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1. Introduction. The main objective of this work is to make effort to 

establish the connections between evolutionary algorithms (EA) and recursive 

algorithms of stochastic approximation type. One of our hopes is that with 

the help of the existing results in stochastic approximation and the bridge be­

tween evolutionary algorithms and stochastic approximation procedures, we will 

eventually be able to treat many interesting theoretical questions on asymptotic 

properties of evolutionary computation. 

Evolutionary algorithms represent a class of stochastic optimization algo­

rithms in which organic evolution is regarded as a set of rules for optimization. 

These algorithms have been applied to many problems in parameter optimiza­

tion and related fields with great success. With simplification of biological 

reality, based on the collective leaming process within a population of individ­

uals, each of which is a search point of potential solutions for a given problem, 

the evolutionary algorithms carry out the designed computational task using 

randomized process of selection, mutation and recombination. The study of the 

evolutionary algorithms has witnessed rapid progress for nearly thirty years. 
For some of the important contributions, we mention the work of Rechenberg 

(1973), Schwefel (1965, 1975, 1977), Holland (1962), De long (1975), Fogel 

(1966, 1992) among others. For an extensive review of the recent advances, the 
readers are referred to Back and Schwefel (1993), Back, Rudolph and Schwefel 

(1993), Schwefel and Miinner (1991) and the references therein. 

The method of stochastic approximation was initiated in the early 50's to 

find the root of a function f ( .) and/or to locate the maxima or minima of f ( . ), 
provided only noisy measurements or observations are available. Owing to its 

wide range of applicability, such algorithms have been studied extensively for 

years. We now have good understanding on the asymptotic behavior of the 

algorithms (see Nevelson and Khasminskii, 1976; Ljung, 1977; Kushner and 

Clark, 1978; Kushner, 1981 and Benveniste et al., 1990 and the references 

therein). Early development via martingale approach is contained in Nevelson 

and Khasminskii (1976); the celebrated ODE (ordinary differential equation 

methods) are discussed in Ljung (1977) and Kushner and Clark (1978); the 

method of weak convergence is due to Kushner and his associates and docu­

mented in Kushner (1984); a most recent book on stochastic approximation is 
the one by Benveniste, Metivier and Priouret (1990), which provides a com­
prehensive overview on the recent development of the subject and interesting 
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applications in control and adaptive signal processing. 

Both evolutionary algorithms (EA) and stochastic approximation are aim­

ing at the objective-stochastic optimization. Nevertheless, surprisingly enough, 

until now, there has not been any attempt to connect these closely related fields, 

to the best of our knowledge. Taking this into account, our main effort in this 

paper is to apply some of the techniques in stochastic approximation to ana­

lyze the asymptotic properties of some recursive algorithms that have potential 

applications in evolutionary computation. We will make effort to establish the 

connection of these methods. We believe that the ideas to be presented below 

will be of interest to the EA community as well as to people working in the 

systems theory and related fields. By and ·large, the cUrrent work is served as 

a survey on convergence and rate of convergence issues. 

The rest of the paper is arranged as follows. The precise fonnulation of the 

problem together with examples from evolutionary computation are given next. 

Both constant step size algorithms and decreasing step size schemes are given. 

Although not all the mathematical details are provided, appropriate references 

are given. Section 3 presents the convergence results and Section 4 focuses on 

the rate of convergence issues. In these sections, we will also state some of the 

mathematical background. Finally we close this paper with some concluding 

remarks in Section 5. 

2. Problem fonnulation. We present the problem fonnulation in a rather 

general fonn so as to accommodate many potential applications in evolutionary 

computation. 

Let x, e E Hr , G(·,·) : wxr 1-+ Rr,.where G(x,e) denotes the noisy 

gradient estimate of a real-valued function f ( x ). Our effort is to develop 

recursive algorithms to carry out the optimization task. Suppose the initial 

estimate Xo is selected. We then generate a sequence of estimates {xn } by 

means of the following recursion: 

(1) 

or 

(2) 

where an and a are known as step size or gain sequences. In (1), we assume 
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that 
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00 

an > 0, an~O and Lan = 00, 

n=! 

whereas in (2), a is a constant step si7..e. In the asymptotic analysis, however, 

we assume that a -+ O. To see the connection of the above algorithms with the 

evolutionary computation, we consider the following example. 

EXAMPLE 2.1. Suppose that we are employing a (1, A) strategy to solve 
an optimization problem. Select random vectors z~i), 1 ~ i ~ A. Then use 

the current estimate Xn to evaluate f(xn + z~i), for 1 ~ i ~ A. After the 

evaluation, compare the corresponding values and select the vector Xn + z~) 
such that f(xn + z~» = minf(xn + z~i», for 1 ~ i ~ A. In short, 

Clearly, the algorithm can be thought of as a recursive procedure. 
Comparing (3) with that of (1) or (2), a first glance may lead to the 

conclusion that they do not have much in common. At least (3) does not 
involve step sizes. However, a closer examination reveals that there is a hidden 
step size in the algorithm. Suppose that {z~i)} is a sequence of independent 

and normally distributed random variables such that the mean of z~) is zero 
and the covariance matrix is u~I, where u~ > 0 (u~ can be either varying with 
n or equal to a constant u). We note that u~ here is simply the scale factor 
of the distribution. Then we can rewrite z~i) as z~i) = UnZ~i). Now z~i) has 

a normal distribution with mean 0 and covariance I, the identity matrix. Thus 
(3) can further be written as: 

>. 

