
INFORMATICA, 1990, YoU, No.2, 003-034 

SOFTWARE FAULT TOLERANCE 

Algirdas AVIZIENIS 

Vytautas Magnus University, Kaunas, Lithuania, and 
UCLA Dependable Computing and Fault-Tolerant 
Systems Laboratory Computer Science Department, 
University of California, Los Angeles, CA 90024, USA 

Abstract. A fault-tolerant software unit is composed of 
N~2 diverse member units, usually developed by N separate teams, 
and an execution environment. The development process employs 
diversity requirements, communication protocols, and inter-team 
isolation rules to promote the greatest possible independence of 
team efforts and diversity among their products. The principal 
models, specification, building, evaluation, and system integration 
of fault-tolerant software are discussed, and goals for future work 
are suggested. 

Key words: fault tolerance software, dependable computing, 
dependable softvare, fault-tolerant softvare. 

1. Fault tolerance and design diversity. Fault tol­
erance is a function of computing systems that serves to as­
sure thf' continued delivery of required services in the pres­
ence of faults which cause errors within the system [1]. De­
fenses against physical faults that affect computing hardware 
have been employed since the first computers were built in 
the 1940's [2], and the unifying concept of fault tolerance was 
formulated in 1967 [3,4]. The abbreviations "FT" for "fault 
tolerance" and "f-t" for "fault-tolerant" will be used through-
out this paper. . 



4 Software fault tolerance 

lFlP Working Group 10.4, "Dependable Computing and 
Fault Tolerance," was established in 1980 and has taken a 
leading role in promoting this field of computer science and 
engineering. A comprehensive book, containing 18 contribu­
tions on the evolution of fault-tolerant computing throughout 
the world was the result of a. symposium that was organized 
by WG lOA and held in Baden, Austria in 1986 [2]. 

Software faults, or "bugs," are not of physical nature; 
they are design faults, due to the mistakes and oversights of 
humans that occur while they specify, design, build, oper­
ate, modify, and maintain the software of computing systems. 
Fault avoidance and fault removal after failures occur are the 
usual means to cope with software faults. Research efforts to 
devise fault tolerance techniques for software faults have been 
active since the early 1970's, and systems that can tolerate 
software faults have been built for r~ilway switching, aircraft 
flight control, and nuclear reactor ;monitoring [5]. This paper 
addresses the main issues of software fault tolerance: the mod­
els, specification, building, evaluation, and system integration 
of fault-tolerant software. Two sources are recommended for 
further insights: the discussion of design fault tole;ance by 
Brian Randell [6], and the 1988 book on software diversity 
edited by Udo Voges, which also contains an annotated bibli­
ography of 208 entries [5]. 

We say that a unit of software (module, CSCl, etc.) is 
fault-tolerant if it can continue delivering the required service, 
i.e., supply the expected outputs with the expected timeliness, 
after dormant (previously undiscovered, or not removed) im­
perfections or "bugs", called software faults in this paper, have 
become active by producing errors in program flow, internal 
state, or results generated within the software unit. When the 
errors disrupt (alter, halt, or delay) the service expected from 
the software unit, we say that it has failed for the duration of 



A. A viiienis 5 

service disruption. A· non-fault-tolerant software unit will be 
called simplex in this paper. 

Multiple, redundant computing channels (or "lanes") ha­
ve been widely used in sets of N = 2, 3, or 4 to build 
f-t hardware systems [2, 7]. To make a simplex software unit 
fault-tolerant, the corresponding solution is to add one, two, 
or more simplex units to form a set of N ;;::: 2. The redundant 
units are intended to compensate for, or mask a failed soft­
ware unit when they are not affected by the same software 
fault. The critical difference between multiple-channel hard­
ware systems and f-t software units is that the simple repli­
cation of one design that is effective against random physical 
faults in hardware is not sufficient for software FT. Copying 
software will also copy the dormant software faults; therefore 
each simplex unit in the f-t set of N needs to be built sep­
arately and independently of the other members of the set. 
This is the concept of software de.sign diversity [9]. 

Design diversity is applicable to tolerate design faults in 
hardware as well [7, 9]. A few multichannel systems with 
diverse hardware and software have been built; they include 
the flight control computers for the Boeing 737-300 [10], and 
the Airbus [11] airliners. Variations of the diversity concept 
have been widely employed in technology and in human affairs. 
Examples in technology are: a mechanical linkage backing up 
an electrical system to operate aircraft control surfaces, an 
analog system standing by for a primary digital system that 
guides spacecraft launch vehicles, etc. In human activities 
we have the pilot-copilot--flight engineer _ teams in cockpits of 
airliners, two-or three-surgeon teams at difficult operations, 
and similar arrangements. 

Two techniques that support fault tolerance of software 
remain outside of the scope of this paper. They are: (1) the 
minimization of the number of undetected dormant software 
faults in simplex units by the use of advanced software en-



6 Software fault tolerance 

gineering methods in their building, testing, and integration, 
as well as by the use of proof techniques, and (2) the incor­
poration of error detecting and fault handling features, such 
as assertions, reasonableness checks, exception detectors and 
handlers, etc., into simplex software units. Both techniques 
enhance the dependability of each member, and thus reinforce 
the FT capability of a f-t software unit; however, they are not 
sufficient to make a simplex unit fault-tolerant. Furthermore, 
the building of executive software that. supports and super­
vises the functioning of hardware FT with respect to physical 
faults is an important issue that is beyond the bounds of this 
reVIew. 

2. Models and techniques. A set of N ~ 2 diverse 
simplex units alone is not fault-tolerant; the simplex units 
need an execution environment (EE) for f-t operation. Each 
simplex unit also needs FT features that allows it to serve as a 
member of the f-t software unit with support of the EE. The 
simplex units and the EE have to meet three requirements: 
(1) the EE must provide the support functions to execute the 
N ~ 2 member units in a fault-tolerant manner; (2) the spec­
ifications of the individual member units must define the FT 
features that they need for f-t operation supported by the EE; 
(3) the best effort must be made to minimize the probability 
of an undetected or unrecoverable failure of the f-t software 
unit that would be due to a single cause. 

The evolution of techniques for building f-t software out 
of simplex units has taken two directions. The two basic mod­
els of f-t software units are known as Recovery Blocks (RB) 
[6, 12] and N- Version Software (NVS) [13, 14]. The common 
property of both models is that two or more diverse units 
(called versions in NVS, and alternates and acceptance tests 
in RB) are employed to form a f-t software unit. The most 
fundamental difference is the method by which the decision is 
made that determines the outputs to be produced by the f-t 



A.Aviiienis 7 

unit. The NVS approach employs a generic decision algorithm 
(DA) that is provided by the EE and looks for a consensus of 
two or more outputs among N member versions. The RB 
model applies the acceptance test (AT) to the output of an 
individual alternate; this AT must by necessity be specific for 
every distinct service, i.e., it is customdesigned for a given ap­
plication, and is a member of the RB f-t software unit, but 
not a part of the EE. 

