
INFORMATICA, 2025, Vol. 0, No. 0, 1–34 1
© 2025 Vilnius University
DOI: https://doi.org/10.15388/25-INFOR598

Anti-Money Laundering Compliance Using Feature
Engineering with SQL Analytics, TF-IDF and
Oversampling: Conditional Tabular Generative
Adversarial Networks

Anca Ioana ANDREESCU1, Simona-Vasilica OPREA1,
Alin Gabriel VĂDUVA1,2,∗, Adela BÂRA1

1 Department of Economic Informatics and Cybernetics,
Bucharest University of Economic Studies, 010374 Bucharest, Romania

2 Doctoral School of Economic Informatics, Bucharest University of Economic Studies,
010374 Bucharest, Romania

e-mail: anca.andreescu@ie.ase.ro, simona.oprea@csie.ase.ro, alin.vaduva@csie.ase.ro,
bara.adela@ie.ase.ro

Received: March 2025; accepted: June 2025

Abstract. Traditional Anti-Money Laundering (AML) systems rely on rule-based approaches,
which often fail to adapt to evolving money laundering tactics and produce high false-positive rates,
overwhelming compliance teams. This study proposes an innovative machine learning (ML) frame-
work that leverages Conditional Tabular Generative Adversarial Networks (CTGANs) to address
severe class imbalance, a common challenge in Suspicious Activity Reporting (SAR). Implemented
in Python, CTGAN generates realistic synthetic samples to enhance minority-class representation,
improving recall and F1-scores. For instance, the Random Forest (RF) model achieves a recall of
0.991 and an F1-score of 0.528 in oversampled datasets with engineered variables, highlighting the
effectiveness of CTGAN in mitigating imbalance. This framework also incorporates SQL-based
feature engineering using Oracle Analytics, creating dynamic variables such as cumulative sums,
rolling averages, and ranks. The modelling phase and exploratory data analysis are conducted in the
SAS programming language, employing Logistic Regression (LR) as baseline, Decision Trees (DT),
and RF. Evaluation across undersampled and oversampled datasets, combined with varying proba-
bility thresholds, reveals key trade-offs between sensitivity and precision. Among the models, RF
consistently achieves the highest ROC-AUC scores, ranging from 0.945 in undersampled datasets to
0.951 in oversampled configurations, demonstrating its robustness and accuracy in SAR detection.
By integrating CTGAN and TF-IDF (textual feature transformation in Python) with SQL-engineered
variables, this framework provides a comprehensive data-driven approach to AML. It reduces false
positives, strengthens the detection of suspicious activities, and ensures scalability, adaptability, and
compliance with regulatory standards.
Key words: anti-money laundering, synthetic data generation, SAS-Python, SQL analytics,
TF-IDF.

∗Corresponding author.

https://doi.org/10.15388/25-INFOR598

2 A.I. Andreescu et al.

1. Introduction

A key aspect of any AML compliance program is the continuous monitoring of transac-
tions for suspicious activities. The transaction landscape is broad, encompassing a wide
range of financial activities such as deposits, withdrawals, fund transfers, purchases, loans
and payments (Antwi et al., 2023). Monitoring these transactions is important to identify-
ing potential money laundering schemes, which often involve complex patterns designed
to evade detection (Saragih, 2023; Gilmour, 2023). Traditionally, this monitoring begins
with a rule-based system that scans customer transactions for red flags, typically based on
predetermined thresholds and conditions that are consistent with known money launder-
ing techniques. For instance, large cash deposits or frequent cross-border transfers may
trigger alerts. Once a transaction matches one of these predefined rules, an alert is gener-
ated and sent to the bank’s internal investigation team for further scrutiny. If investigators,
after reviewing the case, determine that the behaviour is indicative of money laundering,
a SAR is filed with the appropriate regulatory authorities.

While rule-based systems have been the cornerstone of AML transaction monitoring
for years, they are not without significant limitations (Ketenci et al., 2021). One of the
primary drawbacks is the high rate of false positives: ordinary, legitimate transactions that
are flagged as suspicious due to the rigid and often oversimplified nature of the rules. False
positives occur when the system misclassifies normal financial behaviour as high-risk
based on generalized criteria, such as arbitrary transaction thresholds. The inefficiency
places a considerable burden on financial institutions, as compliance teams must manually
review these flagged transactions, consuming time and resources (Benzerrouk et al., 2023;
Ahmad Tarmizi et al., 2023). The consequences of relying heavily on traditional systems
lead to operational inefficiencies, increased compliance costs and delayed identification
of actual money laundering activities (Pavlidis, 2023).

Moreover, these rule-based systems are often static and reactive, failing to adapt to
evolving money laundering tactics. Fraudsters continually modify their strategies, mak-
ing it difficult for static rules to keep pace with the dynamic nature of financial crime.
In response to these limitations, the financial industry is turning to ML and statistical
models, which offer a more proactive and adaptive approach to transaction monitoring.
These models have the potential to learn from vast amounts of data, identify subtle pat-
terns and correlations and continuously evolve with new information. By capturing more
nuanced relationships between transactions and risk, ML systems significantly reduce the
number of false positives while improving the identification of genuinely suspicious ac-
tivities (Singh and Best, 2019).

The implementation of ML in AML systems aims to address the critical weaknesses of
traditional methods (Labanca et al., 2022) by leveraging algorithms capable of analysing
large datasets, recognizing complex behavioural patterns and predicting potential money
laundering with a higher degree of accuracy (Jensen and Iosifidis, 2023). Usually, these
models assess multiple variables simultaneously, going beyond simplistic rules to provide
a more comprehensive risk assessment. As a result, financial institutions better allocate
resources to truly suspicious cases, reducing the strain on compliance teams while im-
proving overall effectiveness in detecting illicit activities.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 3

However, banking transactions involve highly sensitive and confidential information,
which presents significant challenges for researchers (Jensen and Iosifidis, 2023), as access
to individual transaction data is restricted to ensure privacy and security. Direct access to
personal financial details is typically prohibited due to regulatory and ethical considera-
tions surrounding data protection. As a result, researchers often rely on aggregated data
sets rather than individual-level records. These aggregated datasets provide a summary of
financial activity over a specified period, such as the past 90 days, and represent collective
trends rather than detailed, client-specific transactions. By using this temporal grouping,
researchers may analyse broader patterns in financial behaviour without compromising
the privacy of individual clients.

In this paper, we propose a framework for detecting fraud in the banking system by
integrating SQL-based feature engineering, Natural Language Processing (NLP) for tex-
tual data transformation and synthetic data generation using CTGAN. Feature engineer-
ing, performed using SQL analytics, creates dynamic variables such as cumulative met-
rics, rolling averages and ranks, adding more behavioural insights. Textual data, such as
customer service notes, is transformed using the TF-IDF method in Python, providing a
structured representation for ML models. CTGAN, also implemented in Python, generates
synthetic customer profiles that closely mimic real data, effectively addressing the issue
of severe class imbalance in SAR. All preprocessing operations, including feature engi-
neering, text transformation, and CTGAN-based oversampling, are performed exclusively
on the training set, leaving the testing set untouched to ensure a realistic, leakage-free
evaluation of model performance. The generated synthetic data represents new, unseen
fraud patterns, enhancing model generalization and improving recall in rare-event detec-
tion. The methodology is evaluated across various scenarios, including undersampled and
oversampled datasets, with and without SQL-engineered variables, under varying proba-
bility thresholds. The modelling phase and exploratory data analysis are conducted in SAS
programing, employing LR, DT and RF. Thus, the features created in Python and Oracle
database are analysed and trained in SAS. Our results demonstrate the impact of com-
bining CTGAN-generated synthetic data and SQL-engineered features, yielding models
that reduce false positives, enhance fraud detection and ensure compliance with evolving
regulatory standards.

By addressing three key research questions (RQ), we examine the influence of the pro-
posed preprocessing techniques on models performance. Additionally, we evaluate vary-
ing probability thresholds to balance false positives and the accurate detection of high-risk
clients, aiming to create a scalable and interpretable framework for AML systems.

RQ1: What is the contribution of feature engineering using SQL analytic functions and
TF-IDF on text notes for improving the predictive accuracy of ML models for AML de-
tection?

RQ2: How does oversampling with CTGAN influence class imbalance issues and models
performance, particularly in detecting rare suspicious activity scenarios?

RQ3: How do different probability thresholds (0.5 vs. 0.115) affect the precision, recall,
F1 score and ROC-AUC across undersampled and oversampled datasets with and without
engineered variables?

4 A.I. Andreescu et al.

This paper is structured in several sections. In this section, the general context, motiva-
tion, challenges, research questions, objectives and contributions are underlined, whereas
in the second section, a brief literature review is provided. The proposed framework is
presented in Section 3. Section 4 is dedicated to the main findings, Section 5 discusses
the implications of these findings and in Section 6 the conclusions are drawn.

2. Literature Review

2.1. Previous Research in AML

The impact of AML regulations on global financial sector development from 2012 to
2018, covering 165 economies, was examined (Ofoeda et al., 2022). The research explored
whether this effect varies between developing and developed nations and investigated non-
linearities in the AML-financial sector development relationship. Using Prais-Winsten and
panel threshold estimation approaches, the findings showed that AML regulations gener-
ally boost financial sector development, especially in developing countries. The positive
impact was primarily observed in nations below a certain AML regulation threshold, in-
dicating that strengthening AML measures benefits developing economies. Moreover, the
extent to which financial facilitators in the Netherlands exhibit business-like behaviours
and how they organize into money laundering networks were explored (Kramer et al.,
2023). Using police intelligence data on 198 facilitators involved with drug criminals
between 2016–2020, the analysis revealed that these facilitators form extensive money
laundering networks.

How illicit funds are laundered using the gold trade in German-speaking European
countries was examined (Teichmann and Falker, 2023). Through 60 semi-standardized
interviews with both money launderers plus compliance officers and a survey of 200 com-
pliance officers, the research found that the gold trade is highly suitable for money laun-
dering, particularly for placement and layering. Additionally, Jensen and Iosifidis (2023)
introduced a terminology with two main components: (a) client risk assessment and (b) de-
tection of suspicious behaviour. Client risk assessment involves analysing and explaining
potential risk factors, whereas suspicious behaviour detection uses undisclosed attributes
and custom risk metrics. An issue is the scarcity of publicly available datasets, which
could be mitigated through synthetic data.

Another research presented a longitudinal case study of a UK bank’s efforts to en-
hance its money laundering detection by broadening its profiling of behaviours (Demetis,
2018). Using the concept of structural coupling from systems theory, the researcher re-
flected on the bank’s approach to profiling. The security risks posed by banditry and ter-
rorism in Nigeria were addressed (Chitimira and Animashaun, 2023). These funds were
laundered through channels such as bureau de change, exploiting flaws in Nigeria’s AML
and anti-terrorism laws. Using a doctrinal and qualitative research method, the research
analysed these legal shortcomings and suggests measures to strengthen Nigeria’s efforts
to combat money laundering and terrorist financing. Furthermore, Korejo et al. (2021)

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 5

traced the evolution of money laundering laws. It found that the broadening of predi-
cate offenses, from drug money to corruption and terrorist financing, led to concerns of
over-criminalization and conflicts with criminal law principles. Moreover, researchers and
practitioners have explored how financial institutions assess money laundering risks, since
the 1980s, noting a tendency to rely on box-ticking rather than case-by-case judgment
(Ogbeide et al., 2023). This approach raised questions about whether experts are immune
to cognitive biases that novices face during risk assessments. It found that both experts
and novices displayed overconfidence in their distribution judgments, with experts being
slightly more prone to this effect.