L -(i)1 Xn+l = Xn + Un zn {/( + (i»_ . I( )}' X'n z" -rnln"EAn U 
i=1 

where An = {Xn + z~i); i = 1, ... , A}, and IA denotes the indicator function 
of the set A. Without of loss generality, we may assume that there is only one 
i leading to the minimum. If mUltiple indices give the minimum, we simply 

choose the smallest one among them. In evolution strategy, one often chooses 

Un that is proportional to "" ~H(V' f(xn», where r is the dimension of the 
problem and H(·) : Rr 1--+ R is an appropriate real-valued function such that 

H(O) = 0 and the only root of H(·) is O. For example, one may choose 
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H(\7 f(x)) = 1\7 f(x )1. With either a or an denoting the proportional constant 
(multiplied by l/r), the recursive formula can be written as 

>. 

Xn+1 = Xn + aH (\7 f(x n ») " z~i) I{f( + (i»_. f( )}. L...; Xn Zn -mlnuEAn U 
;=1 

or 

In the next section, we argue that for fixed X, the average of the random part in 

the iteration is not equal to zero. Algorithm (3) now becomes a constant step 

size or a decreasing step size recursive algorithm of stochastic approximation 

type. The constant a or an is the step size of the corresponding stochastic 

approximation algorithm. 

To proceed, a word about the notation is in order. In the sequel, f{ 

denotes a generic positive constant. Its value may be different for different 

appearances. Thus, f{ + f{ = f{, f{ f{ = f{ are understood in an appropriate 

sense. z' denotes the transpose of z and fx denotes the first partial derivatives 

of the function with respect to x. Similar notation is used for the second order 

derivatives. 

3. Convergence of the algorithms. In this section, we study the con­

vergence of the algorithms (1) and (2). We include the with probability one 

convergence and that of weak convergence in two subsections. In the third 

subsection, we discuss related problems in EA computation. 

3.1. W.p.l convergence. In general, dealing with discrete iterations is 

very hard and requires much more restrictive conditions. In the late 70's, an 

approach known as ODE (ordinary differential equation) methods was invented 

by Ljung (1977) and further developed by Kushner and his colleagues (Kushner 

and Clark, 1978). The essence is that in lieu of examining the discrete iterations 

directly, one takes the continuous time interpolation of the estimate. Then 

combining the theory of analysis and probability, one shows that a suitably 

scaled sequence of functions is uniformly bounded and equicontinuous. Thus 

one may extract convergent subsequence in accordance with the Ascoli-Arzela's 

lemma, and identify the limit of the sequence as a solution of an ordinary 

differential equation. To give some heuristic argument, consider a special case, 
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G(x,e) V'f(x) + e, the additive noise setting. For large n, we expect 

the noise term to be averaged out owing to the law of large numbers type of 

conditions. Thus, 
n+k-l 

Xn+k Rj Xk - L aiV'f(xk), 
i=k 

or equivalently, 
Xn+k - Xk () 
"n+k-l . Rj V' f Xk , 
L....i=k a, 

which leads to the connection to the ODE x = -V' f( x). 
To proceed, we work with the decreasing step size algorithm, and define 

tn = E?;Ol aj and m(t) = max{ n; tn ~ t}. Define the piecewise linear 
(denoted by XO(t») and piecewise constant (denoted by x(t») interpolations of 

the iterates as: 

xO(tn) = Xn, 

° tn+l - t t - tn x (t) = Xn + --Xn+l 10 (tn, tn+I), (4) 
an an 

x(t) = Xn for t E [tn, tn+I)' 

We also define a shifted sequence xn(-) by xn(t) = xO(t + tn). 
Now, we are in a position to give a set of conditions that yields the w.p.I 

convergence of the algorithms. 

(A.3.I) En a~ < 00, En an = 00, {an+I/an} is bounded. G(x,en) = 
G1(x, an) + G2 (x){3n such that G1(x, a) is bounded on bounded x-set and is 

continuous. G 2 ( .) is a continuous and bounded function. {a n} is a sequence 

of uniformly bounded random variables and {{3n} is a sequence of independent 

random variables with 0 mean and finite second moment. 

