
INFORMATICA, 1995, Vol. 6, No.1, 61-70 

THE LONG-RUN ECONOMIC RELATIONSHIPS: 
AN OPTIMIZATION APPROACH TO FRACTIONAL 

INTEGRATED AND BILINEAR TIME SERIES 

Jonas MOCKUS 

Institute of Mathematics and Informatics 
2600 Vilnius, Akademijos St. 4, Lithuania 

Abdol S. SOOFI 

Department of Economics, University of Wisconsin 
Platteville, WI 53818 

Abstract. One objective of this paper is to estimate the parameters p,d,q of an au­
toregressive fractionally integrated moving average ARFIMA(p,d,q) stochastic model by 
minimizing the squares of the residuals using a Bayesian global optimization techniques. 

We consider bilinear model, too because it is the simple extension of linear model, 
defined by adding a bilinear term to traditional ARMA model. Therefore, the second 
objective of the paper is to estimate parameters of a bilinear time series. 
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1. Introduction. Existence of long-run relationships among relevant eco­

nomic variables is very important for at least two major reasons. First, presence 

of a long-run relationship among the variables of a model excludes the pos­

sibility of spurious co-movement among the variables (Granger and Newbold, 

1974). Second, for policy analysis it is highly desirable to know whether there 

exists some exploitable connection between the instrument and target variables. 

The development of co-integration methods by Engle and Granger (1987) 

and Johansen (1988, 1991) has given economists opportunities to explore the 

existence of long-run relationships among economic variables. Since the ad­

vent of these techniques, an extensive literature has emerged which deals with 

applications of these methods in various fields of economics. These researchers 

have attempted to exploit the following property of two co-integrating series. 
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Granger (1986) and Engle and Granger (1987) have shown that two co­

integrating series tend to move in proximity of each other over the long-run. 

This implies that for two co-integrating series, the equilibrium error Zt is mean­

reverting in spite of wandering behavior of the series Ylt and Y2t. 

Note that in the absence of the mean-reversion property, and even in cases 

where economic theory predicts existence of long-run equilibrium, a shock to 

the system can force two time series into disequilibrium permanently. 

Co-integration meth9ds, however, rest on binary choice of stationary or 

integrated of degree one time series in examining mean-reversion property of 

the residuals of the models. This approach excludes a class of long-memory 

stochastic processes with the fractional co-integrating property which also have 

mean-reverting characteristics. Due to this and other attractive properties of the 

ARFIMA models, empirical research using the models has flourished in recent 

years (Diebold and Rudebush, 1989, 1991; Cheung, 1993; Cheung and Lai, 

1993; Koop et al., 1994). 

The coefficient estimation of the ARIFMA models is an important part 

of the fractional co-integrated problems. In estimating the coefficients of the 

ARFIMA models, three approaches have been used: Maximum likelihood (ML) 

(Sowell, 1992); approximate ML ( Li and McLeod, 1986; Fox and Taqque, 

1986); and two-step procedures (Geweke and Porter-Hudak, 1983; Janacek, 

1982). Geweke and Porter-lIudale's method, unlike the ML approach, is less 

computationally demanding but is considered inadequate for finite sample. In 

all the cases local optimization techniques were used. 

Recent advances in global optimization techniques (Mockus, 1994) opens 

new possibilities. Theoretically we may apply the global optimization algo­

rithms to the traditional ML problem. However, for parsimony in computation, 

local optimization is usually applied (Sowell, 1992). In this case the optimiza­

tion results depend on the initial values. It means that one cannot be sure if a 

global maximum is found. 

Theoretically, we may get much better approximation to the global opti­

mum using the advanced techniques of global optimization (Horst and Pardalos, 

1995; Mockus, 1994), Torn and Zilinskas, 1989; and Zilinskas and Zygliavski, 

1992). However, due to problems associated with optimization of polynomial­

time computable real functions (Ko, 1991), the global optimization is very hard 
in almost all the cases. 
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An approximate approach in estimating the parameters of the ARFIMA 

models is Least Squares (LS). We minimize the sum of square residuals instead 

of maximizing log-likelihood. This way is less attractive theoretically: we are 

not sure about the asymptotics, we do not estimate the covariances, etc. 