2.2. Reviews in the AML

The growing issue of money laundering and its harmful effects on the global economy
and society were addressed (Isolauri and Ameer, 2023). Despite its significance, interna-
tional business research on the topic remains limited and dispersed across disciplines. The
researchers conducted a systematic review of 57 studies from the past two decades, iden-
tifying five key research streams. They also highlighted six theoretical approaches, with
normative standards and business/economics theories being the most common. Another
research reviewed the literature on money laundering, aiming to identify research gaps
and guide future investigations (Tiwari et al., 2020), also identifying six broad themes.

Few methods addressed both money laundering and financial fraud together (Goecks
et al., 2022). This research aimed to identify techniques for AML and financial fraud
detection through a systematic literature review using SCOPUS and Web of Science
databases. Of 48 relevant articles, 20 used quantitative methods, 13 were literature re-
views, 7 employed qualitative methods and 8 used mixed approaches. Furthermore, Salehi
et al. (2017) studied reviews fraud detection research, focusing on money laundering and
the limitations of current data mining techniques, which typically rely on predefined rules
and thresholds. It highlighted the effectiveness of data mining in identifying unusual be-
haviours and suggested that unsupervised data mining techniques may better detect new
money laundering patterns. Additionally, Chen et al. (2018) surveyed ML algorithms and
methods used to detect suspicious transactions, focusing on AML typologies, link analy-
sis, behavioural modelling, risk scoring, anomaly detection and geographic analysis. It re-
viewed key steps in data preparation, transformation and analytics, categorizing and com-
paring existing ML techniques.

2.3. Blockchain Technology and AML

As financial institutions transition from the SWIFT network to blockchain, they must re-
vise money laundering detection practices to adapt to this new paradigm (Jovicic and
Tan, 2018). The efficiency of blockchain speeded up transactions, requiring more ad-
vanced money laundering detection methods. This research explored how blockchain ap-
plies to electronic fund transfers and examines ML techniques for detecting money laun-
dering. Thommandru and Chakka (2023) explored how the banking sector is exploited

6 A.I. Andreescu et al.

for money laundering and terrorist financing, noting the burden of compliance with strict
AML laws. It suggested that emerging technologies, particularly blockchain, can mitigate
financial crimes by transforming processes like peer-to-peer payments and trade agree-
ments. Blockchain’s ability to enhance Know Your Customer (KYC) verification and re-
calibrate compliance policies could reduce the financial strain on banks while improving
AML measures. Additionally, Oad et al. (2021) introduced a blockchain-enabled trans-
action scanning (BTS) method to detect anomalous actions in financial transactions. The
BTS method sets rules for outlier detection and rapid fund movements, identifying pat-
terns of malicious activities. It scanned transaction histories to flag suspicious entities and
uses blockchain to prevent money laundering.

2.4. Crypto and AML

Money laundering in cryptocurrency transactions differs from traditional financial crimes
due to its anonymity and decentralization, making conventional AML techniques unsuit-
able (Zhong et al., 2022). This research proposed a four-stage money laundering detec-
tion approach tailored to cryptocurrency. Experimental results on a real-world dataset
demonstrated high accuracy: 96.02%, 95.05%, 95.83% and 95.81% for detecting abnor-
mal behaviours, suspected launderers, loud and subtle transactions. With the rise of the
crypto economy, cryptocurrency is seen as a potential vehicle for money laundering (Wang
and Hsieh, 2024). They analysed the features of cryptocurrency, like anonymity and de-
centralization, that contribute to its appeal for money laundering. A money laundering
triangle was introduced within a criminological framework. It recommended that future
AML strategies should focus on cryptocurrency’s characteristics to deter its use in laun-
dering activities. Liu et al. (2023) introduced GTN2vec, an improved graph embedding
algorithm specifically for detecting money laundering on Ethereum. By analysing trans-
action records, GTN2vec captured the behavioural patterns of money launderers and the
structure of transaction networks.

Money laundering through Bitcoin has become a threat (Yu et al., 2023). Traditional
detection methods rely on fixed rules, limiting accuracy and scalability. To address this, the
research proposed AEtransGAT, an approach for detecting money laundering by mining
Bitcoin transaction records. AEtransGAT used transGat as an encoder to assess the impor-
tance of surrounding transactions based on transaction flows and a graph autoencoder as
the decoder to capture structural information. By combining transaction classification and
structure reconstruction, the model improved detection. Moreover, researchers responded
by developing new detection techniques (Al Badawi and Al-Haija, 2021). They presented
an AML system that used ML, specifically shallow Neural Networks (NN) and decision
trees, to classify licit and illicit transactions. Evaluated on the Bitcoin dataset, the models
achieved accuracies of 89.9% and 93.4%.

2.5. Statistics, ML and Deep Learning in AML

With an estimated $800 billion to $2 trillion money laundered annually, including $5 bil-
lion through cryptocurrency, the Financial Action Task Force highlighted how criminals

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 7

may convert illegally obtained fiat money into cryptocurrency, posing a significant chal-
lenge in detecting and preventing illegal transactions (Alotibi et al., 2022). This research
explored the use of deep learning and ML for detecting suspicious cryptocurrency trans-
actions, employing Deep NN (DNN), RF, K-Nearest Neighbours (KNN) and Naive Bayes
(NB) on the Bitcoin dataset. Results show that DNN and RF achieved the highest accu-
racy. Moreover, Inspection-L, a graph neural network (GNN) framework utilizing self-
supervised Deep Graph Infomax (DGI) and Graph Isomorphism Network (GIN), com-
bined with supervised learning algorithms like RF was introduced (Lo et al., 2023), to
detect illicit transactions for AML.

The dynamic nature of information systems has weakened traditional detection mech-
anisms (Caglayan and Bahtiyar, 2022). This research explored ML algorithms as com-
plementary solutions, focusing on graph-based data representation using Node2Vec to
improve classification for money laundering detection. Experimental results showed that
Node2Vec helps identify the most effective ML algorithms for detecting money laun-
dering. Yang et al. (2023) presented a two-tier algorithm combining heuristic rules and
integrated learning techniques to detect money laundering in virtual currencies. The algo-
rithm established heuristic rules based on statistical risk attributes and employs a model
combining Long Short-Term Memory (LSTM) and graph convolutional NN to identify
suspicious patterns. A hard voting mechanism further enhanced detection by integrating
classifiers like Histogram-Based Outlier Scoring and Isolation Forest. With monitoring
financial transactions in AML, the ML-based systems increasingly complemented tradi-
tional rule-based methods to reduce false positives and manual review (Labanca et al.,
2022). However, ML models face challenges: unsupervised models detect novel patterns
but generate many false alarms, while supervised models have higher accuracy but require
substantial labelled data.

Additionally, Huong et al. (2024) introduced a novel approach to improve detection by
constructing network graphs from bank transaction datasets. They were transformed into
directed node representations that encode relationships and community structures within
the network. A RF model was also used to predict suspicious behaviours. To address class
imbalance, oversampling and undersampling techniques were applied, with undersam-
pling yielding the highest accuracy at 92%, compared to 86% with oversampling. Another
research explored the interplay between ML and sampling techniques in detecting money
laundering through an empirical analysis using real transaction data from a U.S. financial
institution (Zhang and Trubey, 2019). It evaluated five ML algorithms: Bayes LR, DT, RF,
support vector machine (SVM) and ANN.

To address traditional AML systems, a KNN model was developed using open financial
transaction datasets from Kaggle (Hampo et al., 2023). The model achieved an accuracy
of 98.4%. Another research addressed the failure of traditional models, including SVM,
NN and KNN, to detect simulated money laundering accounts from the Panama Papers
dataset (Sheu and Li, 2022). A new money laundering detection tool, a graph attention
network, was developed. It has three modules: a feature extraction module that encodes
transaction data into a weighted graph, a graph attention module that uses a self-attention
mechanism to highlight suspicious nodes and a classification module that filters targets

8 A.I. Andreescu et al.

using a rectified linear unit function. It outperformed existing methods, including Naïve
Bayes and RF.

AML analysis usually requires processing large volumes of data, such as billings and
bank transactions, to support investigations (Drezewski et al., 2015). To assist human ana-
lysts, the Money Laundering Detection System (MLDS) was proposed as a software tool.
This research introduced a social network analysis component for MLDS, which utilizes
data from bank statements and the National Court Register to construct and analyse social
networks in money laundering investigations. The system assigned roles to individuals
within the network and analysed their connections. While existing methods such as ML,
graph mining and anomaly detection have been applied, they often fail to account for the
dynamic characteristics of transactions that could aid in detection (Luo et al., 2022). To ad-
dress it, the research proposed a dynamic transaction pattern aggregation neural network
(DTPAN) for money laundering detection. DTPAN uses two feature extractors to capture
the dynamic features of transaction behaviours and the evolving relationships between ac-
counts. A feature enhancement module further strengthened the dynamic behaviour fea-
tures by identifying latent dependencies between behaviour dynamics and relationship
evolution.

Another research proposed a new system for detecting money laundering by comparing
tax data, particularly value-added tax (VAT), with banking transactions (Bidabad, 2017).
The MLDS, part of the Rastin Banking system but operable independently, helped iden-
tify financial deception and fraud. It worked by requiring all transactions to go through
banks, then comparing the tax data of transactors with their banking transactions. Dis-
crepancies between these datasets may reveal money laundering activities. Cheng et al.
(2023) introduced a group-aware deep graph learning approach to detect organized money
laundering. A community-centric encoder modelled user transaction graphs and identified
group-level interactions, while a local enhancement scheme aggregated similar transac-
tion features into gangs. Tests on a major bank card alliance dataset showed this method
outperformed existing approaches. Kannan and Somasundaram (2017) proposed an auto-
regressive (AR) outlier-based money laundering detection system to reduce the time
needed to process large, non-uniform transactions. The AR model enhanced demand fore-
casting, while inter-quartile range (IQR) formulations aided in analysing time-series data.
The study found that detecting outliers in high-dimensional data and complex time-series
relationships can be challenging.

The current rule-based detection systems proved highly ineffective, with over 90%
false positives (Ketenci et al., 2021). Thus, the researchers introduced a novel feature
set using time-frequency analysis, creating 2-D representations of financial transactions.
An RF model with simulated annealing for hyperparameter tuning was tested on real
banking data, demonstrating that time-frequency features significantly enhance detection
performance. A comprehensive model to enhance self- and group-comparisons for de-
tecting suspicious transactions related to money laundering and terrorism financing in
financial systems was proposed (Rocha-Salazar et al., 2021). Self-comparisons were im-
proved by expanding KYC policies, incorporating non-transactional characteristics into
four categories: inherent, product, transactional and geographic. Group-comparisons were

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 9

enhanced using an innovative transaction abnormality indicator based on variable vari-
ance. The model significantly reduces false positives and improves accuracy compared to
rule-based systems, leading to reduced investigation costs for suspicious customers. Unsu-
pervised learning is better at detecting irregularities, though it often lacks state-of-the-art
accuracy (Chen et al., 2021). The research proposed a system using unsupervised and
deep learning models: autoencoder (AE), variational autoencoder (VAE) and a Wasser-
stein GAN (WGAN). The WGAN generated synthetic fraud transactions to balance the
dataset, which is then used to train AE and VAE models. Two versions of the AE model
were tested: single-loss and multi-loss, along with a novel anomaly score thresholding
method, Recall-First Threshold (RFT). Experimental results showed a reduction in the
false positive rate to 7% with the multi-loss AE model. A tabular comparison, summariz-
ing the key details from the previous studies, is provided in Table A1 Appendix A.