(A.3.2) There is a twice continuously differentiable Liapunov function 

o ~ V(x) such that Vzz (-) is bounded, V(x) ~ 00 as Ixl ~ 00. Let En denote 

the conditional expectation on the (I-algebra Tn generated by {xo, ei; i ~ n}. 
W.p.I, 

00 

La;V;(x)En(G(x,e;) - V'f(x») ~ J{an(I + W;(x)V'f(x) I) , 
;=n 
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The bounds above also hold with V(·) replaced by a twice continuously differ­

entiable function with a compact support. For some TJ > 0, some >'0 > 0 and 

compact set Qo = {Xj V(x) ~ >'o}, V; (x)\7' f(x) > TJ for all x ~ Qo. 

(A.3.3) EnIG(x,enW ~ I«1 + W;(x)\7'f(x)1) ~ I«1 + V(x)). For 

o ~ s ~ 1, EnW;(x + sanG(x,{n))\7'/(x + sanG(x,{n))1 ~ I«1 + W'(x) 
\7' /(x)l). 

Theorem 3.1. Suppose the conditions (A.3.1)-(A.3.3) are satisfied. 
Then {xn} is bounded w.p.l. IE-V;(x)\7'f(x) ~ 0 for all x, then Xn ---t 

{x; V;(x)\7'f(x) = O} w.p.l. In general {xn} converges to the largest 
bounded invariant set of 

x = -\7'f(x), x(O) = Xo. (5) 

IE xo is an asymptotically stable solution of (5) with domain of attraction 
DA(xO) and if x E A C DA(xO) infinitely often, where A is a compact set, 
then Xn~xo w.p.l. 

The proof of this theorem uses the idea of perturbed Liapunov function 

methods (see Kushner, 1984). The argument is analogues to Kushner (1981). 

Rather than going through all the technical details, we consider a simpler prob­

lem - the approximation scheme with additive structure. 

3.1.1. Discussion on a simpler problem. Consider the following simpli­

fied problem: 

Xn+l = Xn - an (\7'f(xn) +en). 

Define the interpolations as before, and define also 

n-l 

BO(tn) = L aiei 
;=0 

Assume that: 

• \7'/0 is a continuous function . 

• lim P (sup I.f a;ei I ~ c) = 0 for each c > 0 or simply E~=l aiei 
n m~n a=n 

converges w.p.I. 
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• {xn } is bounded w.p.I. 

• There is a twice continuously differentiable Liapunov function V (.) such 

that 

V;(x)\i'f(x»O foraB xliS={x; \i'f(x)=O}. 

Then Xn ---+ S w.p.l, i.e., limn p(xn, S) = 0 w.p.l, where P denotes the 

usual distance function. In particular, if S = {x"} a singleton set, then 

Xn ~x" w.p.I. 

The proof of the assertion goes as follows. By means of the boundedness 

of {x n}, it can be verified that the sequence {xn ( .)} is uniformly bounded and 

equicontinuous. By virtue of Ascoli-Arzela's lemma, we can extract convergent 

subsequences. Select such a sequence and still denote the index by n. Using 

the recursive formulae, it is not difficult to see that 

t 

xn = xn(o) - J \7 f(xn(s))ds - Bn(t) + en(t), 
o 

where en (t)~O uniformly on finite time intervals. In addition, by virtue of the 

averaging condition on the noise sequence, Bn(t) also goes to O. As n ---+ 00, 

the limit of the equation above gives us 

t 

X = x(O) - J \i'f(x(s))ds, 
o 

which is the desired equation. Finally the assertion foBows from the LaSalle's 

invariance principal and some detailed probabilistic argument (see e.g., Kushner 

and Clark, 1978, Chapter 2). 

REMARK. The boundedness of {xn } above can be obtained via the use 

of perturbed Liapunov function methods. We assumed it for simplicity. The 

average condition of the noise or the summability of L:i aiei is a rather general 

condition. It is verified by a large class of random processes. For example, i.i.d. 

noise, martingale difference sequences, some ARMA models, mixing processes 

etc. can be shown to possess such properties (see Kushner and Clark, 1978; 

Yin, 1991 and the references therein). The conditions used here (even in the 
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setting of Theorem 3.1) are not the most general one. Weaker conditions are 

possible. For ease of discussion, we selected the simple forms. 

The significance of the limiting ODE (5) is that the stationary points of it 

corresponds to the stationary points of the function we are searching for. The 

ODE method gives us an analytic way to convert the problem into one that can 

be relatively easily handled. 

3.2. Weak convergence. First we recall the definition of weak conver­

gence. A sequence of random variables {wn } is said to converge to W weakly, 

iffor any bounded and continuous function g(.), E g( wn ) -+ E g( w) as n -+ 00 

(Note that the function g( .) is an arbitrary bounded and continuous function; it 
is not related to the objective function f(·). Weak convergence is a substantial 

generalization of the concept of convergence in distribution. It can be used not 

only for random variables living in an Euclidean space, but also for random 

processes taking values in function spaces as well. In the process of getting 

weak convergence result, one often needs to verify that the sequence involved 

is tight. A sequence {wn} is tight, if for any c > 0, there is a compact set Se, 
such that P( Wn fj. Se) ~ c for all n. A well-known theorem due to Prohorov 
states that, in a complete separable metric space, the tightness is equivalent to 

sequential compactness. In other words, once the tightness is verified, one may 

proceed to extract convergent subsequences . 

