of the system's parameters appearing in condition (iii), Theorem 

3.2.2.1, (i.e., al) by another one (i.e., ao). 

3.3. Stability equivalences for approximate delayed systems. In the 

present section is shown how to compute, in a simple way, some results about 

stability for a class of linear point-delayed systems. Sufficient conditions for 

asymptotic stability of linear delayed systems are greatly simplified and straight­

forwardly computed under a Taylor series representation of the state equations. 

Also, conditions under which asymptotic stability for the approximate system 

implies asymptotic stability for the real system are outlined. 

Let's consider the following linear free system with point-delay in its state 

vector. 

dXd(t) = Ax(t) + Bx(t - T), 
t 

A, BE Rnxn , x(t) ERn, T> O. 

(3.3.1a) 

(3.3.1b) 

A condition for asymptotic stability in that system is given by the following 

result due to Mori (1985). 

Theorem 3.3.1. System (3.3.1) is asymptotically stable (AS), if the 
following conditions hold: 

Il(A) + max {Il (Be- TYi )} < 0 
yEA 

for max {Il (Be- TYi )} ~ -~, 
yEA T 

1 + T.maX{1l (Be- TYi ) e(l-T~(A»} < 0 
yEA 

for max {Il (Be- TYi )} < -~, 
yEA T 

(3.3.2) 

(3.3.3) 

where ~ represents the range of values for the solution y of the following 

equations for all possible eigenvalues 

(3.3.4) 

where Re[s] ~ 0, sEC, T > 0 and the matrix measure Il of an arbitrary 
matrix X is defined in (3.2.1.1). 
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The Lemma 3.2.1.1 gives some interesting properties of the matrix measure 

refered to in Theorem 3.3.1. 

Note that conditions (3.3.2) and (3.3.3) in Theorem 3.3.1 are not easily 

computable and if an on-line stability test is required, a faster way of evaluation 

is needed. On the other hand, system (3.3.1) has not, in general, an explicit 

solution and this fact motivates the use of approximate methods for resolving the 

system. Taylor series representation allows to obtain an approximate solution 

for system (3.3.1) (Alastruey and Etxebarria, 1992) and it also provided a fast 

method for the analysis of the system. Therefore, a reformulation of Theorem 

3.3.1 for an approximate system under Taylor series is required in order to 

define the stability criteria for such representation. 

Theorem 3.3.2. Under a Taylor series representation, system (3.3.1) is 
asymptotically stable within the definition interval if Jl( AT + BT . §'r (T» < 
0, where AT, BT are the product operators for the coefficient matrices 

of the Taylor expansions for A and B, and §'reT) is the Taylor delay 
operational matrix, defined by Razzaghi and Razzaghi (1989). 

Proof. Let's represent system (3.3.1) by using Taylor series expansions: 

d (""T [T T T] T) ~T -T [T T T] T dt T (t) Xo Xl ... X m _ l = T (t)A Xo Xl .•. Xm _ l 

r;:rr -T err [T T T] T + 1 - (t)B S (T) Xo Xl •. 'Xm _ l • (3.3.11) 

Therefore, inequalities (3.3.2) and (3.3.3) in Theorem 3.3.1 take the new form 

Note that 

therefore 

Jl (AT + BT. ST(T») + max {Jl(O)} < 0 
!lE~ 

1 
for max {Jl(O)} ~ --, 

yE~ T 

1 + T' max {Jl(O)e(l-T!'(.F +1F.ST(T»)} < 0 
YE~ 

1 
for max {Jl(O)} < --. 

yE~ T 

Jl(O) = lim III + c' 011- 1 = 0, 
£-0+ c 

1 
max{Jl(O)} < -­
!lE~ T 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3.15) 
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and only inequality (3.3.12) can exist. That condition becomes J.t(AT + BT . 

. sr ( T) ) < 0 which is a sufficient condition for asymptotic stability of the 

Taylor series expansion of system (3.3.1). 

It is evident that the usefulness of Theorem 3.3.2 occurs when stability in 

the approximate system implies stability in the real one. In what follows, some 

results concerned to this point are given. It is supposed that all the nonns are 

2-nonns, and ]{ is the condition number refered to that norm. 