3. Methodology and Data

The banking industry faces increasing regulatory requirements and compliance demands,
particularly concerning AML efforts. Traditional transaction monitoring systems, pre-
dominantly rule-based frameworks relying on IF-ELSE conditions, are widely employed
to identify suspicious activities. However, these systems have significant limitations, in-
cluding their inability to adapt to evolving fraud patterns and their propensity to generate
a high rate of false positives-normal transactions flagged as suspicious. This high rate
of false positives not only increases the operational costs for banks but also diverts re-
sources away from genuinely suspicious cases, thereby reducing the overall efficiency of
the AML process. Thus, there is a pressing need to develop advanced statistical systems
that go beyond rule-based approaches. By leveraging ML techniques, such systems dy-
namically identify high-risk clients with greater accuracy while minimizing the number
of false positive cases. It is important to note that the dataset is cross-sectional: all vari-
ables are aggregated over the same 90-day observation window, so no temporal or panel
structure exists. Consequently, time-ordered train/test splits are not applicable; instead,
we prevent data leakage by performing a random stratified split before any imputation,
feature engineering, or oversampling.

In this section, we describe the methodology for implementing a ML-based system
to enhance AML. Our research is conducted using a synthetic dataset sourced from the
DataRobot1 website, specifically from their AML model demo. This dataset simulates
a credit card company’s AML compliance program, focusing on scenarios such as cus-
tomers overpaying their credit card bills to request cash refunds and customers receiving
merchant credits without offsetting transactions, then spending the credited amount or
requesting cash refunds. The unit of analysis is an individual alert, generated by a rule-
based engine, with a binary target variable, SAR, indicating whether a Suspicious Activity
Report was filed.

1https://docs.datarobot.com/en/docs/get-started/gs-dr5/biz-accelerators/money-launder.html

https://docs.datarobot.com/en/docs/get-started/gs-dr5/biz-accelerators/money-launder.html

10 A.I. Andreescu et al.

3.1. Dataset Splitting

The dataset is split into training and testing sets to ensure robust evaluation of the ML
models. We use the SURVEYSELECT procedure in SAS, which employs simple random
sampling, ensuring that the training set comprises 70% of the data and the testing set 30%.
A seed parameter set to 123 is specified for reproducibility across experiments.

3.2. Data Preprocessing

This section outlines the preprocessing steps applied to the dataset, including feature en-
coding, missing data imputation, feature engineering and oversampling using CTGAN
over the training dataset.

3.2.1. Feature Encoding
To make the dataset suitable for ML algorithms, categorical and textual variables are en-
coded into numerical formats. Specifically:

a) Frequency encoding applied to the categorical variable “state” to encapsulate the rela-
tive frequency of each state within the dataset. This encoding provides a numeric value,
reflecting the occurrence of each category. Let N denote the total number of instances
and f (s) the frequency of state s. Then, the encoded value for s is calculated as:

Encoded Value for s = f (s)

N
. (1)

b) Term frequency-inverse document frequency (TF-IDF) applied to textual variables,
which contains textual customer service notes. TF-IDF captures the importance of each
term t in document d within the corpus C.

TF-IDF(t, d) = TF(t, d) · IDF(t, C). (2)

where:

TF(t, C) = Number of occurences of t in d

Total number of terms in d
, (3)

IDF(t, C) = log

(︃ |C|
1 + |{d ∈ C : t ∈ d}|

)︃
. (4)

c) Binary encoding for binary variables, mapping Y to 1 and N to 0.

3.2.2. Missing Data Imputation
To address missing data, we utilize multiple imputation (MI) in SAS programming. MI
replaces missing values with multiple plausible estimates, reflecting the uncertainty as-
sociated with the imputation process. This method creates m complete datasets, analyses
each dataset separately and then combines the results.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 11

For a given variable X with missing values, the first step (imputation step) is repre-
sented by replacing missing values in X, m times using plausible estimates derived from
the observed data distribution. In step 2 (analysis step), each imputed dataset is analysed
separately. In the pooling phase, the final estimates and standard errors are obtained by
combining results across all imputed datasets using Rubin’s rules:

θ = 1

m

m∑︂
i=1

θ̂i , (5)

Var = U +
(︃

1 + 1

m

)︃
B, (6)

where θ is the pooled estimate, U is the within-imputation variance, B is the between-
imputation variance and Var is the total variance of the parameter estimates.

3.2.3. Feature Engineering
Feature engineering is performed using SQL Oracle analytic functions to generate addi-
tional variables that provide more insights into the dataset. The following variables are
engineered:

1. Cumulative sum by group computes the cumulative sum of a numeric column x

for each group g, ordered by a specified variable. It provides insights into the running
total of a quantity within each group, allowing the identification of patterns in cumulative
behaviour.

CumulativeSum(i, g) =
i∑︂

j=1

xj . (7)

2. Rank within group ranks rows within a group g based on a specified column x, in
ascending or descending order. It is used to identify the relative position of a record within
a group, such as identifying the top performers or contributors.

Rank(i, g) = Rankg(−xi). (8)

3. Difference between consecutive rows calculates the difference between the current
row’s value xi and the previous row’s value xi−1, useful for identifying changes or trends
in sequential data, such as the growth or decline of a quantity over time.

Difference(i) = xi − xi−1. (9)

4. Rolling average within group computes the average of a numeric column x over a
rolling window of k rows, within a group g, ordered by a specified variable, providing a
smoothed view of trends over time or within a sequence, reducing the impact of short-term
fluctuations.

RollingAvgi(g) =
∑︁i

j=i−k+1 xj

k
. (10)

12 A.I. Andreescu et al.

5. Global rank is used for ranking rows globally based on a numeric column x in
ascending or descending order, independent of grouping. It is used to identify the relative
position of a record across the entire dataset, such as determining overall performance or
priority.

Rank(i) = Rank(−xi). (11)

6. Cumulative average calculates the cumulative average of a numeric column x across
all rows up to the current row r . It provides insights into the overall average trend as more
data points are considered.

CumulativeAvgr =
∑︁k

j=1 xj

r
. (12)

7. Cumulative count by group computes the cumulative count of a numeric column x

for each group g, ordered by a specified variable. It provides insights into the cumulative
total of a quantity for specific groups.

CumulativeCount(i, g) =
i∑︂

j=1

xj . (13)

3.2.4. Oversampling Using Conditional Tabular Generative Adversarial Networks
Class imbalance is a common challenge in datasets for AML, as suspicious activity cases
(SAR = 1) often represent a small fraction of the total observations. To address this im-
balance, we employ CTGAN in Python to generate synthetic data that closely mimics the
distribution of the original minority class, enriching the dataset with additional examples
of suspicious cases. CTGAN is specifically designed to handle the unique challenges of
tabular datasets, such as mixed data types, highly imbalanced classes and complex feature-
target dependencies.

CTGAN builds upon the traditional GAN framework, consisting of a Generator (G)
and a Discriminator (D), but introduces additional mechanisms tailored for tabular data.
A key feature of CTGAN is its conditional generation mechanism, which allows the gen-
erator to model the relationship between categorical and numerical features and generate
realistic synthetic samples conditioned on specific feature values to ensure that the syn-
thetic data accurately reflects the real-world distribution of both the majority and minority
classes.

The objective function for CTGAN remains similar to that of traditional GAN, with
the Generator and Discriminator engaged in a zero-sum game. The combined objective
function is:

min
G

max
D

V (D,G) = 𝑬x∼pdata

[︁
log D(x)

]︁ + 𝑬z∼pz,v∼p(v)

[︁
log

(︁
1 − D

(︁
G(z, v)

)︁)︁]︁
,

(14)

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 13

where x represents real data sampled from the true data distribution pdata, z is the noise
vector sampled from a prior distribution pZ , v is the conditional vector representing fea-
ture values, G(z, v) represents synthetic data generated by the generator conditioned on
v and D(x) represents the probability that x is real, predicted by the discriminator.

The Discriminator Loss function measures the ability of the discriminator to distin-
guish real samples from synthetic ones:

𝓛D = −𝑬x∼pdata

[︁
log D(x)

]︁ − 𝑬z∼pz,v∼pv

[︁
log

(︁
1 − D

(︁
G(z, v)

)︁)︁]︁
. (15)

The generator seeks to minimize the discriminator’s ability to differentiate real from
synthetic samples:

𝓛G = −𝑬z∼pz,v∼pv

[︁
log D

(︁
G(z, v)

)︁]︁
. (16)

The CTGAN training process alternates between training the discriminator and the
generator. First, the discriminator is trained using real data (x) and synthetic data G(z, v)

to maximize its ability to classify real versus synthetic samples. Then, the generator is up-
dated based on feedback from the discriminator, aiming to minimize the discriminator’s
ability to differentiate real from synthetic samples. The training continues until the gener-
ator produces synthetic data that is indistinguishable from real data to the discriminator.

CTGAN uses conditional vector encoding to manage categorical variables effectively.
For each categorical variable, a one-hot encoded vector is created to represent all possible
categories, while numerical variables are modelled using Gaussian distributions. During
training, the conditional vector (v) is sampled alongside the noise vector (z) to guide the
generation process, ensuring the synthetic samples preserve realistic feature-target depen-
dencies.

3.3. Models’ Training and Evaluation

This section describes the process of preparing the data for ML models, training the mod-
els and evaluating their performance. Our research employs three ML algorithms: LR, DT
and RF to analyse the dataset. Each algorithm is implemented in SAS programming and
the training process is performed on the prepared training dataset. The three programming
languages employed in this research and the processing stages are presented in Fig. 1.

3.3.1. Logistic Regression
LR is a linear model used for binary classification, where the target variable (SAR) repre-
sents the probability of an account being suspicious. The model is trained by estimating
coefficients β for the input features X to maximize the likelihood of observing the training
data. The predicted probability is given by the logistic function:

P(SAR = 1 | X) = 1

1 + e−βT X
. (17)

14 A.I. Andreescu et al.

Fig. 1. Overview of the AML detection workflow.

During training, the cost function minimized is the negative log-likelihood:

ℒ = − 1

N

N∑︂
i=1

[︁
yi log ŷi + (1 − yi) log(1 − ŷi)

]︁
, (18)

where yi is the actual label, ŷi is the predicted probability and N is the number of samples.
LR is particularly effective for datasets where features have a linear relationship with the
log-odds of the target variable.

3.3.2. Decision Tree
A DT is constructed by recursively splitting the dataset into subsets based on feature val-
ues, forming a tree structure where each node represents a decision rule. In this study,
the splitting criterion used is entropy, which measures the impurity of a node. Entropy is
calculated as:

H = −
nc∑︂

i=1

pi log(pi), (19)

where nc is the number of classes and pi is the proportion of samples belonging to class i

in a node. A perfectly pure node (all samples belong to one class) has an entropy of 0,
while a node with evenly distributed classes has maximum entropy. The algorithm selects
the feature and split point that result in the greatest reduction in entropy, measured by
information gain:

Information Gain = Hparent − (wleftHleft + wrightHright), (20)

where Hparent is the entropy of the parent node, Hleft and Hright represent the entropies of
the left and right child nodes, whilst wleft and wright denotes the proportions of samples
in the left and right child nodes.