. Weak convergence of measures is a rather powerful technique. As a -+ 0 

or n -+ 00, much of the specific detail of the system is wiped out. It thus make 

sense to examine the "averaged system" more carefully. There are reasons that 

weak convergence analysis is more preferable in many applications. It requires 

much weaker conditions than its with probability one convergence counter part. 

Dealing with rates of convergence problems, we often need to obtain results 

similar to that of the central limit theorem. In this regard, one is forced to treat 

the problem of convergence in distribution or convergence in the weak sense. 

Moreover, to analyze a constant step size algorithm, we need to use weak 

convergence tools since if a constant step size is used, almost sure (w.p.I) 

convergence results cannot generally be expected. 

For technical purposes, it is easier to deal with paths than with measures. 

A device known as Skorokhod representation allows one to "change" the weak 

convergence to w.p.l convergence on a larger space. For the detailed account 

on the concept of weak convergence as well as many related materials, we refer 
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the reader to the book of Ethier and Kurtz (1986) and the references therein. 

In our weak convergence analysis to follow, we often work with Dr [0,(0), 
the space of functions, that are right continuous, and have left-hand limit en­

dowed with some weak topology (Skorokhod topology). Our analysis requires 

that first the tightness be verified and then the limit process be characterized. 

In what follows we provide certain sufficient conditions that ensure the 

convergence in the sense of weak convergence. We work with the algorithm 

with constant step size a. The argument for that of the decreasing step size 

algorithms are virtually the same. 

(B.3.1) The function G(x,e) is bounded on bounded x-set, 

and for each x belongs to a bounded set and each T < 00, {IG( x, en) I; 
na ~ T} is uniformly integrable. 

(B.3.2) The following averaging condition holds: For each x, 

1 m+n - L EmG(X,ei)~"Vf(x) in probability. 
n. 

(6) 
z=m 

REMARK. As can be seen that the conditions for the weak convergence 

are much weaker than that of the corresponding one for convergence in the 

sense of w.p.I. We do not even require that the function GO be continuous. 

Only continuity in the weak sense is assumed. As far as the averaging condition 

is concerned, it is a law of large number type of condition. We only require 

the averaging take place in the sense of convergence in probability. Note that 

the condition is weaker with the conditional expectation added. In case of 

independent identically distributed and/or martingale difference type of noise 

en, it is averaged out even before taking the limit. We emphasize that the 

noise is averaged out in (6) while x is kept fixed. In fact, this is one of 

the main ingredients of the direct averaging procedures (see Kushner, 1984). 

Keep in mind that we only average out the noise. The uniform integrability 

condition is verifiable for many applications. See, for example, Rudolph (1994) 

on verification of the condition for problems in evolutionary computation. To 
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analyze the algorithm, we take the piecewise constant interpolation defined by 

xa(t) = Xn for t E [na, na + a). 
Clearly x a(-) is in the Dr[O, 00). Now, we proceed to state the weak 

convergence theorem for the interpolated process. 

Theorem 3.2. Under the conditions of (B.3.1) and (B.3.2). Assume 
that there is a unique solution of (5) for each initial condition Xo, and 

Xo :::} Xo· Then the sequence {xa(-)} is tight in Dr [0,00) such that any 
weakly convergent subsequence has a Jjmit x(·) that is a solution of the 
differential equation (5). 

REMARK. Very often Xo == xo, i.e., it does not depend on the small 
parameter a. Here we are using a condition that is more general and can 

accommodate more complex situations. 
Idea of proof. We divide the proof into several steps. First we need to show 
that the sequence {xa(-)} is tight. We add a condition that the iterates Xn are 
bounded initially, and discuss how we can discard it afterward. It is easily seen 
that in this case 

lim lim sup P {sup Ixa(t)1 ~ A} = 0 for each T < 00. (7) 
A ...... 00 a t~T 

Now by virtue of (B.3.2), {G(xn,en)} is uniformly integrable. Then Lemma 
3.7 in Chapter 3 of Kushner (1984) implies that {xa (.)} is tight, and all limits 

have continuous paths with probability one. 

Without the boundedness condition on the iterates {xn }, we proceed by 

employing a technical device known as N -truncation (see Kushner, 1984, page 

43). For each N < 00, define SN = {x; Ixl ~ N}. xa,N(t) is said to be an 
N -truncation of xa(t) if xa,N (t) = xa(t) up until first exit from SN, and 

lim lim sup P {sup Ixa,N (t)1 ~ A} = 0 for each T < 00. (8) 
A ...... 00 a UoT 

In addition, the truncation for the discrete algorithm is defined as 

X~+l = x~ - aG(x~,en)qN(X~), 

where qN(') is known as a truncation function taking the form 

{
I, ' 

qN(X) = 0, 
smooth, 

x E SN; 
x E nr - SN; 
otherwise. 
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We proceed to obtain the tightness of the truncated process {xa,N(.)}, obtain 

its limit, and get the desired result by taking limit as N -+ 00 at the end. The 

details are omitted. We remark that without the boundedness, the verification 

of (7) is normally difficult, but the verification of (8) for the truncated process 

is relatively simpler. 