N = 2 is the special case of fail-safe software units with 
two versions in NVS, and one alternate with one AT in RB. 
They can detect disagreements between the versions, or be­
tween the alternate and the AT, but cannot determine a con­
sensus in NVS, or provide a backup alternate in RB. Either a 
safe shutdown is executed, or a supplementary recovery pro­
cess must be invoked in case of disagreement. 

Both RB and NVS have evolved procedures for error re­
covery. In RB, backward recovery is achieved in a hierarchical 
manner thr0ll:gh a nesting of RBs, supported by a recursive 
cache [12], or recovery cache [15] that is part of the EE. In 
NVS, forward recovery is done by the use of the community 
error recovery algorithm [16] that is supported by the specifi­
cation of recovery points and by the decision algorithm of the 
EE. Both recovery methods have limitations: in RB, errors 
that are not detected by an AT are passed along and do not 
trigger recovery; in NVS, recovery will be wrong if a major­
ity of versions have the same erroneous state at the recovery 
point. 

It is evident that the RB and NVS models converge if the 
AT is done by NVS technique, i.e., when the AT is specified 
to be one or more independent computations of the same out­
puts, followed by a choice of a consensus result. It must be 
noted that the individual versions of NVS usually contain er­
ror detection and exception handling (~imilar to an AT), and 
that the decision algorithm DA takes the known failures of 



8 Software fault tolerance 

member versions into account [17, 18]. Reinforcement of the 
DA by means of a preceding AT (a filter) has been addressed 
in [19], and the use of an AT when the DA cannot make a 
decision in [20,21]. 

The RB technique evolved as a result of the long-term 
investigation of system reliability that was initiated by Brian 
Randell at the University of Newcastle upon Tyne in 1970 [22]. 
In the RB technique the N - 1 alternates and the AT are orga­
nized in a manner similar to the dynamic redundancy (standby 
sparing) technique in hardware [23]. RB performs run-time 
software, as well as hardware, error detection by applying the 
AT to the results delivered by the first alternate. If the AT 
is not passed, recovery is implemented by state restoration, 
followed by the execution of the next alternate. Recovery is 
considered complete when the AT is passed. A concise view 
of the evolution of the RB concept and its place in the gen­
eral context of dependable computing is presented in [6]. The 
properties of RB software units are discussed in section 4 of 
this paper. 

The effort to develop a systematic process (a paradigm) 
for the building of f-t software units that tolerate software 
faults, and function amllogously to majority-voted multichan­
nel hardware units, such as TMR, was initiated at UCLA in 
early 1975 as a part of research in reliable computing that the 
author had started in 1961 [4]. The process was first called 
"redundant programming" [24], and was renamed "N-Version 
Programming" (NVP) in the course of the next two years [13]. 
The name" N -Version Software" (NVS) is used to designate 
the f-t software units that are the products of the NVP pro­
cess. The research effort has continued until the present, and a 
summary of the results is presented in the following section 3. 

N -version software had remained of l~tt1e interest to the 
mainstream researchers and developers of software for a rela­
tively long time. Some suggestions had appeared in the early 



A.Aviiienis· 9 

and mid-1970's [25, 26, 27, 28]; however, the first suggestion 
of multi-version computing was published in the Edinburgh 
Review of July 1834 by Dionysius Lardner, who wrote in his 
article "Babbage's calculating engine" as follows [29]: 

"The most certain and effectual check upon errors which 
arise in the process of computation, is to cause the same com­
putations to be made by separate and independent computers; 
and this check is rendered still more decisive if they make their 
computations by different methods. " 

Charles Babbage himself had written in 1837 in a manus­
cript that was only recently published [30]: 

"When the formula to be computed is very complicated, it 
may be algebraically arranged for computation in two or more 
totally distinct ways, and two or more sets of cards may be 
made. If the same constants are now employed with each set, 
and if under these circumstances the results agree, we may 
then be quite secure of the accuracy of them all. " 

3. Building N -version software. An NVS unit is a 
f-t software unit that depends on a generic decision algorithm 
(part of the EE) to determine a consensus res'ult from the re­
sults delivered by two or more (N ~ 2) member versions of 
the NVS unit. The process by which the NVS versions are 
produced is called N- Version Programming (NVP). The EE 
that embeds the N versions and supervises their f-t execution 
is called the N- Version Executive (NVX). The NVX may be 
implemented by means of software, hardware, or combination 
of both. The major objective of the NVP process is to min­
imize the probability that two or more versions will produce 
similar erroneous results that coincide in time for a decision 
(consensus) action of NVX. 

Building and usi~g NVS requires three major efforts that 
are discussed below: (1) to specify the member versions of 
the NVS unit, including all features that are needed to embed 
them into the NVX; (2) to define and execute the NVP process 



10 Software fault tolerance 

in a manner that maximizes the independence of the program­
ming efforts; (3) to design and build the NVX system for a very 
dependable and time-efficient execution of NVS units. 

3.1 The Specification of Member Versions for 
NVS. The specification of the member versions, to be called 
"V-spec", represents the starting point of the NVP process. 
As such, the V-spec needs to state the functional requirements 
completely and unambiguously, while leaving the widest possi­
ble choice of implementations to the N programming efforts. 
It is the "hard core" of the NVS fault tolerance approach. 
Latent defects, such as inconsistencies, ambiguities, and omis­
sions in the V-spec are likely to bias otherwise entirely inde­
pendent programming or design efforts toward related design 
faults. The specifications for simplex software tend to contain 
guidance not only "what" needs to be done, but also "how" 
the solution ought to be approached. Such specific suggestions 
of "how" reduce the chances for diversity among the versions 
and should be systematically eliminated from the V-spec. 

The V-spec may explicitly require the versions to differ 
in the "how" of implementation. Diversity may be specified in 
the following elements of the NVP process: (1) training, ex­
perience, and location of implementing personnel; (2) applica­
tion algorithms and data structures; (3) software development 
methods; (4) programming languages; (5) programming tools 
and environments; (6) testing methods and tools. The purpose 
of such required diversity is to minimize the opportunities for 
common causes of software faults in two or more versions (e.g., 
compiler bugs, ambiguous algorithm statements, etc.), and to 
increase the probabilities of significantly diverse approaches 
to version implementation. It is furthermore possible to im­
pose differing diversity requirements for separate stages of the 
software development process, such as design, coding, testing, 
and even for the process of writing of the V-specs themselves, 
as discussed later. 



A.Aviiienis 11 

Each V-spec must prescribe the matching features that 
are needed by the NVX to execute the member versions as an 
NVS unit in a fault-tolerant manner [32]. The V-spec defines: 
(1) the functions to be implemented, the time constraints, the 
inputs, and the initial state of a member version; (2) require­
ments for internal error detection and exception handling (if 
any) within the version; (3) the ,diversity requirements; (4) the 
cross-check points (" cc-points") at which the NVX decision 
algorithm will be applied to specified outputs of all versions; 
(5) the recovery points ("r-points") at which the NVX can 
execute community error recovery [16] for a failed version; (6) 
the choice of the NVX decision algorithm and its parameters to 
be used at each cc-point and r-point; and (7) the response to 
each possible outcome of an NVX decision, including absence 
of consensus. 