To prevent overfitting, the tree is pruned using cost complexity pruning, which penal-
izes the complexity of the tree by adding a regularization term based on the number of
terminal nodes.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 15

3.3.3. Random Forest
RF is an ensemble learning method that constructs multiple DTs during training and com-
bines their predictions to improve model accuracy and robustness. Each tree is trained on
a bootstrap sample of the dataset, where samples are selected randomly with replacement.
This process introduces variability across the trees, reducing the risk of overfitting. Ad-
ditionally, at each split in a tree, only a random subset of features is considered, ensuring
diversity in the splitting criteria and further reducing correlation among the trees. The
final prediction is made by aggregating the predictions of all trees in the forest. For classi-
fication, the model uses majority voting to determine the class. For probabilistic outputs,
which are used in this study, the random forest calculates the average probability predicted
by individual trees. This can be expressed as:

P(SAR = 1) = 1

T

T∑︂
t=1

Pt (SAR = 1), (21)

where T is the total number of trees and Pt is the predicted probability from the t-th tree.

3.3.4. Classification Metrics
Several statistical indicators are used to evaluate the generalization capabilities of a model.
One of the most useful tools for understanding a model’s performance is the confusion
matrix, which summarizes the results of classification by categorizing predictions into
four categories: true negatives (TN), false positives (FP), false negatives (FN) and true
positives (TP).

Precision measures the accuracy of positive predictions. It reflects the proportion of
instances predicted as positive that are actually positive. This metric is particularly impor-
tant when the cost of false positives is high. Precision is calculated as:

Precision = TP
TP + FP

. (22)

Recall assesses the model’s ability to identify all actual positive cases. It is a widely
used metric in scenarios where missing positive cases (false negatives) have serious con-
sequences, such as fraud detection or medical diagnosis. Recall is defined as:

Recall = TP
TP + FN

. (23)

F1 Score provides a harmonic mean between precision and recall, balancing the trade-
off between the two metrics. This score is particularly useful when the dataset is imbal-
anced, as it accounts for both false positives and false negatives.

F1 Score = 2 · Precision · Recall
Precision + Recall

. (24)

The Receiver Operating Characteristic (ROC) curve is a graphical tool used to evaluate
the performance of binary classifiers by plotting the True Positive Rate (TPR) against the

16 A.I. Andreescu et al.

Fig. 2. ROC-AUC curve and the decision threshold.

False Positive Rate (FPR) at various threshold levels. It provides insights into the trade-
off between sensitivity (recall) and specificity as the classification threshold is varied. The
ROC curve enables a visual comparison of different classifiers or model configurations,
as a curve closer to the top-left corner indicates a better-performing model.

To summarize the performance of a classifier using the ROC curve, the Area Under
the Curve (AUC) is computed. The AUC is a scalar value representing the entire two-
dimensional area beneath the ROC curve, as in Fig. 2. It provides an aggregate measure of
classifier performance across all classification thresholds, where a higher AUC indicates
better discriminative ability. A perfect classifier achieves an AUC of 1, while a random
classifier achieves an AUC of 0.5.

3.3.5. Scenarios for Evaluation
To account for varying levels of sensitivity and specificity, the models are trained and
evaluated under two distinct probability threshold scenarios. These scenarios, as shown
in Fig. 3, are designed to explore the impact of threshold adjustments on classification
performance, particularly in the context of imbalanced datasets.

The evaluation metrics, including precision, recall, F1 score and ROC-AUC, are com-
puted for each model across both scenarios and dataset configurations. The evaluation
allows for a detailed analysis of model performance, emphasizing the influence of dif-
ferent preprocessing techniques and probability threshold adjustments on classification
results. The technical pseudocode for AML detection system is presented in Algorithm 1.

4. Results

4.1. Exploratory Data Analysis (EDA)

The dataset comprises 30 variables, including numerical, categorical, binary and textual
data, such as csrNotes, which contains customer service notes related to the account. Ta-
ble 1 contains the variables existing in the dataset along with their corresponding defini-
tions.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 17

Algorithm 1 Algorithm for SAR prediction
1. Dataset Splitting

Split dataset: 70% -> Training Set; 30% -> Testing Set

2. Data Preprocessing
2.1 Feature Encoding

For each categorical variable (cv):
freq[cv] = count(cv) / total_count
encoded_cv = freq[cv] // Eq. (1)

For each text variable:
TF(t, d) = count(t in d) / total_terms(d) // Eq. (3)
IDF(t, C) = log(|C| / (1 + count(d ∈ C : t ∈ d))) // Eq. (4)
TF-IDF(t, d) = TF(t, d) * IDF(t, C) // Eq. (2)

For binary variables:
if value == ’Y’:

encoded_value = 1
else:

encoded_value = 0

2.2 Missing Data Imputation

For variable X with missing values:
For i = 1 to m:

Impute missing X with plausible estimates -> Xi

θ = 1
m

∑︁m
i=1 θ̂i // Eq. (5)

Var = U + (1 + 1
m)B // Eq. (6)

2.3 Feature Engineering with SQL Analytics

CumulativeSum(i, g) = ∑︁i
j=1 xj // Eq. (7)

Rank(i, g) = Rankg(−xi) // Eq. (8)
Difference(i) = xi − xi−1 // Eq. (9)

RollingAvgi (g) =
∑︁i

j=i−k+1 xj

k
// Eq. (10)

Rank(i) = Rank(−xi) // Eq. (11)

CumulativeAvgr =
∑︁k

j=1 xj
r // Eq. (12)

CumulativeCount(i, g) = ∑︁i
j=1 xj // Eq. (13)

2.4 Oversampling using CTGAN

Objective: minG maxD V (D,G) = 𝑬x∼pdata [logD(x)] + 𝑬z∼pz,v∼p(v)[log(1 − D(G(z, v)))] // Eq. (14)

Discriminator Loss:LD = −𝑬x∼pdata [log D(x)] − 𝑬z∼pz,v∼pv [log(1 − D(G(z, v)))] // Eq. (15)
Generator Loss:LG = −𝑬z∼pz,v∼pv [log D(G(z, v))] // Eq. (16)

3. Model Training and Evaluation

3.1 Logistic Regression (baseline)

P (SAR = 1 | X) = 1

1+e−βT X
// Eq. (17)

Cost Function:ℒ = − 1
N

∑︁N
i=1[yi log ŷi + (1 − yi) log(1 − ŷi)] // Eq. (18)

3.2 Decision Tree

Entropy: H = −∑︁nc
i=1 pi log(pi) // Eq. (19)

Information Gain: Information Gain = Hparent − (wleftHleft + wrightHright) // Eq. (20)

3.3 Random Forest

P (SAR = 1) = 1
T

∑︁T
t=1 Pt (SAR = 1) // Eq. (21)

3.4 Evaluation Metrics

Precision = TP / (TP + FP) // Eq. (22)
Recall = TP / (TP + FN) // Eq. (23)
F1 Score = 2 * (Precision * Recall) / (Precision + Recall) // Eq. (24)

3.5 ROC-AUC

Plot ROC curve:
TPR = TP / (TP + FN)
FPR = FP / (FP + TN)

Compute AUC: AUC = Area under ROC curve

4. Scenario Analysis. Threshold Adjustment

For threshold ∈ {0.5, 0.115}:
Undersampled dataset;
Undersampled dataset enriched with variables engineered using SQL analytics;
Oversampled dataset generated through the application of CTGAN;
Oversampled dataset incorporating SQL-analytics-engineered variables.

Adjust model predictions
Compute Precision, Recall, F1, ROC-AUC
Compare metrics across thresholds

18 A.I. Andreescu et al.

Fig. 3. Scenarios applied in the analysis.

Most variables have complete data with no missing values. However, there are two
notable exceptions, represented by income, which has 200 missing values, representing
2% of the dataset, suggesting the need for imputation to handle these gaps effectively and
totalPaymentAmt90d which has 55 missing values, accounting for 0.55% of the dataset,
also requiring imputation to ensure model compatibility. For all other variables, no miss-
ing data is observed, allowing them to be directly used in the analysis without additional
preprocessing steps. It is also important to note that the variable csrNotes is transformed
using the TF-IDF method.

Figure 4 presents histograms illustrating the distribution of three numerical variables:
kycRiskScore, income and tenureMonths. The first histogram, representing kycRiskScore,
reveals a concentration of values within the lower range, predominantly between 0 and 3.
This suggests that most customers are assigned low risk scores, with relatively few cases
exceeding a score of 4. This distribution is indicative of the dataset’s emphasis on lower-
risk customers, aligning with the expected structure of a typical banking dataset. The sec-
ond histogram, depicting income, shows a highly right-skewed distribution. The majority
of income values are clustered below 100,000, with a gradual tapering off as income in-
creases. It is indicative that while most customers fall within a lower to moderate income
range, there are a few higher-income customers present as outliers. The distribution under-
scores the importance of scaling or normalization techniques to ensure this feature does
not disproportionately influence model performance.

The third histogram, for tenureMonths, highlights a distribution concentrated at lower
tenure values, with most customers having been active for fewer than 50 months. The
frequency decreases sharply as tenure increases, with only a small fraction of customers
exhibiting long-term activity. This pattern may reflect a relatively young or dynamic cus-
tomer base, and it also suggests that customer tenure may have a significant relationship
with other variables, such as risk score or income.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 19

Table 1
Variables and their corresponding descriptions.

Variable name Description

SAR Indicates whether a SAR was filed. 1: SAR filed, 0: no SAR.
kycRiskScore KYC risk score at account opening. Higher score indicates higher risk.
Income Annual income of the account holder, typically in local currency.
tenureMonths Length of time (in months) the account has been active.
creditScore Credit bureau score of the account holder. Higher score indicates better

creditworthiness.
State State of the account holder’s billing address.
nbrPurchases90d Number of purchases made in the last 90 days.
avgTxnSize90d Average size of transactions (monetary value) in the last 90 days.
totalSpend90d Total amount of money spent in the last 90 days.
csrNotes Notes recorded by Customer Service Representatives during

interactions with the account holder.
nbrDistinctMerch90d Number of distinct merchants where purchases were made in the last

90 days.
nbrMerchCredits90d Number of credits received from merchants in the last 90 days.
nbrMerchCredits-RndDollarAmt90d Number of credits received from merchants in round dollar amounts in

the last 90 days.
totalMerchCred90d Total amount of merchant credits received in the last 90 days.
nbrMerchCredits-WoOffsettingPurch Number of merchant credits issued without offsetting purchases in the

last 90 days.
nbrPayments90d Number of payments made in the last 90 days.
totalPaymentAmt90d Total payment amount made in the last 90 days.
overpaymentAmt90d Total amount overpaid by the account holder in the last 90 days.
overpaymentInd90d Indicates whether the account was overpaid in the last 90 days. 1:

overpaid, 0: no overpayment.
nbrCustReqRefunds90d Number of refund requests made in the last 90 days.
indCustReqRefund90d Indicates whether a refund was requested in the last 90 days. 1: refund

requested, 0: no refund request.
totalRefundsToCust90d Total refund amount issued in the last 90 days.
nbrPaymentsCashLike90d Number of cash-like payments (e.g. money orders) made in the last 90

days.
maxRevolveLine Maximum revolving line of credit available to the account holder.
indOwnsHome Indicates whether the account holder owns a home. 1: owns home, 0:

does not own home.
nbrInquiries1y Number of credit inquiries made about the account holder in the last

year.
nbrCollections3y Number of collections associated with the account holder in the last

three years.
nbrWebLogins90d Number of online banking logins in the last 90 days.
nbrPointRed90d Number of loyalty points redemptions made in the last 90 days.
PEP Indicates whether the account holder is a Politically Exposed Person

(PEP). 1: PEP, 0: not PEP.