In the second step, we characterize the limit process. In the traditional 

approach of weak: convergence analysis, after proving the tightness, one needs 

to identify the limit process and also show that the finite dimensional distri­

butions of the interpolated process converge. Such an approach is simplified 

by the direct averaging methods developed by Kushner (see Kushner, 1984 

and the references therein). The direct averaging requires to characterize the 

limit process only by use of the martingale problem formulation of Stroock and 

Varadhan (see Ethier and Kurtz, 1986). A process xC) is said to be a solution 

of a martingale problem if for any function g(.), that is twice continuously 
differentiable with compact support, 

t 

g(x(t)) - g(x(O)) - J Cg(x(s))ds 
o 

is a martingale, where C is an elliptic operator of the form 

C = Lbi(x)8/8xi + (1/2) Laii(x)8/8xi8xi, 
i iJ 

corresponding to the stochastic differential equation dx = b(x)dt + u(x)dw(t) 
such that u( x )ul (x) = a( x). Similar to the definition of weak convergence, the 

function g(.) here is not related to the objective function fO under considera­
tion. 

For ease of presentation, in what follows, we will not use the function 

g(.) in our analysis. Carrying it in the discussion makes no essential changes. 

We extract a convergent subsequence and without changing notation still 

denote the sequence by {xa (.)}, and denote the limit by x(.). By virtue of the 

Skorokhod representation, (without changing notation), it may be assumed that 

xaO converges to x(·) w.p.l and the convergence is uniform on any bounded 
time interval. 

We claim that x(·) is a solution of (5) or what is equivalent that x(.) is 

a solution of the martingale problem with an degenerate operator (that is the 
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part corresponding to the Brownian motion term disappears or equivalently, 

a(x) = 0). Define 

t 

M(t)=x(t)-x(O)- J (-Vf(x(u)))du. 
o 

To prove this assertion, we need only show that M ( .) is a continuous martingale. 

Since it can be verified that M(.) is Lipschitz continuous, it then follows from 

Kushner (1984), M(t) = constant. However, M(O) = O. Therefore, M(t) == 
O. As a result, x(.) is a solution of the equation (5) as claimed. 

To verify the martingale property, we need only prove that for any bounded 

and continuous function hC), any integer k, j ~ k and tj ~ t < t + s, 
Eh(x(tj),j ~ k) (x(t + s) - x(t)) 

t+s 

= -Eh(x(tj),j ~ k) J Vf(x(u))du. 
t 

To this end, we work with the pre-limit process xaO. Choose a sequence 

of real numbers {na} such that na --+ 00 as a --+ 0, but ca = ana --+ O. 
Detailed computation leads to 

where La = {i; Ina ~ i ~ Ina + na - I}. Notice that the conditioning is 

inserted since tj ~ t, h(x(tj)) is Fin 4 -measurable. 
Loosely, the outer summation in the above formula is replaced by ftHS 

whereas the term inside the curly bracket gives us the integrand in the limit 

(in the sense of in probability). To obtain the desired result, it now suffices to 

consider the term inside the curly bracket. Sending ICa --+ u, we need only 

show that 

n1 L Eln4G(Xi,ei)~Vf(x(u)) in probability. 
a iEL4 
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Now by using condition (B.3.1), the limit of 

is the same as that of 

In fact, we can prove that 

where o(l)~O in probability. Since l6a _ u, by the weak convergence of 

x a (.) and the Skorokhod representation, 

where o(l)~O in probability. 

Suppose for the moment that x( u) takes finitely many values, e.g., Xl, X2, 
... , X". We then have 

1 " 1 
- LElnaG(X(U),ei) = L- LElnaG(Xv,ei)I{x(u)=r,,} 
na iELa v=l na iELa 

" 
~ L~f(xv)I{vx(u)=r,,} =~f(x(u)) in probability. 

v=l 

as desired. In general, what we need is to approximate x ( u) by a function that 

takes only finitely many values, i.e., for any e > 0, choose xe(u) that takes 

only finitely many values such that 

li~ EIG(x(u),e;) - G(x~(u),ei)1 = 0, 
a--...O,sa-...u 

and then work out the convergence for the approximation function G(xe(u), ei). 
Notice that owing to the choice of na, when lba ---> u, ia ---> u for all i E La. 

The details are omitted. 
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The theorem above gives us a result on arbitrarily large but still bounded 

time intervals. It is of particular interest to see what happens when a -+ 0 
and n -+ 00. A result concerning such a problem is recorded in the following 

theorem. 