Lemma 3.3.1. Define 

D == A + B· e- ryj (3.3.16) 

being y = 1m [Ai (A + (Be- ryj . e-Re[r. j »)], where Re[s] ~ 0, SEC, T > 0, 

and 
(3.3.17) 

By construction, coefficient matrix dimension is dim(D) = m· n x m· n. In 
order to compare it with real values matrix D, let's construct 

[m-l 1 
D == t; dn.i+k,lt

i 
k=O, ... ,n-l; I=O, ... ,n-l ' 

(3.3.18) 

where now this last matrix has dimension n x n. Define 

~D == D - D. (3.3.19) 

Then, if there exist J.t(D) and J.t(D), and 

/I~D/I < lim 1 - /II + cD/I (3.3.20) 
e-O+ c 

is satisfied, the following implication holds 

J.t(D) < 0 => J.t(D) < O. (3.3.21) 

Proof. Suppose J.t(D) < 0, then 

J.t(D) = lim /II + cD/I- 1 = lim /II + c(D + ~D)/I- 1 
e-O+ c e-O+ c 

< lim [III + cDII- 1 + II~DII] 
e-O+ c 

= lim [III + cDII- 1] + II~DII 
£-0+ c 

= J.t(D) + II~D/I => J.t(D) < J.t(D) + /I~DII. (3.3.22) 
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Then if lIaDIl < -J-l{.o) = lim [1- 111/ €.oII] it follows that J-l{D) < o. 
. . £-0+ 

Lemma 3.3.1 leads to the following result. 

Theorem 3.3.3. Let ~ ~ R be the set of real values taken by variable 
t, such that 

(3.3.23) 

If J-l{.oT) < 0 and lIaDIl < -1'(.0) = lim [1- 111/ €.oII] it follows 
£-0+ 

that the real system (3.3.1) is asymptotically stable if3ko E R such that 
(ko, 00) c~. 

Proof. The proof is immediate from Lemma 3.3.1. 

'Vt > ko, t E ~ and, therefore, t > ko ~ 

sign (J-l(.oT)) = sign (I' (i5T ) ) . (3.3.24) 

Note that J-l{X) = J-l(XT) for an arbitrary matrix X. 

By hypothesis J-l(.oT) < 0 and lIaD Il < -J-l(D) = lim [1- 111/ gDII]. 
£-0+ 

Therefore, by Lemma 3.3.1 and Eq. 3.3.24 it follows that J-l(i5T ) < 0 ~ 
J-l(.oT) < 0 ~ J-l(D) < O. Thus, by Theorem 3.3.1, the real system (3.3.1) is 

asymptotically stable. 

The following results complement the above mentioned, in the sense that 

they give the conditions to determine the bound for stability. 

Lemma 3.3.2. Define: 

u~(D) == III + €DII- 1, 'Vg E R+, 
€ 

u.(D) == u~(D) II (I + d3) -111· 

Then, if3J-l(D) the following implications hold 

(i) 

(ii) 

J-l(D) = 0 ~ 1'(.0) = 0 'VD =/; 0, 

J-l(D) = 0 ~ J-l(D) = 0 'VD. 

(3.3.25) 

(3.3.26) 

(3.3.27) 
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Proof. Let's consider definitions (3.3.25) and (3.3.26). Then 

CT£(D) =CT~(D)" (I + eD) -111 

_III + eDIIII(1 + eD)-ll1-lI(1 + eD)-ll1 
e 

_ J<(1 + eD) -11(1 + d3)-111 
e 

(3.3.28) 

By hypothesis 3J.t(D) = lim CTe(D). As CT£(D) = CT£(D)//(I + eD)-l" one 
.-0+ 

gets 

lim CT£(D) = lim CT. (D)· 1. 
.-0+ ...... 0+ 

(3.3.29) 

Then 

3 I· (D) - I· J<(1 + eD) -11(1 + cD)-lll 
1m CT£ - 1m , 

£-0+ £-0+ c: 
(3.3.30) 

and therefore 

3J.t(D)= lim K(1+cD)-II(I+eD)-l11. 
£-0+ c 

(3.3.31) 

Hence J.t(D) = 0 =? J.t(D) = 0 VD '" 0 and J.t(D) = 0 =? J.t(D) = 0 VD. 

COROLLARY 3.3.1. 

VD", 0, J.t(D) = 0 {::::::> J.t(D) = O. (3.3.32) 

Theorem 3.3.4. Vt E E ~ R+, being E the set defined in Theorem 
3.3.3, the following implications hold 

(i) 

(ii) 

VD '" 0, J.t(D) = 0 =? J.t(D) = 0, 

VD, J.t(D) = 0 =? J.t(D) = O. 

COROLLARY 3.3.2. 

(3.3.33) 

(3.3.34) 
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REMARK 3.3.1. Let's see that 

J1(D) = e~~+ [K(I ; cD) -II (d + c2 D) -111] , (3.3.35) 

therefore, if rank(I + cD) decreases, the limit (3.3.35) tends to 00. 

Theorem 3.3.5. If the approximate system is asymptotically stable for 
all t, then a necessary condition for stability in the real system is 

(3.3.36) 

Proof The following inequality holds 

(3.3.37) 

and 

1 1 
clllll·IIDIl < 1 for c small :::} IIDII < clllil = ~. (3.3.38) 

Therefore 

(3.3.39) 

And hence a necessary condition for real system to be asymptotically stable is 

(3.3.40) 

But condition (3.3.40) coincides with (3.3.38). 