Figure 5 illustrates the frequency distribution of the state variable within the dataset.
Each bar represents the number of observations associated with a specific state. The high-
est frequency is observed for the state of NY (New York), with a count of 2.424 records,
followed closely by MA (Massachusetts), which has 2.328 records. Other states such as PA
(Pennsylvania) and CT (Connecticut) also show relatively high frequencies, with counts
of 1.242 and 1.108, respectively. Conversely, NH (New Hampshire) and VT (Vermont)
exhibit the lowest frequencies, with only 95 and 101 observations, respectively.

20 A.I. Andreescu et al.

Fig. 4. Histograms for kycRiskScore, Income and tenureMonths.

Fig. 5. Frequency distribution of the SAR variable.

Figure 6 illustrates the distribution of the SAR variable, which serves as the dependent
variable in this study. The SAR variable distinguishes between instances where a SAR was
filed (Y) and those where no such report was filed (N). The chart reveals a pronounced
class imbalance, with the majority of observations classified as N (8.974 instances) com-
pared to only 1.026 instances classified as Y .

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 21

Fig. 6. Distribution of the SAR variable.

Fig. 7. Disparity of the SAR variable with respect to income and tenure.

To address this imbalance, we employ the CTGAN to generate synthetic data that
closely mimics the distribution of the minority class. This oversampling method enriches
the dataset with additional instances of SAR = Y , ensuring a more balanced representa-
tion of the classes during the model training process. By incorporating CTGAN-generated
data, we aim to improve the model’s ability to identify suspicious transactions without
overfitting to the limited real instances of the minority class.

Figure 7 depicts the disparity of the SAR variable with respect to income (left) and
tenure (right). In the first boxplot, for both categories of the SAR, the median income is
fairly similar. However, there is a noticeable difference in the distribution and range of
income values. Category N exhibits a slightly broader interquartile range (IQR), indi-
cating a higher variability in income among customers without a SAR. The presence of
numerous outliers, particularly in the higher-income range for both categories, highlights
that certain customers have significantly higher income values, which may influence the

22 A.I. Andreescu et al.

Table 2
Engineered variables using SQL Oracle Analytics.

Engineered variable Description

Cumulative spend by state Computes the cumulative total spend for accounts within each state,
ordered by income.

Rank by number of purchases in
state

Assigns a rank to accounts within each state based on the number of
purchases in descending order.

Difference in number of purchases Calculates the difference in the number of purchases between
consecutive rows, ordered by income.

Rolling average of transaction size
by state

Calculates the rolling average of transaction sizes within each state,
ordered by income, using a fixed window size.

Rank by income Assigns a global rank to accounts based on income in descending order.
Cumulative average transaction
size

Computes the cumulative average transaction size across all accounts,
ordered by transaction size.

Difference in total spend Calculates the difference in total spend between consecutive rows,
ordered by income.

Cumulative purchases by income Computes the cumulative number of purchases ordered by income
across all accounts.

Rank by credit score within state Assigns a rank to accounts within each state based on credit score in
descending order.

Cumulative income by state Computes the cumulative income within each state, ordered by income.

models’ predictions. In the second boxplot the median tenure for both N and Y categories
is again comparable, but the interquartile range for the N category is slightly wider, in-
dicating greater variability in customer tenure among those without an SAR. Similar to
income, outliers are present in the higher ranges of tenure, with a small number of cus-
tomers having exceptionally long relationships with the institution.

4.2. Engineered Features using SQL Analytics

To enrich the dataset and capture more nuanced patterns in customer behaviour, 10 en-
gineered variables were created using SQL Oracle Analytics. These variables provide in-
sights into cumulative trends, rankings and differences across various dimensions, en-
abling enhanced feature representation for ML models. Table 2 summarizes the names
and descriptions of the engineered variables.

4.3. LR, DT and RF Architectures

a) LR model
The LR is implemented using the PROC LOGISTIC procedure in SAS, which is

specifically designed to handle binary classification problems. The model is configured
to predict the likelihood of a SAR being filed, focusing on the event SAR = 1. To ensure
this focus, the DESCENDING option is used, which models the higher-ordered category
(SAR = 1) instead of the default lower-ordered category (SAR = 0). The relationship be-
tween the target variable SAR and the independent variables is defined in the MODEL
statement, which includes all predictors in the regression equation.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 23

By default, the LR model in SAS uses the logit link function, which models the log-
odds of the event occurring as a linear combination of the predictor variables. The model
employs Fisher’s scoring method, an iterative optimization technique for estimating the
maximum likelihood of the parameters. The convergence criterion is set by default to a
gradient convergence (GCONV) value of 1E-8, ensuring that the iterative estimation pro-
cess terminates only when the parameter estimates stabilize. Additionally, the default sig-
nificance level for including terms in the model (alpha) is 0.05, controlling the threshold
for statistical significance in variable selection when stepwise or other selection methods
are applied.

b) DT model
The DT model is implemented using the PROC HPSPLIT procedure in SAS, a high-

performance tool for building classification and regression trees. The MODEL statement
specifies the target variable (SAR) and the independent variables used for prediction. The
event = ‘1’ option ensures that the model focuses on identifying instances where SAR = 1.
This configuration aligns with the study’s objective of accurately identifying suspicious
activities.

In constructing the tree, the grow entropy option is used to guide the splitting process.
Entropy is a measure of impurity, and the algorithm selects splits that maximize infor-
mation gain, effectively reducing impurity and improving classification accuracy at each
node. To prevent overfitting, the tree is pruned using the prune cost-complexity option.
Cost-complexity pruning evaluates the trade-off between the complexity of the tree (num-
ber of splits) and its predictive accuracy on validation data. By minimizing this trade-off,
the model achieves a balance between overfitting and underfitting, ensuring better gener-
alization to unseen data. The seed = 123 option ensures reproducibility by setting a fixed
random seed for any stochastic processes involved during training.

c) RF model
The RF model in our research is implemented using the PROC HPFOREST procedure

in SAS, a high-performance tool designed for building ensemble-based DT models. RF
operates by constructing an ensemble of DTs, each trained on a random subset of the data
and features and then aggregating their predictions to improve accuracy and robustness.
The target variable in this model is SAR, with the level = binary option indicating that the
model is designed for binary classification tasks, specifically predicting whether a SAR is
filed (SAR = 1) or not (SAR = 0).

The maxtrees = 500 parameter configures the model to construct a maximum of 500
trees, ensuring a sufficiently large ensemble to capture the complexity of the data. The
maxdepth = 10 parameter limits the depth of each tree to 10 levels, preventing the trees
from becoming overly complex and mitigating the risk of overfitting. The leafsize = 15
parameter specifies the minimum number of observations required in a terminal node,
further controlling the granularity of the splits and enhancing the model’s generalizability.

The seed = 123 option also ensures reproducibility. During training, the RF builds each
tree using a bootstrap sample of the data, and a random subset of features is considered
for splitting at each node. The randomness introduces diversity among the trees, which
improves the model’s performance when the predictions are aggregated.

24 A.I. Andreescu et al.

Table 3
Performance metrics for the undersampled datasets, scenario A.

Model/Metric Precision Recall F1

LR 0.463 0.215 0.293
DT 0.514 0.346 0.413
RF 0.631 0.374 0.470

Table 4
Performance metrics for the undersampled dataset containing

engineered variables, scenario A.

Model/Metric Precision Recall F1

LR 0.644 0.205 0.311
DT 0.623 0.388 0.478
RF 0.702 0.367 0.482

4.4. Performance Metrics

In our study, the performance of three ML models (LR, DT and RF), is evaluated under
two distinct scenarios with varying probability thresholds (0.5 and 0.115). The analysis is
conducted on four dataset configurations for each scenario: an undersampled dataset, an
undersampled dataset with SQL-analytics-engineered variables, an oversampled dataset
and an oversampled dataset with SQL-analytics-engineered variables.

4.4.1. Scenario A, threshold = 0.5
a) Undersampled dataset

Table 3 presents the performance metrics for the undersampled dataset using a 0.5
probability threshold in Scenario A. Precision, Recall and F1-scores are reported for the
three ML models.

The RF model demonstrates the highest overall performance across all metrics, achiev-
ing a precision of 0.631, a recall of 0.374 and an F1-score of 0.470. The DT model follows
with a moderate recall (0.346) and an F1-score of 0.413, while LR exhibits the lowest per-
formance, with a recall of 0.215 and an F1-score of 0.293.

b) Undersampled dataset analytics-engineered variables
After integrating SQL-engineered features, there is a clear improvement across the

performance metrics, especially noticeable in precision and the F1-score (Table 4). The
RF model remains the top performer, showing improved precision (0.702) and F1-score
(0.482), despite maintaining a moderate recall (0.367). The DT model also benefits sub-
stantially from the engineered variables, exhibiting an improved precision of 0.623, higher
recall of 0.388, and an F1-score of 0.478. LR sees a noteworthy improvement in precision
(0.644), yet its recall remains low (0.205), leading to a modest increase in the F1-score
(0.311).

c) Oversampled dataset
In the oversampled scenario, all models display noticeable improvements in recall

and F1-scores compared to the undersampled setting, highlighting the effectiveness of

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 25

Table 5
Performance metrics for the oversampled dataset, scenario A.

Model/Metric Precision Recall F1

LR 0.641 0.229 0.337
DT 0.755 0.321 0.450
RF 0.696 0.385 0.495

Table 6
Performance metrics for the oversampled dataset with engineered

features, scenario A.

Model/Metric Precision Recall F1

LR 0.623 0.217 0.321
DT 0.495 0.440 0.465
RF 0.678 0.373 0.481

CTGAN-generated synthetic samples in mitigating class imbalance. RF remains the
highest-performing model, reaching the best balance of precision (0.696), recall (0.385),
and F1-score (0.495). DT notably improves in precision (0.755) and recall (0.321), lead-
ing to an enhanced F1-score of 0.450. LR achieves modest improvements, maintaining
good precision (0.641) but limited recall (0.229), resulting in an F1-score of 0.337 (see
Table 5).

d) Oversampled dataset with analytics-engineered variables
In this oversampled scenario with engineered features, the RF model achieves the best

overall balance, showing precision of 0.678, recall of 0.373, and the highest F1-score
of 0.481. DT experiences a substantial increase in recall (0.440), though its precision
decreases to 0.495, resulting in an F1-score of 0.465. LR maintains moderate precision
(0.623), but its limited recall (0.217) leads to a lower F1-score (0.321) (see Table 6).

4.4.2. Scenario B, threshold = 0.115
a) Undersampled dataset

In Scenario B, with a threshold of 0.115, recall metrics increase significantly across
all models, at the expense of precision. RF achieves the highest recall (0.996) and F1-
score (0.517). LR shows improved recall (0.830), but its F1-score remains relatively low
at 0.455. The DT model strikes a balance, with an F1-score of 0.522. The lower threshold
improves the model’s sensitivity to identifying SAR events. The results are presented in
Table 7.

b) Undersampled dataset analytics-engineered variables
The integration of SQL-analytics-engineered variables further enhances performance

metrics under Scenario B (threshold = 0.115), as shown in Table 8. RF achieves the high-
est recall (0.994) and the best overall F1-score (0.573), indicating strong sensitivity to SAR
events, while maintaining a moderate precision of 0.403. DT also benefits from the engi-
neered features, reaching a precision of 0.431, a recall of 0.838, and an F1-score of 0.569.
LR shows consistent improvement, achieving a precision of 0.403, a recall of 0.835, and an

26 A.I. Andreescu et al.

Table 7
Performance metrics for the undersampled datasets, scenario B.