Theorem 3.3. Suppose that B is a stationary point of the equation (5), 

i.e., V' f(()) = 0, and suppose that () is globally attractillg (in the sense of 

Liapunov stability). Assume the conditions of Theorem 3.2 are satisfied 

and {xn, n < 00, a > O} is tight in Rr. Let ita} be such that ta -+ 00 as 

a -+ O. Then xa(. + t a) converges weakly to (). 

The proof of the theorem is very similar to that of Theorem 3.2. Consider 

the joint pair (xa(. +ta), xa(- - T+ta)) for each T < 00. Extract a convergerit 

subsequence and denote the limit by (x(·), XT(-)). We realize that x(T) = 
XT(O). By virtue of the assumption, XT(O) belongs to a set which is tight. We 

proceed to use the stability argument to finish up the proof. For more details on 

this matter, one may wish to see a corresponding theorem in Kushner and Yin 

(1987). We point out that the tightness of {Xn} can be proved. Since the proof 

uses the techniques of perturbed Liapunov function methods and is similar to 

the error bound estimate to be derived in the sequel, we simply assumed this 

condition holds at this point. 

3.3. Discussion on EA related algorithms. Similar limit theorems can 

be obtained for the example given in the previous section. The convergence 

theorems hold if V' fO is replaced by a function of V' f(·). For the example 

discussed in the previous section, the limiting ODE reads as: 

x = H('1f(x))v(x), 

where v(x) :f. 0 is a vector (depending on the function form of fO) resulting 

from the average of the sequence 

Z(i) I i 
n {f(:t' .. +z~) )=minuEA,. f(u)}' 

Note that setting the right-hand side to be 0 leads to the equation H (V' f( x)) 
v( x) = 0 or equivalently, H (V' f( x)) = O. This in tum implies that V' f( x) = 0 

as desired. The solutions of this gives us the stationary points of the func­

tion fO. 
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Next we illustrate why v(x) =I 0 should hold in many cases. First, let us 

consider a very simple example. Suppose /(.), the function to be minimized 

is linear and suppose and {z~i)} is a sequence· of i.i.d. normal random vectors. 

SuppOse also that the components of the random vector are independent, i.e., the 

covariance matrix is a diagonal matrix. Then essentially, we are dealing with 

a scalar problem. Let us consider one component of the vector, but suppress 

the dependence (index) of the vector. Thus, we treat X n , z~i) as scalars. Using 

elementary statistics, the algorithm is of the form 

where Zn,{l} denotes the first order statistics. 

Using the decomposition outlined in Example 2.1, with A ~ 2, 

Xn +1 = Xn + UZn ,{l}-

The density function of Zn,{l} is given by 

lz",{l} (z) = Aj(z)(1 - F(z));I.- 1dz, 

where j(z) and F(z) are the density and distribution functions of a standard 

normal random variable, respectively. 

By virtue of an integration by parts, we have that 

00 - J 1 2 ( A );1.-1 EZn ,{l} = A v'21Tzexp(-z /2) 1- F(z) dz 
-00 

A(A -1) 100 2 ( A );1.-2 = - 211" -00 exp(-z ) 1- F(z) dz =I O. 

For, suppose not, i.e., the integral above is O. Since the integrand is non­

negative, the integrand must be equal to 0 identically, which is a contradiction. 

In fact, the discussion above shows that EZn ,{l} < O. 
This example may seem to be over simplified, but it illustrates the reason 

that the limit vector v is nonzero. In general, the situation becomes more 

complex, we are effectively dealing with functions of order statistics, but the 

main idea remains the same. 



G. Yin et al. 109 

If the function f(·) is smooth enough, say C2 , then we may wish to take 

a Taylor expansion. This leads to 

provided if fxxO is bounded. When we compare the values of f(xn + 
z~i» in the (1, >.) strategy, we are basically comparing the term f~(xn) x 

z~i) + O(0'2)(lz~i)12). Now for fixed x, we can treat the corresponding order 

statistics for 1 ~ i ~ >. (by using the weak convergence theory). As in the 

linear case, it can be shown that the expectation is nonzero for many practically 

interesting functions. 

Finally, we point out that for the i.i.d. sequence {z~i)}, the average con­

ditions in Section 3.1 and 3.2 hold. The verification can be done readily. This 

paper deals with a somewhat more general setup. More specific problems re­

lated to the convergence of the (1, >.) strategy will be studied elsewhere. 

4. Rate of convergence. This section is divided into two subsections. 

The first of them gives an order of magnitude estimate on the estimation error, 

and the second one derives a local limit result similar in spirit to the well­

known central limit theorem or rather functional central limit theorem. We 

shall concentrate on the constant step size algorithms. As for the decreasing 

step size procedures, using essentially the same techniques, we get similar 

results. We mention these results at the end. 