Therefore, the consensus is that the maximal likelihood estimates are, 

theoretically, superior to the least square ones. This opinion is based on the 

assumption that we may get the exact likelihood maximum. Otherwise, the only 

remaining advantage of likelihood maximization is the covariances estimation. 

Therefore, if the covariances are not to be had by other means, then we have to 

use the likelihood maximization. Otherwise, it would be difficult to justify not 

applying the simple, more convenient squared residuals minimization method 

(instead of likelihood maximization)! 

One objective of this paper is to estimate the parameters p, d, q of an au­

toregressive fractionally integrated moving average ARFIMA(p, d, q) stochastic 

model by minimizing the squares of the residuals using a Bayesian global op­

timization method (Mockus, 1994)2 

The linear time series models3 describe many economic processes well 

enough. However there could be cases when non-linearities cannot be ignored. 

We think that the bilinear time series may be a useful tool in describing the 

long-term behavior of the processes that generate international financial data. 

We consider bilinear model (16) because it seems to be the simplest exten­

sion of linear model, defined by adding term (17) to traditional ARMA model. 

'Therefore, the second objective of the paper is to estimate parameters of 

a bilinear time series. 

In the way of an example, we will test whether ARFIMA and bilinear 

models describe the rial-to-dollar black market monthly exchange rate 1965-

1988, see Fig. 1. 

! If we do not need covariance estimates, we may regard it as a nuisance parameter 

that we ignore defining the residuals. If we do not need the expectation estimates, we 

may ignore those, too. Otherwise, we my include the expectations while defining the 

residuals. 
2 The estimation of covariance matrix E is not the main objective in this investigation. 
3 For example, ARFIMA(p,d,q). 
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Fig. 1. Black market rial-to-dollar monthly exchange rate 1965-1988. 

Here 

and 

2. Linear models 

2.1. Deftnltions. We define ARlMA(p, d, q) process a'I a time series 

A(L)(l - L)dZt = B(L)et. 

p 

A(L)Wt = Wt - LaiWt-i, 

i=l 

. f 

B(L)et = €t - Lbi€t-i, 

i=l 

where €t = Gaussian (0,0'2) . 
We define the transformation (1- L)d a'I follows: 

Here 

00 

Wt = (1- L)dZt = Zt - EdiZt-i. 
i=l 

d. _ rei - d) 
1- r(i+ l)r(-d), 

(1) 

(2) 

(3) 

(4) 

(5) 
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where d is a fractional integration parameter. 

We assume, that 

Zt-i = 0, Wt-i = 0, t:t-; = 0, if t ~ i. 

We truncate sequence (4) 

di = 0, if i > R 

Here R is the truncation parameter4 

65 

(6) 

(7) 

2.2. Likelihood maximization. We define the log-likelihood function of 

ARIMA(p, d, g) process as follows: 

1 lIT 1 log L(z; f-t,~) = -2 log I~ - 2 (z - f-t) ~- (z - f-t). (8) 

Here ~ is the covariance matrix and f-t is expectation vector of z. 
McLeod and Hipel (1978) used direct maximization of (8) to estimate 

the parameters of a fractional Gaussian model. To simplify the calculations, 

Hosking (1984) used the approximate optimization techniques, maximizing the 

log-likelihood function (8). 

2.3. Residuals minimization. One of the advantages of residual mini­

mization, as compared with log-likelihood maximization, is that we may see 

directly how the objective depends on the unknown parameters. We define 

residuals by recurrent expressions: 

t:l = WI (9) 

t:2 = W2 - al WI + b1t:l 

t:t = Wt - alWt-l - ... - apWt_p + b1t:t -l + ... + bqt:t _ q . (10) 

We minimize the sum 

T 

fm(a:) = L:t:;' (11) 
t=1 

4 A number of non-zero components. 
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Here the o~jective f m (x) depends on m = p + q + 1 unknown parameters 

that we represent as the m-dimensional vector x = (Xb k = 1, ... , m) = 
(ai, i=I, ... ,p. bj, j=I, ... ,q,d). 