REMARK 3.3.2. Let's point out that one of the simplest conditions for 
stability in system (3.3.1) is (Mori and Kokame, 1989): 

JL(A) + IIBII < o. (3.3.41 ) 
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Obviously (3.3.41) is a delay-independent criterion and it assures stability for 

any value of r. 

EXAMPLE. Now an illustrative example (Mori, 1985) is considered. The 

stability region for the system is studied by using Taylor series representation 

and stability criteria above developed. It is shown that the obtained results are 

coherent with those obtained by Mori (1985). Let's consider the delayed scalar 

system described by 

x(t) = ax(t) + bx(t - r), r > 0, a, b reals. (3.3.42) 

Under a series representation, the system is expressed as follows: 

(3.3.43) 

where .AT, jjT represent operators AT, jjT for the scalar case, x ex represents 

the Taylor coefficient vector for the scalar function x(t) and xex represents the 

Taylor coefficient vector for the scalar function xT • 

If five terms in the Taylor expansions (m = 5) are taken, one obtains: 

~ ! j [~l j + [~ ~ n !b j 
o a X4 0 0 0 0 

Let's construct now matrix ..-yT = .AT + jjT sr (r): 
iT =A: + jjTST(r) 

o o 0 
o 0 

a+b 0 
-3br a + b 
6br2 -4br 

o T 

aU 

(3.3.44) 

(3.3.45) 
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The system will be stable if JJ(XT) < 0 or equivalently if 

(3.3.46) 

In order to check this condition let's construct matrix MT(T,~,a,-b) as 

follows: 

(3.3.47) 

o 
o 

1 + ~(a + b) 
-3~bT 
6~bT2 

o 
o 
o 

1 + ~(a + b) 
-4~bT 

o T 

l+e(LJ 
This permits us to rewrite the stability condition as 

I· IIM(T,~,a,b)TII-1 0 
1m < . 

£-0+ c: 
(3.3.48) 

Note firstly that if there is no delay (b = 0) then matrix (3.3.47) becomes 

M(c:, a) = (1 + c:a)I. 

In this case the condition is 

lim 11(1 + c:a)III- 1 < 0 ::} a < O. 
£-0+ c: 

and this is in agreement with the results obtained by Mori (1985). 

4. Controlling plants with delays 

(3.3.49) 

(3.3.50) 

4.1. Control and stabilization of delayed systems. Methods appropriate 

to delay-free systems have found suitable extensions to the delay case. How­

ever, it is essential that the delay-free part be very well modelled. In fact, an 

accurate model of the delay-free system is part of the control scheme (Mar­

shall, 1979). Systems for which the delay may be classified as small may be 

controlled by using delay-free methods with the usual iterative tuning on the 
plant. On the other hand, systems for which there is non-negligible phase shift 
at input frequencies or in the region of delay-free unity-gain frequency must be 
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controlled by methods which are different in kind from the small delay case. 

The presence of delays strongly limits the open-loop gain. The performance 

in the delay-free case is after categorised in terms of overshoot to step input, 

flatness of frequency response, and system time constants. Any stabilizing or 

controlling method which preserves these performance criteria is to be recom­

mended (Marshall, 1979) so that the intuitive and practical importance of these 

criteria may be maintained. 

4.2. Stabillzabillty by using the delay measure. Firstly, some stability 

results (Alastruey and Gonzalez de Mendivil, 1993) for a class of free linear 

delay-differential systems are introduced under delay-measure notation. This 

representation will be useful in order to deduce the main stabilizability results. 

Consider the free linear delay-differential system: 

x(t) = Ax(t) + Aox(t - h), with A, Ao E W. (4.2.1) 

Lemma4.2.1. Provided h ~ 1, a suflicient condition for system (4.2.1) 
to be stable is 

{(h) < -1. (4.2.2) 

Proof. Observe that for system (4.2.1) the delay measure is reduced to 

{(h, q) = {(h) = 1~~I)h. (4.2.3) 

Suppose {(h) < -1, then 

(4.2.4) 

Ash~lthen 

p(A) < -IIAoll =? p(A) + IIAoll < 0, (4.2.5) 

that is one of the simplest conditions for stability in system (4.2.1) (Mori et al., 

1982). 

Lemma 4.2.2 (Mori and Kokame, 1989). Consider system (4.2.1). As­
sume that Ll := p(A) + IIAoll ~ 0 (otherwise system (4.2.1) is stable 
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because of (4.2.5») and L2 := Jl( -jA) + IIAoll (j2 = -1). If no solutions 

of the characteristic equation of (4.2.1) 

det (sl - A - Ao exp( -hs)) = 0 (4.2.6) 

lie in the rectangular region E shown in FigA.2.1, then system (4.2.1) is 

asymptotically stable. 

An equivalence of Lemma 4.2.2 under Delay-Measure notation can be 
established as follows. 