4.1. An error bound on Xn - 9. The analysis to follow uses the perturbed 

Liapunov function methods (see Kushner, 1984 and the references therein). For 

notational simplicity, we assume 9 = 0 henceforth. This is no loss of generality 

since we can always translate the origin as needed. 

To proceed, we list the conditions to be used in the sequel. 

(A.4.1) There is a Liapunov function V (.) : nr 1--+ R such that the function 

together with its first and second partial derivatives are continuous. V(x) ~ 0 

for all x, V (x),xtoo 00, VxxO is bounded, and V;(x)\7 f(x) > 7]V(x) for all 

x =1-0 and for some 7] > O. 

(A.4.2) G(x,en) = G1(x, an) + G2(X){3n such that G10 is bounded 

on bounded x-sets, and G1 (·, a) is continuous. G2 (-) is a continuous and 

bounded function. {an} is a stationary sequence of uniformly bounded random 
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variables satisfying EG1(x,G:n) = V'/(x) for each x, and {fin} is a sequence 

of independent random variables with zero mean and finite second moment. 

EnIG(x,~nW ~ K(I + V(x». 

(A.4.3) The following inequalities hold: 

·00 

L V;(x)En(G1(x, ai) - V'/(x)) ~ K(I + V(X)) , 
;=n 

~ [V;(x)En (G1(x, a;) - V' /(~)) LI ~ Kan (I + Vl/2(X)). 

Theorem 4.1. Under the conditions of (A.4.1)-(A.4.3), for sufficifmtly 

large n, (i.e., there is an Na such that for all n ~ Na), 

EV(xn) = O(a) for sufficiently small a> O. 

Since Xn is Fn -measurable, and f3n has mean 0, 

By direct computation, we get 

En V(xn+d - V(xn) = - aV;(xn)'V f(xn) 

- aV;(xn)En [G1(xn, an) - 'V /(xn)] 

+ O(a2)(1 + V(Xn)) 

~ - a7]V(xn) 

- aV;(Xn)En[Gl(Xn,an) - 'V/(xn)] 

(9) 

+ O(a2)(1 + V(xn)). (10) 

The second tenn on the right side of the above inequality sign is an 

extraneous tenn. To obtain the desired result, it needs to be eliminated. To 

overcome the difficulties, we introduce a perturbation tenn as 

00 • 

V1(x, n) = -a L V;(x)En [G1(x, ai) - 'V/(x)]. 
i=n 
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By virtue of (AA.3), Vi(-) is well defined and !VI(Z, n)1 ~ Ka(l + V(z». In 
addition, 

En VI (ZnH, n + 1) - VI(Zn, n) 

= aV;(Zn)En [Gl(Zn'~n) - V/(Zn)] + O(a2)(1 + V(Zn») . 

. Now define the perturbed Liapunov function V(-) by 

As a result, 

Using the bound on Vi(·), we can show that the above inequality holds with 

V(Zn) replaced by va(Zn, n). For sufficiently small a, K a - "I ~ -"10 for 

some 0 < "10 < "I with "loa < 1, and hence 

Iterating on the above inequality and taking expectation yields 

n 

Eva(Xn+I' n + 1) ~ (1 - 'lJoat Eva(xo, 0) + K L:(1- 'lJoa)ia2 
i=O 

~ (1- "10 at Eva(xo, 0) + Ka. 

Using the bound on VI (.) again, we also have 

EV(zn+I) ~ (1- 'lJoat EV(zo) + Ka. 

Select Na such that for all n ~ Na, (1- 'lJoa)n ~ Ka. The desired result then 

follows. 

REMARK. In fact, even more general conditions can be used. In the 

assumption on the function G(·), we could put it as 
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In this way, we deal with both additive noise and non-additive noise. Some 

more details can be found in G.Yin and K.Yin (1994) for instance. 

If the Liapunov function is locally quadratic, i.e., 

where Q is a symmetric positive definite matrix, then we obtain 

{Xn/ya, forn~Na} is tight. (11) 

If we are dealing with decreasing step size, and if an = 1/ n'Y, for ° < 
'Y ~ 1, then under similar conditions, with slight modification of the proof, we 

obtain that EV(xn) = O(n-'Y) for sufficiently large n. Corresponding to the 
remark made above, we have the tightness of {n 'Y I 2 X n }. 