The NVX decision algorithm applies generic consensus 
rules to determine a consensus result from all valid version 
outputs. It has separate variants for real numbers, integers, 
text, etc. [14', 39]. The parameters of this algorithm describe 
the allowable range of variation between numerical results, if 
such a range exists, as well as any other acceptable differences 
in the results from member versions, such at> extra spaces in 
text output or other" cosmetic" variations. 

The limiting case of required diversity is the use of two 
or more distinct V -specs, derived from the same set of user 
requirements. Two cases have been practically explored: a set 
of three V-specs (formal algebraic OBJ, semi-formal PDL, 
and English) that were derived together [17, 18], and a set of 
two V-specs that were derived by two independent efforts [31]. 
These approaches provide additional means for the verification 
of the V-specs, and offer diverse starting points for version 
implementers. 

In the long run, the most promising means for the writing 
of the V-specs are formal specification languages. When such 



12 Software fault tolerance 

specifications are executable, they can be automatically tested 
for latent defects [33, 34], and they serve as prototypes of the 
versions that may be used to develop test cases and to estimate 
the potential for diversity. With this approach, verification is 
focused at the level of specification; the rest of the design and 
implementation process as well as its tools need not be perfect, 
but only as good as possible within existing resource and time 
constraints. The independent writing and testing by compar­
ison of two specifications, using two formal languages, should 
increase the dependability of specifications beyond the present 
limits. Most of the dimensions of required diversity that were 
discussed above then can also be employed in V-spec writing. 
Among contemporary specification languages, promising can­
didates for V-specs that have been studied and used at UCLA 
are OBJ [35] that has been further developed, the Larch fam­
ily of specification languages [36], PAISLey from AT&T Bell 
Laboratories [37], and also Prolog as a specification language. 

3.2 The N-Version Programming Process: NVP 
NVP has been defined from the beginning as "the indepen­
dent generation of N ~. 2 functionally equivalent programs 
from the same illitial specification" [13]. "Independent gen­
eration" meant that the programming efforts were to be car­
ried out by individuals o~ groups that did not interact with 
respect to the programming process. Wherever practical, dif­
ferent algorithms, programming languages, environments, and 
tools were to be used in each separate effort. The NVP ap­
proach was motivated by the "fundamental conjecture that 
the independence of programming efforts will greatly reduce 
the probability of identical software faults occurring in two 
or more versions of the program" [13]. The NVP process has 
been developed since 1975 in an effort that included five con­
secutive experimental investigations [17, 18, 32, 38]. The fol­
lowing description presents the current NVP paradigm for the 
development of NVS. 



A.Aviiienis 13 

The application of a proven software development met­
hod, or of diverse methods for individual versions, remains the 
core of the NVP process. However, contemporary methods 
were not devised with the intent to reach the speeial goal of 
NVP, which is to minimize the probability that two or more 
member versions of an NVS unit will produce similar erro­
neous results that are coincident in time for an NVX decision 
at a cc-point or r-point. NVP begins with the choice of a 
sound software development process for an individual version. 
This process is supplemented by procedures that aim: (1) to 
attain the maximum isolation and independence (with respect 
to software faults) of the N concurrent version development 
efforts, and (2) to encourage the greatest diver.sity among the 
N versions of an NVS unit. Both procedures serve to min­
imize the chances of related software faults being introduced 
into two or more versions via potential "fault leak" linb, such, 
as casual conversations or E-mail exchanges, common flaws in 
training or in manuals, use of the same faulty compiler, etc. 

Diver~ity requirements support this objective, since they 
provide more natural isolation against "fault leaks" between 
the teams of programmers. Furthermore, it is conjectured 
that the probability of a random, independent occurrence of 
faults that produce the same erroneous results in two or more 
versions is less when the versions are more diverse. A second 
conjecture is that even if related faults are introduced, the 
diversity of member versions may cause the erroneous results 
not to be similar at the NVX decision. 

In addition to required diversity, two techniques have 
been developed to maximize the isolation and independence 
of version development efforts: (1) a set of mandatory rules of 
isolation, and (2) a rigorous communication and documenta­
tion protocol. The rules of isolation are intended to identify 
and eliminate all potential "fault leak" links between the pro­
gramming teams (P-teams). The development of the rules is 



14 Software fault tolerance 

an ongoing process, and the rules are enhanced when a pre­
viously unknown "fault leak" is discovered and its cause is 
pinpointed. The communication and documentation (C&D) 
protocol imposes rigorous control on the manner in which all 
necessary information flow and documentation efforts are con­
ducted. The main goal of the C&D protocol is to avoid op­
portunities for one P-team to influence another P-team in an 
uncontrollable, and unnoticed manner. In addition, the C&D 
protocol documents communications in sufficient detail to al­
low a search for "fault leaks" if potentially related faults are 
discovered in two or more versions at some later time. 

A coordinating team (C-team) is the keystone of the C&D 
protocol. The major functions of the C-team are: (1) to pre­
pare the final texts of the V-specs and of the test data sets; 
(2) to set up the implementation of the C&D protocol; (3) to 
acquaint all P-teams with the NVP process, espeCially rules 
of isolation and the C&D protocol; (4) to distribute the V­
specs, test data sets, and all other information needed by the 
P-teams; (5) to collect all P-team inquiries regarding the V­
specs, the test data, and all matters of procedure; (6) to eval­
uate the inquiries (with help from expert consultants) and to 
respond promptly either to the inquiring P-team only, or to 
all P-teams via a broadcast; (7) to conduct formal reviews, 
to provide feedback when needed, and to maintain synchro­
nization between P-teams; (8) .to gather and evaluate all re­
quired documentation, and to conduct acceptance tests for 
every version. All communications between the C-team and 
the P-teams must be in standard written format only, and are 
stored for possible post mortems about "fault leaks". Elec­
tronic mail has proven to be the most effective medium for 
this purpose. Direct communications between Po-teams are 
not allowed at all. 

3.3 Functions of the N-Version Executive NVX 
The NVX is an implementation of the set of functions that 



A.Aviiienis 15 

are needed to support the execution of N member versions as 
a f-t NVS unit. The functions are generic; that is, they can 
execute any given set of versions generated from a V-spec, as 
long as the V-spec specifies the proper matching features (sec. 
4.1) for the NVX. The NVX may be implemented in software, 
in hardware, or in a combination of both. The principal cri­
teria of choice are very high dependability and fast operation. 
These objectives favor the migration of NVX functions into 
VLSI-implemented fault-tolerant hardware: either complete 
chips, or standard modules for VLSI chip designs. 

The basic functions that the NVX must provide for NVS 
execution are: 1) the decision algorithm, or set of algorithms; 
2) assurance of input consistency for all versions; 3) inter­
version communication; 4) version synchronization and en­
forcement of timing constraints; 5) local supervision for each 
version; 6) the global executive and decision function for ver­
sion error recovery at r-points, or other treatment of faulty 
versions; and 7) a user interface for observation, debugging, 
injection of stimuli, and data collection during N -version exe­
cution of application programs. The nature of these functions 
is extensively illustrated in the description of the DEDIX (DE­
sign DIversity eXperiment) NVX and testbed system that was 
developed at UCLA to support NVP research [14, 39]. 