Lemma4.2.3. Consider system (4.2.1) and suppose -h ~ ~(h). Con­

sider the auxiliary complex system: 

i(t) = -jAx(t) + Aox(t - h). (4.2.7) 

Assume 

Ml := IIAol1 [~~) + 1] , 
M2 := IIAoll [~ h (h) + 1] . 

comple", 

(4.2.8) 

Then, if no solutions of the characteristic equation of (4.2.1) lie in the 
rectangular region A shown in Fig. 4.2.2, system (4.2.1) is asymptotically 

stable. 

Proof. Firstly, observe that condition -h ~ ~(h) implies that: 

-h ~ hllAoll -1 ~ IIAoll =? 1 ~ -IIAoll 
"" Jl(A) =? "" Jl(A) r Jl(A) . 

(4.2.9) 

Then one gets: Jl(A) ~ -IIAoll =? Jl(A) + IIAoll ~ 0, that is the same pre­
condition than in Lemma 4.2.2. Furthermore, quantities M 1 and M2 verify: 

Ml = IIAoll [~(:) + 1] 
[ Jl(A). h ] = IIAoll IIAolih + 1 = Jl(A) + IIAoll ~ 0, (4.2.10) 

M2 = IIAoll [~ h (h) + 1] 
comple", 

[ Jl( -jA)· h] . = IIAoll II Aollh + 1 = Jl( -)A) + IIAolI· (4.2.11) 
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1m 

S-pJanc 

Rc 

LI 

Fig. 4.2.1. Existence region of unstable characteristic roots in the S-plane 

for Lemma 4.2.2. 

1m 

S-plane 

Re 

Ml 

Fig. 4.2.2. Existence region of unstable characteristic roots in the S-pl~ 

for Lenuna 4.2.3. 

But Ml = Ll ~ 0 and M2 = L2. 
Now, conditions for a control law to stabilize a linear system with delayed 

state will be discussed and several results are to be introduced. Consider the 

linear delayed system: 

where 

:i:(t) = Ax(t) + Aox(t - h) + Bu(t) + Bou(t - h), 

x(t) = cp(t), t E [-h, 0], 
(4.2.12) 
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and rp(t) is a continuous vector-valued initial function. 

The following result refers to stabilizability for system (4.2.12) by using 

a control law u(t) defined through a delay-differential equation. 

Result 4.2.4. Consider a control law u(t) defined by the delay-diffe­

rential equation 

u(t) = Dx(t) + Eu(t) + Dox(t - h) + Eou(t - h). (4.2.13) 

A sufficient condition for control law (4.2.13) to stabilize system (4.2.12) 

is given by 

e(h) < -h, (4.2.14) 

where the delay measure is refered to the extended system 

. [ A B] [ Ao Bo ] ( ) z = D E z(t) + Do Eo z t - h . (4.2.15) 

Proof. Firstly observe that the two delay-differential equations (4.2.12) and 

(4.2.13) can be rewritten as one single delay-differential equation as follows: 

[ ~] = [A B] [X(t)] + [Ao Bo] [x(t-h)]. 
u D E u(t) Do Eo u(t - h) 

(4.2.16) 

Define 
z(t) = [xT(t) uT(t)f ' 

A = [~ ~], Ao = [~~ ~~]. 
(4.2.17) 

Then (4.2.16) can be rewritten as 

i = Az(t) + Aoz(t - h). (4.2.18) 

If, by hypothesis, condition (4.2.14) holds for system (4.2.18) then 

(4.2.19) 

Therefore, system (4.2.18) is stable, which implies that control law (4.2.13) 

stabilizes system (4.2.12). 

The two following corollaries are immediatly deduced from Result 4.2.4. 
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CoroUary4.2.1. System (4.2.12) is stabilizable by control law (4.2.13) 
if 

e(h) < -1. ( 4.2.20) 

Corollary 4.2.2. System (4.2.12) is stabilizable by control law (4.2.13) 
if 

IIAoll < -hI lim 1 - III + eAIi , 
e-O e 

(4.2.21) 

provided h ~ 1. 

Proof of Corollary 4.2.2. By hypothesis, condition (4.2.21) holds. Then 

- 1 - IIAolih IIAol1 < --h ·1l(A) :::} e(h) = --- < -1. 
Il(A) 

(4.2.22) 

But, by Lemma 4.2.2, provided h ~ 1, (4.2.22) is a sufficient condition for 
stability in a system like (4.2.18). 

Consider now a system defined by 

x(t) = Ax(t) + Aox(t - h) + Bu(t), 

x(t) = <p(t), t E [-h, 0]. 
(4.2.23) 

The following result refers to stabilizability for system (4.2.23) by using a 
control law u(t) which is proportional to the state vector x(t). 

Result 4.2.5. Consider a control law u(t) defined as 

u(t) = kx(t), k real. 