We see from (10), (4), and (2) that residuals Ct are linear functions of 

parameters at. It means that the minimum conditions 

ofm(x) . a =0, z=l, ... ,p 
ai 

(12) 

are given by a system of linear equations that defines the estimates of parameters 

ai = ai(bi, i = 1, ... , q, d) as a function of parameters bi, i = 1, ... , q, d. It 
reduces the number of parameters of nonlinear optimization to n = q + 1. 

The system 
ofm(X) . 

Obi =O,z=l, ... ,q (13) 

may have a mUltiple solution, because the residuals Ct depends on bi as poly­

nomials of degree T - 1. 

The equation 
ofm(x) = 0 

ad (14) 

also may have multiple solutions, because the residuals depend on d as a poly­

nomial of degree R, where R is a truncation parameter. 

It means that, in general, the objective fm(x) is a multi modal function 

of parameters d and bi, i = 1, ... , q. 5 Therefore, we have to consider the 

methods of global optimization (see, for example Mockus, 1994). 

We denote 

f(x) = fm(X), Xi = ai(b j , i = 1, ... , q, d), i = 1, ... ,po (15) 

It means that we define by condition (12) those x-components that represent 

the parameters aj, i = 1, ... , p. 

We see that the variance (J'2 is not in residuals expressions (15) and (10). If 
required, we have to estimate the variance by some other well known techniques. 

3. Bilinear models. It is well known that for the adequate description of 

some phenomena, one needs nonlinear time series. A large number of empirical 

I) The same reasoning applies to log-likelihood function, too. 
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works have tested for the nonlinearity of macroeconomics and financial time 

series (Brock and Potter, 1993). The simple case of the nonlinear models is 

bilinear time series (Subba Rao and Gabr, 1984; Liu, 1989). 

An example of bilinear time series follows: 

where 
s r 

C(L)ztct = L L CijZt-iCt-j· 

i=1 j=1 

A bilinear extension of linear ARlMA model (1) follows 

(16) 

(17) 

(18) 

We expect that this model may represent both the persistence and nonlin­

earity well enough. 

Consider an example of bilinear time series (16) with p = 2, q = 1, 

s = 2, r = 1: 

We consider a simple case when T = 12, Ct are Gaussian 0,1, and a1 = 
0.8, a2 = -0.4, Cl,l = 0.6, C2,1 = 0.7. The mean square deviation f(x) = 
~l2 
L...i=l Ct· 

Fig. 2 shows how f(x) depends on C2,1' In Fig. 2 d(x4) denotes a mean 

square deviation f(x), and x4 denotes variable parameter C2,l' 

4. Optimization and fractional co-integration. Define two I(d) series 

Ylt and Y2t as Yt = (Ylt, Y2t). We say that series Ylt and Y2t are co-integrated 

of order (d, b) if there exists a vector a such that 

(20) 

is I(d- b) with b > O. 
Considering the fractional co-integration problem, we may estimate un­

known parameters d and b at different fixed values of the vector a by the 

residual minimization techniques. Then we may pick up such a that maxi­

mizes the difference b. That is one way to apply optimization in the fractional 

co-integration problems. We expect to investigate different ways. 
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Fig. 2. Bilinear time series, residuals minimization. 
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ILGALAIKIAI EKONOMINIAI SANTYKIAI: 

OPTIMIZAVIMO POZrURIS TRUPMENINIAI INTEGRUorOSE 

IR DVITIESINESE LAIKO EILUTEsE 

Jonas MOCKUS, Abdol S. SOOFI 

Nagrinejami trupmeniniai ko-integruoti uMavinai, kurie svarbUs tiriant ilgalaikius 
ry~ius tarp susijusill ekonominill kintamtijq. Numatoma panaudoti naujus globalinio 
optimizavimo metodus ivertinti tiesinill ARIFMA modelill parametrus. 

Nagrinejami laip pat ir kai kurie netiesiniai modeliai, konkreciai bi-tiesiniai mod­
eliai. Sill modelill pavyz<ffiu parodoma, kad vidutinis kvadratinis nukrypimas gall tureti 
daug minimumll. 

Kaip pirmas pavyzdys nagrinejama Irano rialo ir JAV dolerio kurso laiko eilute 
nuo 1965 iki 1988 met\l. 