4. Building recovery blocks. A Recovery Block (RB) 
is a f-t software unit originally defined as consisting of two or 
more simplex software units called alternates, and one soft­
ware unit called an acceptance test (AT) that" ... is a logical 
expression without side effects (which) is evaluated on exit 
from any alternate to determine whether the alternate has 
performed acceptably" [23]. Only one AT (for all alternates) 
is to be used with anyone RB, and" ... it is for the designer 
to decide upon the appropriate level of rigor of the test" [23]. 
Explicit requirements for independence between the program­
ming of the alternates and the acceptance test are not stated 



16 Software fault tolerance 

in this original formulation. A later large-scale experimental 
study required alternate modules of independent design, and 
"... a strict discipline precluding cooperation or consultation 
... ", since full isolation was not practical [40]. A rigorous pro­
cess, analogous to the NVP paradigm, has not been explicitly 
prescribed for the building ofRB units; however, the NVP pro­
cess is readily adaptable. A similar observation applies also 
to the RB specification that should serve as the starting point 
for the alternates and the acceptance test AT. Once again, the 
V-spec approach of NVS is adaptable; however, it remains to 
be established how the AT specification should differ from the 
specification' of the alternates in order to convey the unique 
properties and constraints of the AT. 

The RB concept also poses a requirement to provide a 
recovery structure which is common to a set of interacting 
processes, since it is not known at the time of the interaction 
whether a process may ·be "backed up" upon failing the AT 
at a later time. Such a recovery structure has been termed 
a conversation [23], later implemented in a restricted from as 
a dialogue [40]. The NVS approach avoids the need for such 
dialogues because it requires that a cc-point should be located 
at every output of a version. Other sophisticated RB features 
that have been devised are RB nesting) and multilevel struc­
turing of error recovery, using f-t virtual machine interfaces 
[23]. Their specification as well as the specification' of dia­
logues are added requirements for the specification of RBs. 
The RB EE is required to provide an automatic method for 
the resetting of the system to the state it had just before the 
entry to the primary alternate. The mechanism to accomplish 
this goal was the recursive cache [12], which was subsequently 
refined and implemented in hardware as the recovery cache 
[15, 41]. The recent experimental RB study also shows that 
additional EE functions had to be provided in the from of 
extensions to the existing MASCOT operating system to pro-



A. A viiienis 17 

vide support for dialogues and to utilize the hardware recovery 
cache [40]. Early implementation studies of the RB approach 
have been described in [15, 42]. 

A variation of the RB is the distributed RB (DRB) scheme 
[43, 44, 45]. In DRB, two or more identical RBs are executed 
concurrently on separate hardware channels, with each RB 
executing a different alternate and then performing the AT. 
The computation can proceed as long as at least one alter­
nate passes the AT; however, recovery still needs to be imple­
mented in the RBs with failed alternates. A hardware testbed 
for DRB has been implemented, and a long-term investiga­
tion is in progress. The error detection coverage of the AT 
is the most critical parameter for the DRB scheme, since the 
same AT is employed throughout all nodes. DRB comes close 
to NVS when the conc~rrently executing nodes interact [45], 
since a consensus decision can be implemented through such 
interaction. The remaining difference is that the same AT is 
used for every alternate in DRB, while the NVP process allows 
every P-team to implement its own internal error detection 
and exception handling [17, 18]. 

Another variation in which the alternates are executed 
concurrently and employ either individual ATs or pairwise 
comparisons, has been termed N self-checking programming 
[46]. Combinations of RB and NVS have also been proposed. 
In the two-step adjudicator a "filter" AT precedes the decision 
[19], while in consensus RB the AT is invoked if a decision can­
not be made by the DA [20,21]. 

5. Dependability modeling of f-t software. The 
benefits of fault tolerance are predicted by quantitative mod­
eling of the reliability, availability, and safety (i.e., the depend­
ability) of the system for specified time intervals and operating 
conditions. The conditions include acceptable service levels, 
timing constraints on service delivery, and operating environ-

./ments that include expected fault classes and their rates of 



18 Software fault tolerance 

occurrence. The quality of fault-tolerance mechanisms is ex­
pressed in terms of coverage parameters for error detection, 
fault location, and system recovery. A different F'):' specifica­
tion is the minimal tolerance requirement to tolerate one, two, 
or more faults from a given set, regardless where in the system 
they occur. The one-fault requirement in frequently stated as 
"no single point of failure" for given operating conditions. An 
analysis of the design is needed to show that this requirement 
is met. 

The similarity of NVS and RB as f-t software units has 
allowed the construction of a model for the prediction of reli­
ability and average execution time of both RB and NVS. The 
model employs queuing theory and a state diagram descrip­
tion of the possible outcomes of NVS and RB unit execution. 
An important question explored in this model is how the gain 
in reliability due to the fault tolerance mechanisms is affected 
when related faults appear in two or more versions of NVS, 
and when the AT has less than perfect coverage (due to ei­
ther incompleteness, or own faults) with respect to the faults 
in RB alternates. The correlation factor c' is the conditional 
probability of a majority of versions (in NVS) or one alternate 
and the AT (in RB) failing in such a way that a faulty result 
is passed as an output of the f-t software unit. The model 
shows strong variation of the reliability of f-t software units 
as a function of c' [47, 48]. The criticality of related faults had 
been recognized quite early for both RB [42] and NVS [47]; 
later the same problem was investigated, apparently without 
awareness of the earlier results, in [20, 49], reaching similar 
conclusions. Recent studies have .further explored the model­
ing of f-t software, including the impact of related faults on 
the reliability and safety of both NVS and RB [50, 51, 52, 53]. 

6. Experimental investigations. At the time when 
the RB and NVP approaches were first formulated, neither for­
mal theories nor past experience was available about how f-t 



A.A viiienis 19 

software units should be specified, built, evaluated and super­
vised. Experimental, "hands-on" investigations were needed 
in order to gain the necessary experience and methodological 
insights. 

The effectiveness of the RB approach has been studied in 
two long-term efforts. Newcastle studies began in the mid-70s 
[15, 41] and recently dealt with the use of the RB technique 
and "conversations" in a medium-scale (8000 lines of source 
code in Coral language, 14 concurrent activities) real-time 
command I1nd control system [40]. The ongoing UC Irvine 
effort has investigated distributed RB implementation of real­
time radar-tracking programs [44, 45]. 

The NVP research approach at UCLA was to choose some 
practically sized problems, to assess the applicability of N­
version programming, and to generate a set of versions. The 
versions were executed as NVS units, and the observations 
were applied to refine the process and to build up the concepts 
of NVP. The first detailed review of NVP and a discussion of 
two sets of results, using 27 and 16 independently written ver­
sions, were published in 1977 and 1978, respectively [13, 32]. 
The subsequent investigation employed three distinct speci­
fications: algebraic OBJ [35], structured PDL, and English, 
and resulted in 18 versions of an "airport scheduler" program 
[17]. This effort was followed by five versions of a program for 
the NASA/Four University study [54], and then by an investi­
gation in which six versions of an automatic landing program 
for an airliner were written, using six programming languages: 
Pascal, C, Ada, Modula-2, Prolog, and T [38]. In parallel 
with the last two efforts, a distributed NVX supervisor called 
DEDIX (DEsign DIversity eXperimenter) was designed and 
programmed [39]. 