Then system (4.2.25) is stabilizable by control law (4.2.26) if 

Proof. The following implications hold: 

IIAolih IIAollh:::} 
Il(A) + J.l(B) > (k - 1)· J.l(B) -IIAoll 
Il(A) + Il(B) < (k - 1)·Il(B) -IIAoll :::} 
Il(A) + k·Il(B) + IIAoll < o. 

. (4.2.24) 

(4.2.25) 

(4.2.26) 
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By using property (v) of Lemma 3.2.1.1 one gets 

Jl(A) + Jl(kB) + IIAoll < 0, (4.2.27) 

but property (iii), Lemma 3.2.1.1, leads to 

Jl(A + kB) + IIAoll ~ Jl(A) + Jl(kB) + IIAoll < o. (4.2.28) 

Finally, provided u(t) defined in Eq. 4.2.24, let's see that system (4.2.23) 

can be rewritten as 

x(t) = (A + kB)x(t) + Aox(t - h) = Ax(t) + Aox(t - h), 

x(t) = <p(t), t E [-h, 0], 
(4.2.29) 

where A = A + kB. But (4.2.28) becomes Jl(A) + IIAoll < 0, which is a 
sufficient condition for stability in system 4.2.29 (Mori et aI., 1982). 

s. Large and nonlinear delay systems 

5.1. Interconnected systems with delays. The problem of the intercon­

nection of systems has been widely dealt with in the literature (Fessas, 1986; 

Cheung and Yurkovich, 1992), including the problems of stability and stabi­

lizability of interconnected systems (Saberi and Khalil, 1985; Feliachi, 1986; 

de la Sen, 1986; Fessas, 1987; Lee and Radovic, 1988; Abdul-Wahab and Zo­

hdy, 1992) and also the design of controllers for such systems (Ozgiiner and 

Hemami, 1985; Hovd and Skogestad, 1992; Shi and Singh, 1992). Neverthe­

less, no method was known in order to deduce the dynamics of the global 

system by using the knowledge of the dynamics of its subsystems and data 

about their interconnections, until a recent work (Alastruey and Gonzruez de 

Mendivil, 1994b) that included the question of delays. In that paper we dealt 

with such a description by using the Taylor series representation (Razzaghi and 

Razzaghi, 1989). 

Let's consider two subsystems 1 and 2, with dimensions nl and n2 respec­

tively, without any interconnection between them. Let x(t) be the state vector 

for subsystem 1 and w(t) the state vector for subsystem 2. Let S-O be the 

global system composed by these two subsystems, with its state vector being 

X(t) = [:~~~], (5.1.1) 
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where we represent the column vector composed by the nl components of x(t) 
and the n2 components of w(t). 

Let's consider now another situation, where the subsystems 1 and 2 are 

interconnected. Due to this interconnection, for equal initial conditions, and for 

the same instant t, the state vectors for subsystems 1 and 2 corresponding to 

the new situation will be different than in the former case. Let's denote them 

as x*(t) and w*(t). Let S-I be the global system now composed, being its state 
vector 

X* (t) = [x* (t)] . 
w*(t) 

(5.1.2) 

A basic tool will be the interconnector operator which once applied to state 

vectors for systems S-O, and depending on existing interconnections, will give 

as a result the state vector for S-1. In practice, the resolution of the state equation 
for complex systems can be impossible. Even the simple fact of describe the 

state equation can be very complex. In the paper two results are introduced 
to describe state vectors for a class of complex large systems, by using the 

knowledge about their subsystems and their respective interconnections. 

In the following, several concepts (interconnection, interconnection oper­

ator) - that are useful in the sequel - will be introduced. 

DEFINITION 5.1.1 (Alastruey and Gonzalez de Mendivil, 1994b). Let SI 

and S2 be two subsystems, with state variables xt) ... ) x~l and x~) ... ) x~2' 
respectively. We will define interconnection from the state variable xl of SI to 

the state variable xJ of S2, with operation Q, the creation of a line going out 

from xl, being modified by the operation Q and arriving to the input of the 

integrator with output xJ. The variable xl is denoted starting variable and the 
variable xJ ending variable. The interconnection can be represented in a short 

way as < x;QxJ >. 

DEFINITION 5.1.2 (Alastruey and Gonzalez de Mendivil, 1994b). We 

will define s-o with respect to a set of N subsystems, with state vectors 
[ 1 1 ]T [N N ]T . I th ·th Xl ... xnl ) ... ) Xl ... xnN ,respective y, as e system WI state vector 

being [xl .. . X~l .. . xf ... X~N]T. 

DEFINITION 5.1.3 (Alastruey and Gonzalez de Mendivil, 1994b). Let I 
be a set of r interconnections between the variables of s-o. The system obtained 
by applying all the interconnections belonging to the set I on the system s-o 



156 Control for delayed systems 

will be defined as the interconnected system, and will be denoted by S-1. 

These two previous definitions greatly simplify the definition of intercon­

nector, provided as follows. 