Model/Metric Precision Recall F1

LR 0.314 0.830 0.455
DT 0.362 0.937 0.522
RF 0.349 0.996 0.517

Table 8
Performance metrics for the undersampled dataset containing

engineered variables, scenario B.

Model/Metric Precision Recall F1

LR 0.403 0.835 0.543
DT 0.431 0.838 0.569
RF 0.403 0.994 0.573

Table 9
Performance metrics for the oversampled dataset, scenario B.

Model/Metric Precision Recall F1

LR 0.546 0.434 0.483
DT 0.442 0.829 0.576
RF 0.477 1.000 0.645

F1-score of 0.543. Overall, the addition of engineered variables significantly strengthens
model performance, particularly by enhancing the balance between precision and recall
across all classifiers, with the strongest gains observed for RF and DT.

c) Oversampled dataset
Table 9 presents the performance metrics for the oversampled dataset under Scenario B

(threshold = 0.115). In this configuration, RF achieves the highest recall (1.000) and the
best F1-score (0.645), although its precision remains moderate (0.477). DT shows substan-
tial improvement compared to the undersampled setting, achieving a precision of 0.442,
a recall of 0.829, and an F1-score of 0.576. LR maintains a reasonable balance, with a
precision of 0.546, a lower recall of 0.434, and an F1-score of 0.483.

d) Oversampled dataset with analytics-engineered variables
Table 10 presents the performance metrics for the oversampled dataset with SQL-

analytics-engineered variables under Scenario B (threshold = 0.115). In this final con-
figuration, RF achieves the highest recall (0.991) and an F1-score of 0.528, maintaining
strong sensitivity to SAR events. DT shows a solid balance with a precision of 0.375, a
recall of 0.847, and an F1-score of 0.519, benefiting substantially from the engineered
features. LR achieves a precision of 0.532, a recall of 0.427, and an F1-score of 0.473,
showing moderate but consistent performance.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 27

Table 10
Performance metrics for the oversampled dataset with engineered

features, scenario B.

Model/Metric Precision Recall F1

LR 0.532 0.427 0.473
DT 0.375 0.847 0.519
RF 0.360 0.991 0.528

Table 11
ROC-AUC score across each dataset.

Model/Metric Undersampled Undersampled engineered Oversampled Oversampled engineered

LR 0.906 0.915 0.915 0.901
DT 0.913 0.920 0.929 0.904
RF 0.945 0.946 0.951 0.935

4.4.3. The ROC-AUC score for each dataset
Table 11 presents the ROC-AUC scores for the three ML models, LR, DT, and RF, across
four dataset configurations: undersampled, undersampled with analytics-engineered vari-
ables, oversampled, and oversampled with analytics-engineered variables. Since ROC-
AUC is threshold-independent, these scores provide a robust overall measure of the mod-
els’ ability to distinguish between SAR and non-SAR events.

For the undersampled dataset, LR, DT, and RF achieve ROC-AUC scores of 0.906,
0.913, and 0.945, respectively. RF demonstrates the strongest discriminatory power even
under imbalanced conditions, outperforming LR and DT.

The inclusion of SQL-analytics-engineered variables leads to slight improvements in
ROC-AUC for all models on the undersampled dataset. LR improves from 0.906 to 0.915,
DT from 0.913 to 0.920, and RF from 0.945 to 0.946, with RF consistently maintaining
the highest score.

When oversampling is applied, ROC-AUC scores continue to remain strong across
models. LR and DT both achieve a ROC-AUC of 0.915 and 0.929, respectively, while
RF further improves to 0.951. This indicates that oversampling successfully enhances
model sensitivity to the minority class without sacrificing the overall ability to differ-
entiate classes.

In the final configuration, combining oversampling with analytics-engineered vari-
ables slightly lowers ROC-AUC scores compared to oversampling alone. LR drops slightly
to 0.901, DT to 0.904, and RF to 0.935. Nevertheless, RF continues to demonstrate the
most robust and stable performance across all configurations, confirming its ability to
generalize well even when complex preprocessing techniques are applied.

5. Discussion

The results from our analysis highlight the complexity of detecting SAR in the financial
domain, where imbalanced datasets and diverse feature sets pose significant challenges.

28 A.I. Andreescu et al.

By leveraging specific ML models such as LR, DT, and RF, we systematically explored
the impact of preprocessing techniques, dataset configurations, and probability thresholds
on model performance.

The EDA phase revealed valuable insights into the structure and characteristics of the
dataset. Numerical variables such as kycRiskScore, income, and tenureMonths demon-
strated distinct distributions, shedding light on the heterogeneity of the customer base.
For instance, the right-skewed distribution of income underscores the presence of outliers
among high-income customers, potentially influencing model predictions. Similarly, cat-
egorical variables like state illustrated geographical disparities in data distribution, while
the imbalance in the target variable SAR reinforced the need for effective oversampling
strategies to address the minority class. The transformation of textual data (csrNotes) us-
ing the TF-IDF method further ensured that key information from unstructured data was
incorporated into the predictive framework.

The architectures of the three models were configured to align with the study’s objec-
tives. LR was implemented with a focus on the higher-order category (SAR = 1), lever-
aging the logit link function and robust optimization techniques. The DT model utilized
entropy-based splits to maximize information gain, coupled with cost-complexity prun-
ing to balance model complexity and generalization. The RF model, with its ensemble
approach, demonstrated superior robustness and performance, benefiting from hyperpa-
rameters such as a maximum of 500 trees, depth limitations, and a minimum leaf size,
reflecting an emphasis on scalability, interpretability, and predictive accuracy across the
diverse dataset configurations.

Performance metrics across scenarios and dataset configurations provided a compre-
hensive evaluation of the models. Under Scenario A (threshold = 0.5), RF achieved
the highest precision (0.631), recall (0.374), and F1-score (0.470) on the undersampled
dataset, improving further when SQL-analytics-engineered features were introduced. The
addition of engineered variables led to noticeable gains in F1-scores for both DT and RF,
enhancing model discrimination capabilities. In the oversampled setting, CTGAN-based
synthetic data improved recall across all models, with RF attaining a recall of 0.385 and
an F1-score of 0.495.

In Scenario B (threshold = 0.115), the lower threshold shifted the focus toward recall,
allowing the models to capture a greater proportion of SAR events. While this came at
the expense of precision, RF achieved near-perfect recall (0.996) on the undersampled
dataset and maintained strong F1-scores when feature engineering was applied (0.573). In
the oversampled configuration, RF maintained perfect recall (1.000) but precision dropped
moderately, resulting in an F1-score of 0.645. These trends demonstrate the clear trade-off
between sensitivity and specificity at different operating thresholds.

The ROC-AUC scores provided a threshold-invariant measure of model performance,
with RF consistently achieving the highest scores across all dataset configurations. ROC-
AUC values remained stable around 0.945 to 0.951 for RF across undersampled and over-
sampled datasets, confirming the model’s generalization capability even after synthetic
oversampling and feature engineering. This underscores the robustness of ensemble meth-
ods in handling imbalanced datasets and capturing complex relationships between fea-
tures.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 29

The combination of oversampling using CTGAN and analytics-engineered variables
yielded significant improvements, although a slight decrease in ROC-AUC was observed
when both were combined (RF achieving 0.935 compared to 0.951 with only oversam-
pling). Nevertheless, this small drop is acceptable given the substantial recall gains and
the operational need to detect as many SAR events as possible.

From a practical perspective, the findings have important implications for AML ef-
forts. The CTGAN-based oversampling approach effectively addressed the class imbal-
ance, enabling the models to better identify minority-class instances without overfitting.
The analytics-engineered features, derived through SQL-based transformations, enriched
the dataset with domain-specific insights, enhancing model interpretability and predictive
power. The preprocessing techniques proved critical in improving model sensitivity and
specificity, particularly in challenging scenarios with limited SAR instances.

Moreover, the trade-offs between precision and recall are highlighted, which are cen-
tral to AML applications. While a high recall ensures that potential SAR events are not
missed, precision remains crucial to minimizing false positives and maintaining opera-
tional efficiency. By applying a calibrated probability threshold (0.115) and structuring
the preprocessing pipeline to prevent data leakage, the models achieved a practical bal-
ance between these competing objectives. This strategy aligns with the regulatory and
operational priorities of financial institutions, offering a realistic path for deploying ML-
enhanced AML systems.

6. Conclusions

Our research provides an in-depth examination of detecting SAR in the financial domain
by employing various ML models, LR, DT, and RF. Through a combination of feature
engineering, data balancing with CTGAN, and systematic evaluation across multiple sce-
narios, we highlight the complexities of handling imbalanced datasets and the importance
of tailored model architectures and preprocessing techniques.

The results reveal that the RF model consistently outperforms LR and DT in pre-
dictive performance, achieving the highest ROC-AUC scores across all dataset config-
urations, with values ranging from 0.945 to 0.951. RF demonstrates superior robust-
ness and generalization even after applying oversampling and feature engineering tech-
niques. The DT model performs competitively, benefiting from entropy-based splitting
and cost-complexity pruning, which ensure a balance between accuracy and generaliza-
tion. Meanwhile, the LR model, despite its simplicity, shows improvement when analytics-
engineered features are incorporated, particularly in scenarios involving undersampled
and oversampled datasets.

The inclusion of CTGAN for oversampling proves critical in addressing the severe
class imbalance present in SAR detection datasets. By generating synthetic data that
closely mimics the minority class distribution, CTGAN enhances recall across all mod-
els without causing significant overfitting, as evidenced by the stable ROC-AUC scores
even after oversampling. In the oversampled scenarios, RF reaches a recall of 1.000 and

30 A.I. Andreescu et al.

an F1-score of 0.645, maintaining its overall superior performance due to its ensemble
nature.

In short, performance metrics evaluated across two probability thresholds (0.5 and
0.115) illustrate the trade-offs between precision and recall, which are central to AML
applications. In Scenario A (threshold = 0.5), precision is emphasized, with RF achiev-
ing the best balance between precision (0.631) and recall (0.374) on the undersampled
dataset. Conversely, in Scenario B (threshold = 0.115), recall becomes the priority, with
RF achieving near-perfect recall (0.996) under undersampling and 1.000 under oversam-
pling. Through targeted feature engineering, CTGAN-based data balancing, and system-
atic evaluation, we demonstrate the challenges and effective strategies for handling highly
imbalanced datasets. A key finding is that the inclusion of SQL-analytics-engineered fea-
tures substantially enhanced model performance across all configurations. This trade-off
is necessary in AML contexts, where failing to identify suspicious transactions (false neg-
atives) could have severe regulatory and operational consequences.

Despite its strengths, the research has several limitations. The use of static datasets
limits the ability to capture dynamic, real-time changes in customer behaviour, which
are necessary in AML applications. The dynamism of real-world financial transactions
is not captured. While CTGAN effectively addresses class imbalance, the introduction of
synthetic data may introduce noise, potentially affecting model generalization.