The primary goals of the five consecutive UCLA inves­
tigations were: to develop and refine the NVP process and 
the NVX system (DEDIX), to assess the methods for NVS 



20 Software fault tolerance 

specification, to investigate the types and causes of software 
design faults, and to design successively more focused stud­
ies. Numerical predictions of reliability gain through the use 
of NVS were deemphasized, because the results of anyone of 
the NVP exercises are uniquely representative of the quality of 
the NVP process, the specification, and the capabilities of the 
programmers at that time. The extrapolation of the results is 
premature when the NVP process is still being refined. The 
UCLA NVP paradigm that is described here is now considered 
sufficiently complete for practical application and quantitative 
predictions. 

An important criterion for NVS application is whether 
sufficient potential for diversity is evident in the version speci­
fication. Very detailed or obviously simple specifications indi­
cate that the function is poorly suited for f-t implementation, 
and might be more suitable for extensive single-version V & 
V, or proof of correctness. The extent of diversity that can be 
observed between completed versions may indicate the effec­
tiveness of NVP.· A qualitative assessment of diversity through 
a detailed structural study of six versions has been carried out 
for the Six-Language NVS investigation [38], and research into 
quantitative measures of diversity is in progress at UCLA. 

Three extensive practical investigations of NVS have been 
performed with real-time software for nuclear reactor safety 
control [31, 55, 56]. Significant insights into specification, the 
NVP process, and the nature of software faults have resulted 
from these efforts. 

Two other studies that claimed to investigate N-version 
programming were conducted in which numerical results were 
the principal objective. One states the intent" ... to validate 
the authors' fault-tolerant software reliability models ... " [20, 
21], one of which is called "NVP", although the authors do 
not reference NVP research. The other study is entitled "An 
experimental evaluation of the assumption of independence 



A.A viiienis 21 

in multiversion programming" [57], in which "multiversion" is 
explicitly identified with NVP. These efforts serve to illustrate 
the pitfalls of premature preoccupation with numerical results. 
Both studies fail to recognize that NVP is rigorous process of 
software development. The papers do not document the rules 
of isolation, and the C & D protocol (sec. 3) that are in­
dicators of NVPquality. The V-specs of [57] do not show 
the essential NVS attributes. It must be concluded that the 
authors are assessing their own ad hoc processes for writing 
multiple programs, rather than the NVP process as developed 
at UCLA, and that their numerical results uniquely take the 
measure of the quality of their casual programming process 
and their classroom programmers. The claims that the NVP 
process was investigated are not supported by documentation 
of the software development process in either study. The use of 
the term "experiment" is misleading, since it implies repeata­
bility of the experimental procedure that is taken for granted 
m sClence. 

7. The system context for f-t software. The host 
system for both RB and NVS interacts with the f-t software 
units through the EE, which communicates with the FT func­
tions of its operating system or with FT management hard­
ware, such as a service processor. The EE itself may be in­
tegrated with the operating system, or it may be in part, or 
even fully implemented in hardware. The recent Newcastle 
RB investigation employed both the hardware recovery cache 
and extensions to the MASCOT operating system as the im­
plementation of the EE [40], while the distributed RB study 
employs hardware and a custom distributed operating system 
[44]. A fully developed EE for NVS is the all-software DEDIX 
supervisor [39], which interacts with Unix on a local network. 
Such a software-to-software linkage between the EE and the 
operating system accommodates any hardware operating un­
der Unix, but causes delays in inter-version communication 



22 Software fault tolerance 

through the network. In practical NVS implementations with 
real-time constraints either implementing the DEDIX func­
tions in custom hardware, or building an operating system 
that provides EE services along with its other functions is 
necessary. Other examples of solutions are found in [58, 59, 
60]. 

The remaining question is the protection against design 
faults that may exist in the EE itself. For NVS this may be ac­
complished by N-fold diverse implementation of the NVX. To 
explore the feasibility of this approach, the prototype DEDIX 
environment has undergone formal specification in PAISLey 
[37]. Subsequently, this specification will be used to generate 
multiple diverse versions of the DEDIX software to reside on 
separate physical nodes of the system. It is evident that di­
versity in separate nodes of the NVX will cause a slowdown 
to the speed of the slowest version. Since the NVX provides 
generic, reusable support functions of limited complexity, it 
may be more practical to verify a single-version NVX and 
to move most of its functionality into custom processor hard­
ware. In the case of RBs, special FT attention is needed by 
the recovery cache and any other custom hardware. The tol­
erance of design faults in the EE has been addressed through 
the concept of multilevel structuring [23]. The AT, which is 
unique for every RB software unit, also may contain design 
faults. The obvious solution of 2-version or 3-version ATs is 
costly, and verification or proof of each AT appear to be the 
practical solutions. 

Multilayer diversity occurs when diversity is introduced 
at several layers of an N-channel computing system: appli­
cation software, system software, hardware, system interfaces 
(e.g., diverse displays), and even specifications [1]. The justifi­
cation for introducing diversity in hardware, system software, 
and user interfaces is that tolerance should exteI;ld to design 
faults that may exist in thbse layers as well. The second ar-



A.Aviiienis 23 

gument, especially applicable to hardware, is that diversity 
among the channels of the hardware layer will naturally lead 
to greater diversity among the versions of system software and 
application software. The use of diverse component technolo­
gies and diverse architectures adds more practical dimensions 
of hardware diversity. The diversity in component technolo­
gies is especially valuable against faults in manufacturing pro­
cesses that lead to deterioration of hardware and subsequent 
delayed manifestation of related physical faults that could pre­
maturely exhaust the spare supply of long-life f-t systems. 
The counter-argument that such diversity in hardware is su­
perfluous may be based on the assumption that diversity in 
software will cause the identical host hardware channels to 
assume diverse states. The same hardware design fault then 
would not be likely to produce similar and time-coincident 
errors in system and application software. 

Tolerance of design faults in human-machine interfaces 
offers an exceptional challenge. When fault avoidance is not 
deemed sufficient, dual or triplex diverse interfaces need to be 
designed and implemented independently. For example, dual 
or triple displays of diverse design and component technol­
ogy will provide an additional safety margin against design 
and manufacturing faults for human operators in air traffic 
control, airliner cockpits, nuclear power plant control rooms, 
hospital intensive care facilities, etc. Redundant displays often 
are already employed in these and other similar applications 
due to the need to tolerate single physical faults in display 
hardware without service interruption. 

The major limitations of layered diversity are the cost 
of implementing multiple independent designs and Jt~e slow­
down of operation that is caused by the need to wait for the 
slowest version at every system layer at which diversity is, em­
ployed. The latter is especially critical for real-time appli­
cations in which design fault tolerance is an essential safety 



24 Software fault tolerance 

attribute. Speed considerations strongly favor the migration 
of f-t EE functions into diverse VLSI circuit implementations. 
A few two and three version systems that employ diverse hard­
ware and'software have been designed and built. They include 
the flight control computers for the Boeing 737-300 [10], the 
ATR.42, Airbus A-310, and A-320 aircraft [11]. New de­
signs for the flight control computer of the planned Boeing 
7J7 are the three-version GEe Avionics design [61] and the 
four-version MAFT system [60]. A different concept of multi­
level systems with fault-tolerant interfaces was formulated by 
Randell for the RB approach [23]. Diversity is not explicitly 
considered for the hardware level, but appears practical when 
additional hardware channels are employed, either for the AT, 
or for parallel execution of an alternate in distributed RB [44, 
45]. 