DEFINITION 5.1.4 (Alastruey and GonzaIez de Mendivil, 1994b). De­

note [xt* .. . x~i .. . xi"* .. ,x;;N1T the state vector of S-1. We will define as 

interconnector (or interconnection operator) with respect to the set lover S-O, 

the operator that when it is applied on the state vector of s-o gives as a result 

the state vector for S-1. To say, if one denotes 81 the interconnection operator 

thus 

(5.1.3) 

DEFINITION 5.1.5. Let us define (Razzaghi and Razzaghi, 1989) the 

following operators which are matrices containing coefficients of Taylor series 

expansions: 

T(t) = [1 t t2 ... tm-1f, 

rr (t) = In ® rr (t), 
where ® stands for the Kronecker product (Bellman, 1970). The integration 

operator for the Taylor series can be computed from the equation (Razzaghi 

and Razzaghi, 1989) 
t J T(t)dt ~ P(a)T(t), 

ex 

and then 

-a 1 0 0 0 
a 2 

0 1 0 0 -T 2 
a3 

0 0 0 0 
P(a) = 

-3 

m-l 1 a 0 0 0 -m-l m-l 
am 

0 0 0 0 -Tn 

pT(o:) = In ® pT(o:). 

The delay operator for the Taylor series satisfies the relation 

T(t - r) = S(r)T(t) 
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and can be computed for i, j = 0,1, ... , m - 1 by using the formula 

Thus, for m = 4, 

8ij = (;)(_T)i- j , 

8ij = 0, if j > i. 

if j ~ i, 

o 0 
1 0 

-2T 1 
3T2 -3T 

Similarly, sr(T) = In ® sT(T). 

157 

In the following, two basic results for the deduction of an interconnector 

are introduced. The first one is referred to a delay-free interconnection; the 

second one applies when there is a point-delay interconnection. Both apply 

for the case of two subsystems, but their generalization for the case of N 
subsystems is straightforward. 

Lemma 5.1.1 (Free-delay interconnection) (Alastruey and Gonz31ez de 

Mendivil, 1994b). Let us consider the following free subsystems with mul­
tiple state delays: 

r 

x(t) = A(t)x(t) + L Bj(t)x(t - Tj), (5.1.4) 
j=l 

r 

w(t) = H(t)w(t) + L Kj (t)w(t - Tj), (5.1.5) 
j=l 

where both subsystem (5.1.4) as well as subsystem (5.1.5) have N state 
variables. Without loss of generality, we will assume that the point delays 
have the following order: Tl < T2 < ... < Tr . In addition, the initial 
conditions are known: 

x(t) = F(t), t E [-max{Tj},O) , 

w(t) = G(t), t E [- max{Tj}, 0). 

(5.1.6) 

(5.1.7) 

The matrices in (5.1.4) and (5.1.5) have appropriate dimensions, then: 

dim (A(t» = dim (Bj(t» = dim (H(t» = dim (Kj(t» = N x N. (5.1.8) 
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Let < Ziq(t)Wj > be a free delay interconnection. Let 8-0 be the 

global system without interconnections, with its state vector being X(t) = 
[z(t)T w(t)T]T and let 8-1 be the global interconnected system with state 
vector X*(t) = [z(t)*T w(t)*T]T, with dimension N + N. Let the Tayor 

series representation of this state vector be: 

(5.1.9a) 

where 

X*(t) = [fT(t) [z~T ziT ... z::?,_d 

fT(t) [w~T wiT ... w::?,_d r. (5.1.9b) 

Let the Tayor series representation of X(t), the state vector for 8-0 
be: 

XT _ [T T T T T]T 
- ZOZ1··· Z m_1 WO··· Wm_1 , (5.1.10a) 

where 

[t;rr [T T T] t;rr [T T T ]]T X(t) = r (t) Zo Z1 ... Zm-1 r (t) Wo W1 •• • Wm_1 ,(5.1.10b) 

and where, for instance, Zo is a coefficient vector containing the N first 
coefficients in the Taylor series expansions of the N state variables of the 
first subsystem. 

Let A, Bj, if, Kj be the product operational matrices (Razzag/li and 
Razzaghi, 1989) for the matrices A, Bj, H and Kj. Let q be a natural 
number such that 0 < q ~ r. 

If submatrix 

q 

L = ImN - pT(O)ifT - LPT(Tj)KJ 8T(Tj) (5.1.11a) 
j=1 

is invertible, let's consider the operator (with elements being blocks mN): 

o ], (5.1.11b) 
ImN 
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where Q is the product operational matrix for the function 

[0 ......... 0] 
.... q(t). . . . , 
0 ......... 0 

where q(t) occupies the position j, i. 

Then, for any t such that 'rq < t < 'rq+l the following equality holds: 

(5.1.12) 

To say 3XT = X*T. 