4.2. Asymptotic nonnality. Theorem 4.1 above exploits the dependence 
of the iterates on a by giving an upper bound of the estimation error. In this 

subsection, we shall derive another local limit theorem that is similar to the 

functional central limit theorem. 
The idea is that we linearize the function G ( .) around its stable point, and 

obtain a suitably scaled sequence. Owing to (11), the appropriate scaling here 

is va. For simplicity, we will treat G( x, e) as one term without separating it 

as G1 (.), G2(-) etc. Starting with (2), and assuming that G.,(., e) and Gxx (-, e) 
exist and are continuous, and G.,.,(·, e) is bounded, we arrive at 

To obtain the asymptotic normality, again, we take a continuous time 

interpolation as follows. For n ~ Na, define ua(-) by ua(t) = Un for t E 

[a(n - Na), a(n - Na + 1)). As in Section 3.2, ua(-) lives in Dr[O,oo). 
Notice that the last term in (12) is asymptotically negligible, so we discard it 

henceforth. Suppose that 

tie 

L yaG(O, ei) => w(t) a Brownian motion with covariance Etj 

: L E'n G G.,(O, ei)~ /.,.,(0) in probability. 
a ieLG 

(13) 
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Using the weak convergence methods as described in the previous sections, we 

can shown that ua (-) converges weakly to u(·) such that u(·) is a solution of 

the stochastic differential equation 

du = - J:c:c(O)udt + dw. (14) 

REMARK. Eq. 14 has a unique solution for each initial condition since it is 

linear. The assumption of the convergence to a Brownian motion can be verified 

in a wide variety of cases. Suppose the noise is a sequence of i.i.d. random 

variables with 0 mean and finite variance. Then this condition is verified by 

the well-known result of Donsker's invariance principle (see Eithier and Kurtz, 

1986). It also holds for more general noise structure such as ¢>-mixing type of 

random processes which allow correlated noise with the correlation diminishing 

asymptotically. Many forms of sufficient conditions guarantee the existence of 

the limit can be found in Ethier and Kurtz (1986) and the references therein. For 

related problems in stochastic approximation, see Kushner, 1984; Yin, 1991; 

Yin and Yin, 1994 among others. 

5. Concluding remarks. In this work, we explored the connection of 

evolutionary computation and stochastic approximation. As it is explained that 

both of them have the objective of carrying out stochastic optimization tasks. By 

studying some appropriate stochastic recursive algorithms, we reviewed some of 

the recent developments in stochastic approximation. We also investigated the 

possible applications to evolutionary algorithms. Limit theorems are obtained 

by taking suitable scaling and continuous time interpolations. 

For the problems studied in this paper, we assumed that the noisy gradient 

estimate is available. If one has to use, for example a finite difference method 

to get the gradient estimates, then the convergence rate will be slower as is 

the case for the classical KW procedures. Nevertheless, there are some recent 

advances in improving the convergence speed of the gradient estimates. We 

refer the readers to Ho and Cao (1991) for further details. A survey on the 

recent progress in this direction in conjunction with stochastic approximation 

can be found in Kushner and Vazquez-Abad (1994). 

It should be mentioned that the evolutionary algorithms can deal with non­

smooth objective functions. For stochastic approximation, the corresponding 

part is the use of non-smooth analysis via differential inclusion. 
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Recently, there are renewed interests in improving the rate of conver­

gence of stochastic approximation type algorithms by utilizing post-averages 

of the iterates or by taking averages of the iterates as well as the observations 

(see Bather, 1989; Kushner and Yang, (1993); Polyak, 1990; Ruppert, 1991; 

Schwabe, 1992; Yin, 1991, Yin and Gupta, 1993; G.Yin and K.Yin, 1994 and 

the references therein). It is conceivable that such an attempt will be beneficial 

for the EA related procedures. In addition to the algorithms considered in this 

paper, various variants of the recursive algorithms such as projection and other 

modifications (see Chen and Zhu, 1986; Kushner and Clark, 1978; Kushner, 

1984; Kushner and Yin, 1987; Yin and Zhu, 1990; Yin, 1991 and the references 

therein) can also be studied. 

This paper deals with a somewhat more general setup. As was ~ntioned, 

our main objective is to establish the connection of the EA's and SA's. Although 

they have many similarities, they also have very distinguished features. In 

the SA setting, the function under consideration is normally either not known 

explicitly or the form is very complex. For the EA algorithms, however, the 

function f ( .) under consideration is known, i.e., the computed output of a 

simulation model. In a subsequent work, we shall treat the (I, A) strategy 

in detail and obtain the desired asymptotic properties by using the stochastic 

approximation approach. 

At this point, the study is only preliminary in nature with respect to the 

applications to evolutionary algorithms. Our current effort lies in carrying out in 

depth study further, and gain a basic understanding of the asymptotic properties 

of evolutionary algorithms. 
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EVOLIUCINIIJ ALGORITMQ IR STOCHASTINIO 

APROKSDdA~OPROCEDfiRQRYSYS 

George YIN, Gunter RUDOLPH, Hans-Paul SCHWEFEL 

Darbas skirtas evoliuciniq algoritmq ry!io su stohastinio aproksimavimo proce­
dilromis nustatymui. Nagrinejant evoliucinius aIgoritmus, kaip rekursines stochastinio 
aproksimavimo procediiras, tiriami pastovaus gerejimo ir ma~ejan~io ~ingsnio iIgio aI­
goritmai. Tyrimo tibIas - pritaikyti stochastinio aproksimavimo teorijos rezultatus evo­
liucinill aIgoritmq asimptotiniq savybiq tyrimui. 