Computer security and software FT have the common 
goal to provide reliable software for computer systems [62, 
63]. A special concern is malicious logic, which is defined 
as: "Hardware, software, or firmware that is intentionally in­
cluded in a system for the purpose of causing loss or harm" 
[64]. The loss or harm here is experienced by the user, since 
either incorrect service, or no service at all is delivered. Ex­
amples of malicious logic are Trojan horses, trap doors, and 
computer viruses. The deliberate nature of these threats leads 
us to classify malicious logic as deliberate design faults (DDFs), 
and to apply FT techniques to DDF detection and tolerance, 
such as in the case of computer virus containment by program 
flow monitors [65]. Three properties of NVS make it effective 
for tolerating DDFs: (1) the independent design, implemen­
tation, and maintenance of multiple versions makes a single 
DDF detectable, while the covert insertion of identical copies 
of DDFs into a majority of the N versions is difficult; (2) NVS 
enforces completeness, since several versions ensure (through 
consensus decision) that all specified actions are performed 



A.Aviiienis 25 

(i.e., omitting a required function can be a DDF); and (3) 
time-out mechanisms at all decision points prevent prolonged 
period without action (i.e., slowing down a computer system 
is a denial-of-service DDF). A study of these issues has been 
recently completed [66]. 

Modification of already operational f-t software occurs for 
two different reasons: (1) one of the member units (version, al­
ternate, or AT) needs either the removal of a newly discovered 
fault, or an improvement of a poorly programmed function, 
while the specification remains intact; (2) all member units of 
a f-t software unit need to be modified to add functionality 
or to improve its overall performance. In the first case, the 
change affects only one member and should follow the stan­
dard fault removal procedure. The testing of the modified unit 
should be facilitated by the existence of other members of the 
f-t software. Special attention is needed when a related fault 
is discovered in two or more versions or alternates, or in one 
alternate and the AT. Here independence remains important, 
and the NVP process needs to be followed, using a removal 
specification, followed by isolated fault removals by separate 
maintenance teams. In the second case, N independent modi­
fications need to be done. First, the specification is modified, 
re-verified, and tested to assess the impact of the modifica­
tion. Second, the affected f-t software units are regenerated 
from the specification, following the standard NVP or RB pro­
cesses. The same considerations apply to modification of the 
alternates in RB software, but special treatment is required 
for modifying the unique AT software unit. 

8. In conclusion: what is to be gained? Although 
at first considered as an impractical competitor of highqual­
ity single-version programs, fault-tolerant software has gained 
significant acceptance in academia and industry in the twelve 
years since the author's review of the state of fault-tolerant 
computing at IFIP '77 in Toronto [7]. Two, three, and four 



26 Software fault tolerance 

version software is switching trains [8], performing flight con­
trol computations on modern airliners [10, 11], and more NVS 
applications are on the way [5, 60, 61]. Publications about f-t 
software are growing in numbers 'and in depth of understand­
ing, and at least three long-term academic" hands-on" efforts 
are in their second decade: recovery blocks at Newcastle [6, 
40], distributed recovery blocks at UC Irvine [44, 45], and 
N-version software at UCLA [38, 39]. 

Why should we pursue these goals? Every day, humans 
depend on computers more and more to improve many as­
pects of their lives. Invariably, we find that those applications 
of computers that can deliver the greatest improvements in the 
quality of life or the highest economic benefits also can cause 
the greatest harm when the computer fails. Applications that 
offer great benefits at the risk of costly failures are: life sup­
port systems in the delivery of health care and in adverse 
environments; control systems for air traffic and for nuclear 
power plants; flight control systems for aircraft and manned 
spacecraft; surveillance and early warning systems for military 
defense; process control systems for automated factories, and 
so on. 

The loss of service for only a few seconds or, in the worst 
case, service that looks reasonable but is wrong, is likely to 
cause injuries, loss of life, or grave economic losses in each 
one of these applications. As long as the computer is not suf­
ficiently trustworthy, full benefits of the application cannot 
be l'f'alized, since human surveillance and decision making are 
superimposed, and the computers serve only in a supporting 
role. At this time it is abundantly clear that the trustworthi­
ness of software is the principal prerequisite for the building of 
a trustworthy system. While hardware dependability also can­
not be taken for granted, tolerance of physical faults is proving 
to be very effective in contemporary fault-tolerant systems. 

At present, fault-tolerant software is the only alternative 



A.Aviiienis 27 

that can be expected to provide a higher level of trustworthi­
ness and security for critical software units than test or proof 
techniques without fault tolerance. The ability to guarantee 
that any software fault, as long as it only affects only member 
of an N-version unit, is going to be tolerated without ser­
vice disruption may by itself be a sufficient reason to adapt 
fault-tolerant software as a safety assurance technique for life­
critical applications. Another attraction of fault-tolerant soft­
ware is the possibility of an economic advantage over single-­
version software in attaining the same level of trustworthiness. 
The higher initial cost may be balanced by significant gains, 
such as faster release of trustworthy software, less investment 
and criticality in verification and validation, and more compe­
tition in procurement as versions can be acquired from small, 
but effective, enterprises in widely scattered locations. 

Finally, there is a fundamental shift of emphasis in soft­
ware development that takes place when. N-version software is 
produced. In single-version software, attention is usually fo­
cused on testing and verification, i.e., the programmer--verifier 
relationship. In NVS, the key to success is the version specifi­
cation; thus the focus shifts to the user-specifier relationship 
and the quality of specifications. The benefits of this shift 
are evident: a dime spent on specification is a dollar saved on 
verification. 

Acknowledgement. This Vlew of software fault tol­
erance has evolved through the author's collaboration and 
discussions with the members and visitors of the Depend­
able Computing and Fault-Tolerant Systems Laboratory at 
UCLA as well as the ninety-nine programmers who took part 
in our studies since 197-5. Special thanks belong to Liming 
Chen, Per Gunningberg, Mark Joseph, John P.J. Kelly, Jean­
Claude Laprie, Michael Lyu, Werner Schuetz, Lorenzo Strig­
ini, Pascal Traverse, AnnTai, Kam-Sing Tso, Udo Voges, and 
John F.Williams. Finally, Jacquelyn Trang p~epared this pa-



28 Software fault tolerance 

per with care and concern that are greatly appreciated. 
An earlier version of this paper was an invited lecture 

presented at the XI World Computer Congress, San Francisco, 
USA, August 1989. 

REFERENCES 

[1] Avizienis, A., and J .C.Laprie (1986). Dependable comput­
ing:from concepts to design diversity. Proc. IEEE, 74(5),629-
638, 

[2] Avizienis, A.,H.Kopetz and J.C.Laprie (Eds.), (1987). The 
Evolution of Fault-Tolerant Computing. Springer, Wien-New 
York. 