Lemma 5.1.2 (Point-delay interconnection) (Alastruey and Gonzalez de 

Mendivil, 1994b). Let us consider the same conditions than in Lemma 
5.1.1, including the invertibility of submatrix L (Eq. 5.1.lla), but in this 
case the interconnection being < Xi(t - 'rk)q(t)Wj(t) >, to say, taking the 
inner signal Xi with delaY'rk time units, multiplied by amplitude q(t) and 
applied as input for an integrator with output being Wj(t). Let us consider 
the operator 

(5.1.13) 

I~N] . 
Then, for any t such that 'rq < t < 'rq+l the operator (5.1.13) is an in­
terconnector in Taylor series representation for the two subsystems (5.1.4) 

and (5.1.5), with the interconnection < Xi(t - 'rk)q(t)Wj >. 
Note that, under its present form, the method is applicable to the case of 

multiple interconnections only if these interconnections do not create a loop 

between the subsystems affected by them. For instance, suppose the global 

system being composed of three subsystems 

X= {Xl(t) ... xN(t)}, 

W = {w1(t) ... wN (t)} , (5.1.14) 

y = {yl (t) ... yN (t)} , 
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defined by state equations (5.1.4), (5.1.5) and 

r 

y(t) = M{t)y(t) + ~ Nj{t)y(t - Tj). (5.1.15) 
j=l 

It can be easily proven that the method is still valid considering the con­

nections < Ziq,,{t)Wj > < Wjqh(t)YI >. In this case the interconnector would 

be computed as the product of two interconnectors corresponding to the two 

proposed connections, i.e, S = ShS". These two interconnectors will be com­

puted in a similar way than that shown in Lemma 5.1.1, but now taking into 

account the existence of three subsystems, and thus considering the folfowing 

state vector for the global system 

More specifically (Alastruey and GonzaIez de Mendivil, 1994b): 

(5.1.17) 
ii 

I ... N 

[lmN-pr(O)MT - E;=1 pr(Tj)Nj 5'"(Tj)r1 pr(O) Q'r 
ii ] ii , 

I ... N 

(5.1.18) 

ii ] ii , 
I ... N 

where M, fijj, Qh, Q". are respectively the T~ylor product operational matrices 
for the functions ' 

M(t), Nj(t), [.~ ~ ~ ~~·(ij.·.· ~.l and [.0 ..... ~~·(ij:: ~.l ' 
0 ......... 0 0 ......... 0 

(5.1.19) 

where qh(t) occupies the position I, j and q,,(t) occupies the position j, i. A 

similar way can be followed when there are two delayed interconnections (by 

using Lemma 5.1.2) or one. delayed interconection and one free..delay intercon­

nection, or a greater number of subsystems with more connectionS without a 

loop. 



Carlos F. Alastruey 161 

However, if one considers several connections which create a loop between 

two or more subsystems, Lemmas 5.1.1 and 5.1.2 are not applicable. For 

instance, if one considers a loop < Xjqk(t)Wj > < Wjqk(t)Xj >, it is obvious 
that it changes the dynamic properties of the whole system. For the cases of a 

set of interconnections creating such a loop, the difficulty can be overcome in 

part by considering all the subsystems affected by such loop as a new greater 

subsystem, and by studying the dynamics of this new subsystem separately. 

For systems that can be modelled by using polynomial matrices containing 

only positive powers of t or can be reduced to such models (which is the case 

in many practical examples) the method is applicable in its present form for any 

t > 0 by considering m (the number for terms in the Taylor series expansions) 

equal to pmax + 1, where pmax is the maximum power of t appearing in the 
model. This is obvious, since am_ltm - 1 is the term with maximum power 

appearing in a troncated Taylor expansion. In these cases, several results have 
been established about under which conditions stability in the approximate 

system implies stability in the exact one (see, for instance, Alastruey et aI., 

1992). In the general case, however, the troncation of Taylor series for t > 1 
is not possible. Then arises· the question of how to use the method for stability 

study or control design. 

The present method, as was previously pointed out, is mainly based on 

the results given by Razzaghi and Razzaghi (1989) by using Taylor series. 

Similar research on time-delay systems has been done by many authors using 
polynomial series. In particular, Kung and Lee (1983) developed a similar 

formulation by using Laguerre polynomials, and Shyu (1984) did it also by 

using Hermite polynomials. Laguerre polynomials are applicable to the interval 

o to 00, and Hermite polynomials are applicable to the interval -00 to 00. It 

is known that the finite troncation of these two kinds of polynomial expansions 

is possible in all the interval if enough terms are considered in the expansions, 

depending on the original time-functions. 

The method proposed here can be rewritten by using Laguerre or Hermite 

formulation (including Laguerre or Hermite operators of product, integration 

and delay) and therefore conditions can be found to relate the number of terms 

in the polynomial expansions of the time functions with the validity of the 

approximations with respect to stability implications or control. design strate­

gies. Furthermore, in a work due to Chen and Yang (1987), polynomial delay 
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matrices (including those of Hermite and Laguerre polynomials) were derived 

via a transformation technique which involved the transformation of the time­

delay matrix of the Taylor series into time-delay matrices of polynomial series. 