Future research could build on these findings by incorporating real-time data streams
and investigating the impact of additional behavioural or external economic variables.
More advanced calibration techniques and hyperparameter optimization could further en-
hance the models’ performance, while comparative studies of alternative data balancing
techniques, such as ADASYN or other generative approaches, could provide deeper in-
sights into their relative effectiveness. Additionally, integrating interpretability techniques,
such as SHAP, into the workflow could enhance trust and regulatory compliance by pro-
viding actionable insights into model predictions.

Authors Contributions. All authors contributed to the study conception and design. Ma-
terial preparation, data collection and analysis were performed by Anca Andreescu and
Adela Bâra. The first draft of the manuscript was written by Simona-Vasilica Oprea and
Alin Gabriel Văduva commented on previous versions of the manuscript. All authors read
and approved the final manuscript.

Disclosure statement. Competing Interests. The authors report there are no competing
interests to declare.

Data availability statement. The data will be made available upon request.

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 31

A. Appendix

Table A1
Comparison of previous research papers.

Reference Objective Method Results

(Al Badawi and
Al-Haija, 2021)

To combat
cryptocurrency-based money
laundering using ML

Used shallow NN and decision
trees on the Elliptic dataset

Shallow NN: 89.9% accuracy;
Decision Tree: 93.4%
accuracy

(Caglayan and Bahtiyar,
2022)

Improving AML detection
with ML algorithms

Used Node2Vec for graph-based
data representation and
classification

Achieved better classification
results than existing methods

(Liu et al., 2023) Detecting Ethereum-based
money laundering

Proposed GTN2vec algorithm for
money laundering detection using
graph embedding

Achieved higher accuracy
than advanced graph
embedding methods

(Labanca et al., 2022) Reducing false positives in
AML detection

Proposed Amaretto, an active
learning framework, combining
supervised and unsupervised
techniques

Improved detection rate by
50%, reduced costs by 20%

(Huong et al., 2024) Enhancing money laundering
detection through graph-based
transactions

Constructed network graphs from
bank transactions and applied
random forest for prediction

Oversampling accuracy: 86%;
Undersampling accuracy:
92%

(Zhang and Trubey,
2019)

Examining ML and sampling
techniques for money
laundering detection

Studied 5 ML algorithms using
transaction data from a US
financial institution

Highlighted advantages of
ML in detecting rare events

(Hampo et al., 2023) Developing a web-based AML
detection system using k-NN

Implemented k-NN algorithm with
open Kaggle datasets

Achieved 98.4% accuracy

(Sheu and Li, 2022) Addressing failure in ML
detection for Panama Papers
data

Developed a graph attention
network with self-attention
mechanism

Outperformed Naïve Bayes
and SVM in detecting money
laundering accounts

(Zhong et al., 2022) Detecting money laundering
in cryptocurrency transactions

Designed a 4-stage AML detection
system using outlier detection and
cluster detection

Achieved 96.02% accuracy
for abnormal transaction
detection

(Drezewski et al., 2015) Supporting human analytics
in AML through social
network analysis

Proposed MLDS using social
network analysis

Provided tools for visualizing
and analysing AML networks

(Oad et al., 2021) Proposing blockchain-enabled
transaction scanning (BTS)
for AML

Developed a BTS method for
anomaly detection and applied
blockchain for transaction
monitoring

Demonstrated automation in
detecting suspicious
transactions

(Luo et al., 2022) Developing NN for dynamic
transaction pattern detection

Proposed DTPAN for learning
dynamic features of transaction
behaviours

Enhanced performance for
AML detection compared to
previous methods

(Alotibi et al., 2022) Investigating AML detection
in cryptocurrency using ML
techniques

Applied deep learning and ML
(DNN, RF, KNN) to detect
suspicious transactions in Bitcoin

Random Forest achieved an
F1-score of 0.99%

(Bidabad, 2017) Proposing a new system for
AML detection using tax and
banking data

Developed a MLDS comparing tax
data with banking transactions

Detected and traced
underground economic
activities

(Lo et al., 2023) Detecting illicit
cryptocurrency transactions
using GNN

Proposed Inspection-L, a
self-supervised GNN framework
with deep learning for detecting
illicit Bitcoin transactions

Outperformed state-of-the-art
methods in classification

(Ketenci et al., 2021) Improving AML systems
using time-frequency analysis

Applied Random Forest with
time-frequency analysis for
detecting suspicious transactions

Reduced false positives to
11.85%, improved F-Score to
74.06%

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digiti-
zation, CNCS/CCCDI – UEFISCDI, project number COFUND-CETP-SMART-LEM-1,
within PNCDI IV.

32 A.I. Andreescu et al.

References

Ahmad Tarmizi, M., Zolkaflil, S., Omar, N., Hasnan, S., Syed Mustapha Nazri, S.N.F. (2023). Compliance de-
terminants of anti-money laundering regime among professional accountants in Malaysia. Journal of Money
Laundering Control, 26(2), 361–387. https://doi.org/10.1108/JMLC-01-2022-0003.

Alotibi, J., Almutanni, B., Alsubait, T., Alhakami, H., Baz, A. (2022). Money laundering detection using ma-
chine learning and deep learning. International Journal of Advanced Computer Science and Applications,
13(10). https://doi.org/10.14569/IJACSA.2022.0131087.

Antwi, S., Tetteh, A.B., Armah, P., Dankwah, E.O. (2023). Anti-money laundering measures and financial sector
development: empirical evidence from Africa. Cogent Economics and Finance, 11(1). https://doi.org/10.
1080/23322039.2023.2209957.

Al Badawi, A., Al-Haija, Q.A. (2021). Detection of money laundering in bitcoin transactions. In: IET Conference
Proceedings. https://doi.org/10.1049/icp.2022.0387.

Benzerrouk, Z.S., Alnor, N.H.A., Al-Matari, E.M., Alhebri, A., Al-Bukhrani, M.A. (2023). The effect of the
banking supervision on anti-money laundering. Humanities and Social Sciences Letters, 11(4), 399–415.
https://doi.org/10.18488/73.v11i4.3518.

Bidabad, B. (2017). Money laundering detection system (MLD) (a complementary system of rastin banking).
Journal of Money Laundering Control, 20(4), 354–366. https://doi.org/10.1108/JMLC-04-2016-0016.

Caglayan, M., Bahtiyar, S. (2022). Money laundering detection with Node2Vec. Gazi University Journal of
Science, 35(3), 854–873. https://doi.org/10.35378/gujs.854725.

Chen, Z., Van Khoa, L.D., Teoh, E.N., Nazir, A., Karuppiah, E.K., Lam, K.S. (2018). Machine learning tech-
niques for anti-money laundering (AML) solutions in suspicious transaction detection: a review. Knowledge
and Information Systems, 57, 245–285. https://doi.org/10.1007/s10115-017-1144-z.

Chen, Z., Soliman, W.M., Nazir, A., Shorfuzzaman, M. (2021). Variational autoencoders and wasserstein gener-
ative adversarial networks for improving the anti-money laundering process. IEEE Access, 9, 83762–83785.
https://doi.org/10.1109/ACCESS.2021.3086359.

Cheng, D., Ye, Y., Xiang, S., Ma, Z., Zhang, Y., Jiang, C. (2023). Anti-money laundering by group-aware
deep graph learning. IEEE Transactions on Knowledge and Data Engineering, 35(12), 12444–12457. https://
doi.org/10.1109/TKDE.2023.3272396.

Chitimira, H., Animashaun, O. (2023). The adequacy of the legal framework for combating money laundering
and terrorist financing in Nigeria. Journal of Money Laundering Control, 26(7), 110–126. https://doi.org/
10.1108/JMLC-12-2022-0171.

Demetis, D.S. (2018). Fighting money laundering with technology: a case study of Bank X in the UK. Decision
Support Systems, 105, 96–107. https://doi.org/10.1016/j.dss.2017.11.005.

Drezewski, R., Sepielak, J., Filipkowski, W. (2015). The application of social network analysis algorithms in a
system supporting money laundering detection. Information Sciences, 295, 18–32. https://doi.org/10.1016/
j.ins.2014.10.015.

Gilmour, P.M. (2023). Reexamining the anti-money-laundering framework: a legal critique and new approach
to combating money laundering. Journal of Financial Crime, 30(1), 35–47. https://doi.org/10.1108/JFC-02-
2022-0041.

Goecks, L.S., Korzenowski, A.L., Terra Neto, P.G., de Souza, D.L., Mareth, T. (2022). Anti-money laundering
and financial fraud detection: a systematic literature review. Intelligent Systems in Accounting, Finance and
Management, 29(2), 71–85. https://doi.org/10.1002/isaf.1509.

Hampo, J.P.A.C., Nwokorie, E.C., Odii, J.N. (2023). A web-based KNN money laundering detection system.
European Journal of Theoretical and Applied Sciences, 1(4), 277–288. https://doi.org/10.59324/ejtas.2023.
1(4).27.

Huong, H., Nguyen, X., Dang, T.K., Tran-Truong, P.T. (2024). Money laundering detection using a transaction-
based graph learning approach. In: Proceedings of the 2024 18th International Conference on Ubiquitous
Information Management and Communication, IMCOM 2024, pp. 1–8. https://doi.org/10.1109/IMCOM
60618.2024.10418307.

Isolauri, E.A., Ameer, I. (2023). Money laundering as a transnational business phenomenon: a systematic review
and future agenda. Critical Perspectives on International Business, 19(3), 426–468. https://doi.org/10.1108/
cpoib-10-2021-0088.

Jensen, R.I.T., Iosifidis, A. (2023). Fighting money laundering with statistics and machine learning. IEEE Access,
11, 8889–8903. https://doi.org/10.1109/ACCESS.2023.3239549.

https://doi.org/10.1108/JMLC-01-2022-0003
https://doi.org/10.14569/IJACSA.2022.0131087
https://doi.org/10.1080/23322039.2023.2209957
https://doi.org/10.1080/23322039.2023.2209957
https://doi.org/10.1049/icp.2022.0387
https://doi.org/10.18488/73.v11i4.3518
https://doi.org/10.1108/JMLC-04-2016-0016
https://doi.org/10.35378/gujs.854725
https://doi.org/10.1007/s10115-017-1144-z
https://doi.org/10.1109/ACCESS.2021.3086359
https://doi.org/10.1109/TKDE.2023.3272396
https://doi.org/10.1109/TKDE.2023.3272396
https://doi.org/10.1108/JMLC-12-2022-0171
https://doi.org/10.1108/JMLC-12-2022-0171
https://doi.org/10.1016/j.dss.2017.11.005
https://doi.org/10.1016/j.ins.2014.10.015
https://doi.org/10.1016/j.ins.2014.10.015
https://doi.org/10.1108/JFC-02-2022-0041
https://doi.org/10.1108/JFC-02-2022-0041
https://doi.org/10.1002/isaf.1509
https://doi.org/10.59324/ejtas.2023.1(4).27
https://doi.org/10.59324/ejtas.2023.1(4).27
https://doi.org/10.1109/IMCOM60618.2024.10418307
https://doi.org/10.1109/IMCOM60618.2024.10418307
https://doi.org/10.1108/cpoib-10-2021-0088
https://doi.org/10.1108/cpoib-10-2021-0088
https://doi.org/10.1109/ACCESS.2023.3239549

AML Compliance with Feature Engineering, SQL Analytics, TF-IDF & CTGAN 33

Jovicic, S., Tan, Q. (2018). Machine learning for money laundering detection in the block chain financial trans-
action system. Journal of Fundamental and Applied Sciences, 10(4S).