[3] Avizienis, A. (1967). Design offault-tolerant computers. AFIPS 
Conf. Proc., Vol.31, FJCC 1967. 733-743. 

[4] Avizienis, A., and D.Rennels (1987). The evolution offault tol­
erant computing at the jet propulsion laboratory and at UCLA: 
1955-1986. In [2]. pp. 141-191. 

[5] Voges, U. (Ed.), (1988). Software Diversity in Computerized 
Control Systems. Springer, Wien-New York. 

[6] Randell, B. (1987). Design fault tolerance. In [2]. pp. 251-270. 

[7] Avizienis, A. (1977). Fault-tolerant computing-progress, prob­
lems, and prospects. In Information Processing 77, Proc. of 
IFIP Congress, Toronto, Canada, August 1977. pp. 405-420. 

[8] Hagelin, G. (1988). ERICSSON safety system for railway con-
trol. In [5]. pp. 11-21. 

[9] Avizienis, A. (1982). Design diversity-the challenge for the fight­
ies. In Digest of 12th Inter. Symp. on Fault- Tolerant Comp., 

. Santa Monica, CA, June 1982. pp. 44-45. 

[10] Wiliams, J.F., L.J.Yount and J.B. Flannigan (1983). Ad­
vanced autopilot flight director system computer architecture 
for Boing 737-300 aircraft. In Proc. 5th Dig. Avionics Sys. 
Conf., Seattle, WA, November 1983. 



A.A vizienis 29 

[11] Traverse, P. (1988). AIRBUS and ATR system architecture· 
and specification. In [5]. pp. 95-104. 

[12] Horning, J.J., H.C.Lauer, P.M.Melliar-Smith and B.Randell 
(1974). Program structure for error detection and recovery. In 
E.Gelenbe and C.Kaiser (Eds.), Operating Systems, Lect. Notes 
Compo Sci., Vol.16. Springer. pp. 171-187. 

[13] Avizienis, A., and L.Chen (1977). On the inplementation of N­
version programming for softvare fault tolerance during execu­
tion. In Proc. IEEE COMPSAC 77, Nov. 1977. pp. 149-155 

[14] Avizienis, A. (1985). The N-version approach to fault-tolerant 
software. IEEE Trans. on Soft. Eng., SE-ll(12), 1491-1501. 

[15] Anderson, T., and R.Kerr (1976). Recovery blocks in action: 
a system supporting high reliability. In Proc. 2nd Intern. Conf. 
on Soft. Eng,San Francisco, Ca, Oct. 1976. pp. 447-457. 

[16] Tso, K.S., and A.Avizienis (1987). Community error recovery 
in N-version software: a design study with experimentation. In 
Dig. 17th Inter. Symp. Fault-Tolerant Comp.; July 1987. pp. 
127-133. 

[17] Kelly, J .P.J, and A.Avizienis (1983). A specification-oriented 
multi-version software experiment. In Dig. 13th Int. Symp. 
Fault-Tolerant Comput., Milano, Italy" June 1983. pp. 120-
126. 

[18] Avizienis, A., and J.Kelly (1984). Fault tolerance by design 
diversity: concepts and experiments. Computer, 17(8),67-80. 

[19] Anderson, T. (1986). A structured decision mechanism for 
diverse software. In Proc. 5th Symp. Reliability Dist. Soft. 
Database Systems, IEEE, LA, January 1986. pp. 125-129. 

[20] Scott, R.K., J.W.Gault, D.F.McAllister and J.Wiggs (1984). 
Experimental validation of six fault-tolerant software reliability 
models. In Proc. 14th Int. Symp. on Fault-Tolerant Computing, 
Orlando, FL, June 1984. pp. 102-107. 

[21] Scott, R.K., J.W.Gault and D.F.McAllister (1987). Fault­
tolerant software reliability modeling. IEEE Trans. on Soft­
ware Eng., SE-13(5),582-592. 



30 Software fault tolerance 

[22] Shrivastava, K.S. (Ed.), (1985). Reliable Computing Systems: 
Collected Papers of the Newcastle Reliability Project. Springer. 

[23] Randell, B. (1975). System structure for software fault toler­
ance. IEEE Trans. Soft. Eng., SE-l, 220-232. 

[24] Avizienis, A. (1975). Fault tolerance and fault intolerance: 
complementary approaches to reliable computing. In Proc. 1975 
Int. Conf. Rel. Soft., LA, Apr. 1975. pp. 458-464. 

[25] Elmendorf, W.R. (1972). Fault-tolerant programming. In 
Proc. 1972 Int. Symp. Fault- Tolerant Comput., Newton, MA, 
June 1972. pp. 79-83. 

[26] Girard, E., and J.C.Rault (1973). A programming technique 
for software reliability. In Proc. 1973 IEEE Symp. Comput. 
Software ReI., New York, Apr. 30-May 2, 1973. pp. 44-50. 

[27] Kopetz, H. (1974). Software redundancy in real timp. systems. 
In Inform. Processing 74, Proc. IFIP Congress, Stockholm, 
Sweden, Aug. 5-10, 1974. pp. 182-186. 

[28] Fischler, M.A., O.Firschein and D.L.Drew (1975). Distinct 
software: an approach to reliable computing. In Proc. 2and 
USA-Japan Comput. Conf., Tokyo, Aug. 1975. pp. 573-579. 

[29] Lardner, D. (1961). Babbage's calculating engine. Reprinted 
in ·P.Morrison and E.Morrison (Eds.), Charles Babbage and His 
Calculating engines. Dover, New York. 177pp. 

[30] Babbage, C. (1974). On the mathematical powers of the calcu­
lating engine, December 1837 (Unpublished Manuscript) Bux­
ton MS7, Museum of the History of Science. Printed in B. Ran­
dell (Ed.), The Origins of Digital Computers: Selected Papers. 
Springer. pp. 17-52. 

[31] Ramamoorthy, C.V., et al. (1981). Application of a methodol­
ogy for the development and validation of reliable process control 
software. IEEE Trans. Software Eng., SE-7, 537-555. 

[32] Chen, 1., and A.Avizienis (1978). N-version programming: a 
fault- tolerance approach to reliability of software operation. In 
Digest of 8th Int. Symp. on F-T Comp., Toulouse, France, June 
1978. pp. 3-9. 



A.A viiienis 31 

[33] Kemmerer, R.A. (1985). Testing formal specifications to detect 
design errors. IEEE Transactions on Software Engineering, SE-
11,32-43. 

[34] Berliner, E.F., and P.Zave (1987). In An experiment in tech­
nology transfer: PAISLey specification of requirements for an 
undersea lightwave 'cable system. Proc. 9th Int. Conf. on Soft­
ware engineering, Monterey, Ca, April 1987. pp. 42-50. 

[35] Goguen, J.A., and J.J.Tardo (1979). An introduction to OBJ: 
a language for writing and testing formal algebaic program spec­
ifications. In Proceedings of Specific. Rel. Software, Cambridge, 
MA, April 3-5, 1979. pp. 170-189. 