Therefore, two results similar to Lemmas I and 2 can be formulated for La­

guerre or Hermite operators of product, integration and delay, and consequently 

interconnectors can be computed giving an approximation of the state vector for 

the interconnected global system. The approximation would be valid - under 

certain circumstances - within the intervals 0 to 00 or -00 to 00, respectively. 

To choose m is a crucial question when applying the method to a particular 

system. In practice there are cases when an addition of terms in the Taylor 

expansions does not improve the accuracy degree of the approximations, a 

circumstance to avoid when dealing with computer-processing-speed restrictions 

or on-line applications; on the other hand, if one chooses m lower than the 

particular needs of the problem, the approximate solution is very poor. When 

the dominant time-functions appearing in the state matrices can be reduced to 

equivalent polynomials of positive powers of t, then the best choice is m equal to 

pmax + 1, where pmax is the maximum power of t appearing in the equivalent 
polynomials. On the contrary, if not all the dominant time-functions appearing 

in the state matrices are reducible to equivalent polynomials of positive powers 

of t then a more detailed study is required. The approach undertaken by the 

authors comprises several steps (Alastruey and GonzaIez de Mendivil, 1994b), 

that can be easily implemented in software: 

1. Determine M, the maximum value for m in terms of computer- or on­

line- constraints. 

2. Determine which are the dominant time-functions in the state matrices. 

3. Compute the Taylor expansions for the dominant time-functions up to 

the M -th term. 

4. Evaluate separately (by powers) the terms of every expansion, for a fixed 

value (i.e., 0.9). 

5. For every expansion, compute the ratios of the values computed in step 

4, between a term and the following, starting with the term with power 

zero, for every element of the state vector. 

6. Choose m - 1 equal to the maximum term-power for which the ratios 

computed in step 5 are under the value k, where k is a design constant. 

5.2. Non-linear delayed systems. One of the difficulties in dealing with 
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non-linear systems is the lack of unified mathematical theory for representing 

various non-linear-system characteristics. It is therefore necessary to specify 

the system representation before carrying out the analysis and identification of 

non-linear systems, as was pointed out by' Kung and Shih (1986). Those au­

thors considered the Hammerstein model (Narenda and Gallman, 1966), which 

consists of a zero-memory non-linear element followed by a linear delay plant. 

For system analysis, the variables of the non-linear model were expanded into 

a finite-dimensional block-pulse series so that a non-linear time-delayed state 

equation was reduced to a set of linear algebraic equations. For system identi­

fication, through the block-pulse expansions of the measured input-output data, 

the unknown parameters of the linear part and coefficients of the polynomial 

representation of the non-linear element can be estimated using the least-squares 
method. 

Controllability of non-linear delayed systems has been studied by many 

authors by using the Schauder's fixed-point theorem (Balachandran and Dauer, 
1987). The approximate controllability of on-linear systems with delays in 

their states and control has been examined by Sinha (1986). If the uncontrolled 
system is asymptotically stable and if the linear part of the control system is 
controllable, then the non-linear delay system is approximately controllable. An 

upper bound on the magnitude of retardation for the system to be controllable 

was estimated in that work. Conditions were placed on the delay value and on 
a perturbation function, which represented the nonlinearity. A general method 

to derive Lyapunov functions for non-linear systems was developed by Chin 

(1986), a method that could be applied, under certain circumstances, to non­

linear delayed systems. 

Finally, the optimal control for a class of non-linear multiple-delay systems 

was undertaken by Balachandran (1989). This author proved the existence 

theorems for the optimal control of non-linear multiple-delay systems having 

an implicit derivative with quadratic performance criteria by suitably adopting 

the techniques of Dacka (1980). 
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SISTEMQ SU VELINIMU VALDYMAS 

Carlos F. ALASTRUEY 

SlIaipsnyje pateikiama dinaminill sistemll su velinimu ap~valga. Aptariami ~ias 

sistemas apra~an~ill skirtuminill lyg~ill sprendimo metodai, nagrinejami jll ribojimai 
ir galimyhes. Pateikiamas gana bendro pavidalo tiesines sitemos su velinimu lygties 
skleidimo Teiloro eilute metodas, nagrinejamas sistemll su velinimu stabilumas. Taip 
pat pateikiama tarpusavyje suri~tq sistemll su velinimu interpretacija, ap1velgiami darbai, 
nagrinejantys netiesines sistemas su velinimu. Ap1valgoje nurodomos pagrindines lyg~ill 
sprendimo problemos remiantis paskutiniq dviejll de~imtrn~ill ~inomais darbais §ioje 
srityje. 