Kannan, S., Somasundaram, K. (2017). Autoregressive-based outlier algorithm to detect money laundering
activities. Journal of Money Laundering Control, 20(2), 190–202. https://doi.org/10.1108/JMLC-07-2016-
0031.

Ketenci, U.G., Kurt, T., Önal, S., Erbil, C., Aktürkoǧlu, S., Ilhan, H.Ş. (2021). A time-frequency based suspi-
cious activity detection for anti-money laundering. IEEE Access, 9, 59957–59967. https://doi.org/10.1109/
ACCESS.2021.3072114.

Korejo, M.S., Rajamanickam, R., Muhamad, M.H. (2021). The concept of money laundering: a quest for legal
definition. Journal of Money Laundering Control, 24(4), 725–736. https://doi.org/10.1108/JMLC-05-2020-
0045.

Kramer, J.A., Blokland, A.A.J., Kleemans, E.R., Soudijn, M.R.J. (2023). Money laundering as a service: investi-
gating business-like behavior in money laundering networks in the Netherlands. Trends in Organized Crime,
27, 314–341. https://doi.org/10.1007/s12117-022-09475-w.

Labanca, D., Primerano, L., Markland-Montgomery, M., Polino, M., Carminati, M., Zanero, S. (2022).
Amaretto: an active learning framework for money laundering detection. IEEE Access, 10, 41720–41739.
https://doi.org/10.1109/ACCESS.2022.3167699.

Liu, J., Yin, C., Wang, H., Wu, X., Lan, D., Zhou, L., Ge, C. (2023). Graph embedding-based money laun-
dering detection for ethereum. Electronics (Switzerland), 12(14), 3180. https://doi.org/10.3390/electronics
12143180.

Lo, W.W., Kulatilleke, G.K., Sarhan, M., Layeghy, S., Portmann, M. (2023). Inspection-L: self-supervised
GNN node embeddings for money laundering detection in bitcoin. Applied Intelligence, 53, 19406–19417.
https://doi.org/10.1007/s10489-023-04504-9.

Luo, X., Han, X., Zuo, W., Xu, Z., Wang, Z., Wu, X. (2022). A dynamic transaction pattern aggregation neural
network for money laundering detection. In: Proceedings – 2022 IEEE 21st International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom 2022, pp. 818–826. https://doi.org/
10.1109/TrustCom56396.2022.00114.

Oad, A., Razaque, A., Tolemyssov, A., Alotaibi, M., Alotaibi, B., Zhao, C. (2021). Blockchain-enabled trans-
action scanning method for money laundering detection. Electronics (Switzerland), 10(15), 1766. https://
doi.org/10.3390/electronics10151766.

Ofoeda, I., Agbloyor, E.K., Abor, J.Y., Osei, K.A. (2022). Anti-money laundering regulations and financial
sector development. International Journal of Finance and Economics, 27(4), 4085–4104. https://doi.org/10.
1002/ijfe.2360.

Ogbeide, H., Thomson, M.E., Gonul, M.S., Pollock, A.C., Bhowmick, S., Bello, A.U. (2023). The anti-money
laundering risk assessment: a probabilistic approach. Journal of Business Research, 162, 113820. https://
doi.org/10.1016/j.jbusres.2023.113820.

Pavlidis, G. (2023). Deploying artificial intelligence for anti-money laundering and asset recovery: the dawn of
a new era. Journal of Money Laundering Control, 26(7), 155–166. https://doi.org/10.1108/JMLC-03-2023-
0050.

Rocha-Salazar, J.-J., Segovia-Vargas, M.-J., Camacho-Miñano, M.-M. (2021). Money laundering and terrorism
financing detection using neural networks and an abnormality indicator. Expert Systems with Applications,
169, 114470. https://doi.org/10.1016/j.eswa.2020.114470.

Salehi, A., Ghazanfari, M., Fathian, M. (2017). Data mining techniques for anti money laundering. International
Journal of Applied Engineering Research, 146(12), 28–33. https://doi.org/10.5120/ijca2016910953.

Saragih, I.I.M. (2023). The needs of money laundering and tax evasion crimes prevention in the Asean Commu-
nity. International Journal of Scientific Multidisciplinary Research, 1(5), 471–484. https://doi.org/10.55927/
ijsmr.v1i5.4619.

Sheu, G.Y., Li, C.Y. (2022). On the potential of a graph attention network in money laundering detection. Journal
of Money Laundering Control, 25(3), 594–608. https://doi.org/10.1108/JMLC-07-2021-0076.

Singh, K., Best, P. (2019). Anti-money laundering: using data visualization to identify suspicious activity. In-
ternational Journal of Accounting Information Systems, 34, 100418. https://doi.org/10.1016/j.accinf.2019.
06.001.

Teichmann, F.M.J., Falker, M.C. (2023). Money laundering – the gold method. Journal of Money Laundering
Control, 26(3), 509–522. https://doi.org/10.1108/JMLC-07-2019-0060.

https://doi.org/10.1108/JMLC-07-2016-0031
https://doi.org/10.1108/JMLC-07-2016-0031
https://doi.org/10.1109/ACCESS.2021.3072114
https://doi.org/10.1109/ACCESS.2021.3072114
https://doi.org/10.1108/JMLC-05-2020-0045
https://doi.org/10.1108/JMLC-05-2020-0045
https://doi.org/10.1007/s12117-022-09475-w
https://doi.org/10.1109/ACCESS.2022.3167699
https://doi.org/10.3390/electronics12143180
https://doi.org/10.3390/electronics12143180
https://doi.org/10.1007/s10489-023-04504-9
https://doi.org/10.1109/TrustCom56396.2022.00114
https://doi.org/10.1109/TrustCom56396.2022.00114
https://doi.org/10.3390/electronics10151766
https://doi.org/10.3390/electronics10151766
https://doi.org/10.1002/ijfe.2360
https://doi.org/10.1002/ijfe.2360
https://doi.org/10.1016/j.jbusres.2023.113820
https://doi.org/10.1016/j.jbusres.2023.113820
https://doi.org/10.1108/JMLC-03-2023-0050
https://doi.org/10.1108/JMLC-03-2023-0050
https://doi.org/10.1016/j.eswa.2020.114470
https://doi.org/10.5120/ijca2016910953
https://doi.org/10.55927/ijsmr.v1i5.4619
https://doi.org/10.55927/ijsmr.v1i5.4619
https://doi.org/10.1108/JMLC-07-2021-0076
https://doi.org/10.1016/j.accinf.2019.06.001
https://doi.org/10.1016/j.accinf.2019.06.001
https://doi.org/10.1108/JMLC-07-2019-0060

34 A.I. Andreescu et al.

Thommandru, A., Chakka, B. (2023). Recalibrating the banking sector with blockchain technology for effec-
tive anti-money laundering compliances by banks. Sustainable Futures, 5, 100107. https://doi.org/10.1016/
j.sftr.2023.100107.

Tiwari, M., Gepp, A., Kumar, K. (2020). A review of money laundering literature: the state of research in key
areas. Pacific Accounting Review, 32(2), 271–303. https://doi.org/10.1108/PAR-06-2019-0065.

Wang, H.M., Hsieh, M.L. (2024). Cryptocurrency is new vogue: a reflection on money laundering prevention.
Security Journal, 37(1), 25–46. https://doi.org/10.1057/s41284-023-00366-5.

Yang, G., Liu, X., Li, B. (2023). Anti-money laundering supervision by intelligent algorithm. Computers and
Security, 132, 103344. https://doi.org/10.1016/j.cose.2023.103344.

Yu, L., Zhang, F., Ma, J., Yang, L., Yang, Y., Jia, W. (2023). Who are the money launderers? Money laundering
detection on blockchain via mutual learning-based graph neural network. In: Proceedings of the International
Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN54540.2023.10191217.

Zhang, Y., Trubey, P. (2019). Machine learning and sampling scheme: an empirical study of money laundering
detection. Computational Economics, 54, 1043–1063. https://doi.org/10.1007/s10614-018-9864-z.

Zhong, Z., Zhu, C., Yang, Y., Liao, X., Wang, R., Zhao, Y., Zhou, F., Shi, R., Qin, Z. (2022). Money launder-
ing detection for cryptocurrency transactions. Hunan Daxue Xuebao/Journal of Hunan University Natural
Sciences.

A.I. Andreescu graduated from the Faculty of Cybernetics, Statistics and Economic Infor-
matics of the Academy of Economic Studies in 2001. She got the title of doctor in economy
in the specialty economic informatics in 2009. At present she is an associate professor in
the Department of Economic Informatics and Cybernetics of the Bucharest University
of Economic Studies. Her interest domains related to computer science are requirements
engineering, business analytics, modelling languages, business rules approaches and soft-
ware development methodologies.

S.-V. Oprea received the MSc degree through the Infrastructure Management Program
from Yokohama National University, Japan, in 2007, her first PhD degree in power sys-
tem engineering from the Bucharest Polytechnic University in 2009, and her second PhD
degree in economic informatics from the Bucharest University of Economic Studies in
2017. She is currently a professor within the Faculty of Cybernetics, Statistics, and Eco-
nomic Informatics with the Bucharest Academy of Economic Studies, involved in several
research projects.

A.-G. Văduva earned his bachelor’s degree in economic informatics in 2022 and his
master’s degree in databases – Support for Business in 2024. He is currently pursuing
a PhD, focusing on the trustworthiness of artificial intelligence algorithms in business.
Professionally, he works as an artificial intelligence engineer. His research interests in-
clude mathematics, machine learning, data mining, deep learning, and generative AI.

A. Bâra graduated the Faculty of Economic Cybernetics in 2002, holds a PhD diploma in
economics from 2007. She is a professor at the Economic Informatics Department at the
Faculty of Cybernetics, Statistics and Economic Informatics from The Bucharest Univer-
sity of Economic Studies and has coordinated three R&D projects. Her research interests
are focused on data science, analytics, databases, IoT, big data, data mining, power sys-
tems, authoring more than 70 papers in international journals and conferences.

https://doi.org/10.1016/j.sftr.2023.100107
https://doi.org/10.1016/j.sftr.2023.100107
https://doi.org/10.1108/PAR-06-2019-0065
https://doi.org/10.1057/s41284-023-00366-5
https://doi.org/10.1016/j.cose.2023.103344
https://doi.org/10.1109/IJCNN54540.2023.10191217
https://doi.org/10.1007/s10614-018-9864-z

	Introduction
	Literature Review
	Previous Research in AML
	Reviews in the AML
	Blockchain Technology and AML
	Crypto and AML
	Statistics, ML and Deep Learning in AML

	Methodology and Data
	Dataset Splitting
	Data Preprocessing
	Feature Encoding
	Missing Data Imputation
	Feature Engineering
	Oversampling Using Conditional Tabular Generative Adversarial Networks

	Models' Training and Evaluation
	Logistic Regression
	Decision Tree
	Random Forest
	Classification Metrics
	Scenarios for Evaluation

	Results
	Exploratory Data Analysis (EDA)
	Engineered Features using SQL Analytics
	LR, DT and RF Architectures
	Performance Metrics
	Scenario A, threshold = 0.5
	Scenario B, threshold = 0.115
	The ROC-AUC score for each dataset

	Discussion
	Conclusions
	Appendix