[36] Guttag, J.V., J.J.Horning and J.M.Wing (1985). Larch in five 
easy pieces. Digital Equipment Corporation Systems Research 
Center, Report No.5, Palo Alto, California, July24. 

[37] Zave, P., and W.Schell (1986). Salient features of an executable 
specification language and its environment. IEEE Trans. on 
Software Eng., SE-12(2), 312-325. 

[38] Aviiienis, A., M.R.Lyu and W.Schuetz In search of effective 
diversity: a six-language study of fault-tolerant flight control 
software. In Digest of the 18th Int. Symp. on Fault- Tolerant 
Comp., Tokyo, June 1988. pp. 15-22. 

[39] Avizienis, A., M.R.-T.Lyu, W.Schutz, K-S.Tso and U.Voges 
(1988). DEDIX 87-a supervisory system for design diversity ex­
periments at UCLA. In[5]. pp. 129-168. 

[40] Anderson, T., P.A.Barrett, D.N.Halliwell and M.R.Moulding 
(1988). Tolerating software design Faults in a command and 
control system. In[5]. pp. 109-128. 

[41] Lee, P.A., N.Ghani and K.Heron (1980). A recovery cache for 
the PDP-H. IEEE Trans. Computers, C-29(6),546-549. 

[42] Hecht, H. (1976). Fault-tolerant software for real-time applica­
tions. ACM Compo Surveys, 8(4),391-407. 



32 Software fault tolerance 

[43] Kim, K.H. (1984). Distributed execution of recovery bloks: 
approach to unoform treatment of h<\-rdware and software fauls. 
In Proc. IEEE 4th Int. Conf. Dist. Comput. Syst., May 1984. 
pp. 526-532. 

[44] Chu, W.W., K.H.Kim and W.C.McDonald (1987). Testbed­
based validation of design techniques for reliable distributed 
real-time systems. Proc. IEEE, May 1987. 649-··667. 

[45] Kim, K.H., and J.C.Yoon (1988). Approaches to implementa­
tion of a repairable distributed recovery block scheme. In 18th 
Inter. Symp. on Fault-Tolerant Comp., June 1988. pp. 50-55. 

[46] Laprie, J .-C., et al. (1987). Hardware- and software-fault 
tolerance: definition and analysis of architectural solutions. In 
Proc. 17th Intern. Symp. on F-T Comp., July 1987. pp. 
116-12l. 

[47] Grnarov, A., J.Arlat and A.Avizienis (1980). On the perfor­
mance of software fault tolerance strategies. In Dig. 10th Int. 
Symp. Fault-Tolerant Comput., Kyoto, Oct.1980. pp. 251-253. 

[48] Grnarov, A., J.Arlat and A. Avizienis (1982). Modeling and 
performance evaluation of software fault--tolerance strategies. 
Technical Report No. CSD~820608, UCLA Compo Dept., June 
1982. 

[49] Eckhardt, D.E., and L.D.Lee (1985). A theoretical basis for the 
analysis of multiversion software subject to coincident errors. 
IEEE Trans. Software Eng., SE-ll, 1511-1517. 

[50] Laprie, J.-C. (1984). Dependability evaluation of software sys­
tems in operation. IEEE Trans. on Software Engineering, SE-
10(6), 701-714. 

[51] Tso, K.S., A.Avizienis and J.P.J.Kelly (1986). Error recov­
ery in multi-version software. In Proc. IFAC Workshop SAPi!)­
COMP'86, Sarlat, France, October 1986. pp. 35--4l. 

[52] Littlewood, B., and D.R.Miller (1987). A conceptual model of 
multi-version software. In Proc. 17th Intern. Symp. on Fault­
Tolerant Comp., PA, July 1987. pp. 150-155. 

[53] Arlat, J., K.Kanoun and J.-C.Laprie (1988). Dependability 



A.A vizienis 33 

evaluation of software fault-tolerance. In The 18th Int. Symp. 
on Fault-Tolerant Comp., June 1988, Tokyo. pp. 142-147. 

[54] Kelly, J.P.J., et al. (1988). A large scale second Generation 
experiment in multi-version software: Description and early re­
sults. In The 18th Intern. Symp. on Fault-Tolerant Comput., 
June, 1988, Tokyo, Japan. pp. 9-14. 

[55] Bishop, P.G. (1988). The PODS diversity experiment. In [5]. 
pp. 51-84. 

[56] Voges, U. Use of diversity in experimental reactor safety sys­
tems. In [5]. pp. 29-49. 

[57] Knight, J.C., and N.G.Leveson (1986). An experimental eval­
uation of the assumption of independence in multiversion pro­
gramming. IEEE Trans. on Software Engineering, SE-12(1), 
96-109. 

[58] Makam, S.V., and A.Avizienis (1984). An event-synchronized 
system architecture for integrated hardware and software fault­
tolerance. In Proceedings of the 4th Int. Conf. Distributed 
Compo Systems,San Francisco, CA, May 1984. 

[59] Lala, J .H., and L.S.Alger (1988). Hardware and software Fault 
tolerance: A unified architectural approach. In 18th Int. Symp. 
Fault-Tolerant Comp.,Tokyo, June 1988. pp. 240-245. 

[60] Walter, C.J. (1988). MAFT: An architecture for reliable fly-by­
wire flight control. In AIAA/EEE 8th Digital Avionics Systems 
Conf., October 1988, San Jose, CA. pp. 415-421. 

[61] Hills, A.D., and N.A.Mirza (1988). Fault tolerant avionics. 
AIAA/EEE 8th Digital Avionics Systems Conference, October 
17-20, 1988, San Jose, California. pp. 407-414. . 

[62] Turn, R., and J .Habibi (1988). On the interactions of security 
and fault tolerance. In 9th Nat Compo Security Conf., Sept. 
1986. pp. 138-142. 

[63] Dobson, J.E., and RRandell (1986). Building reliabl~ secure 
computing systems out of unreliable insecure components. In 

IEEE Symp. Security and Privacy, April 1986. pp. 187-193. 



34 Software fault tolerance 

[64] U.S. Department of Defense (1985). Trusted Computer System 
Evaluation Criteria, DoD Doc. 5200.28-STD, Dec. 1985. 

[65] Joseph, M.K., and A.Avizienis (1988). A fault tolerance ap­
proach to conputer viruses. In Proc. 1988 IEEE Symp. Security 
and Privacy, Oakland, CA, April 18-20, 1988. pp. 52-58. 

[66] Joseph, M.K. (1988). Architectural Issues in Fault-Tolerant, 
Secure Computing Systems, Ph.D. Dissertation. Computer Sci­
ence Dept., University of California, Los Angeles, CA., June 
1988. 

Received June 1990 

A. Avizienis received the D.S., M.S. and Ph. D. de­
grees all in electrical engineering at the University of Illinois, 
Urbana-Champaign, in 1954, 1955; 1960, respectively. Cur­
rently he is Professor and Director of the Dependable Com­
puting and Fault-Tolerant Systems Laboratory in the Com­
puter Science Department of University of California, where 
since 1972 he has been the principle investigator of a continu­
ing research project on fault-tolerant computing and system 
architectures. Recently he has also been elected Rector of 
Vytautas Magnus University, Kaunas. 


