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Abstract. This paper introduces a novel approach that bridges the floating-point (FP) format, widely
utilized in diverse fields for data representation, with the μ-law companding quantizer, proposing
a method for designing and linearizing the μ-law companding quantizer to yield a piecewise uni-
form quantizer tailored to the FP format. A key outcome of the paper is a closed-form approxi-
mate expression for closely and efficiently evaluating the FP format’s performance for data with the
Laplacian distribution. This expression offers generality across various bit rates and data variances,
markedly reducing the computational complexity of FP performance evaluation compared to prior
methods reliant on summation of a large number of terms. By facilitating the evaluation of FP for-
mat performance, this research substantially aids in the selection of the optimal bit rates, crucial for
digital representation quality, dynamic range, computational overhead, and energy efficiency. The
numerical calculations spanning a wide range of data variances provided for some commonly used
FP versions with an 8-bit exponent have demonstrated that the proposed closed-form expression
closely approximates FP format performance.
Key words: floating-point format, piecewise uniform quantization, μ-law companding
quantization, Laplacian source.

1. Introduction

The floating-point (FP) format is extensively employed for data representation across var-
ious domains, including computing (Fasi and Mikaitis, 2021; Burgess et al., 2019a), neu-
ral networks (Zhao et al., 2023; Bai-Kui and Shanq-Jang, 2023), and signal processing
(Moroz and Samotyy, 2019). The prevalent 32-bit floating-point (FP32) format adheres
to standardized specifications (IEEE 754, 2019), boasting exceptional digital representa-
tion quality across a very wide range of data variance, ranging from minuscule to sub-
stantial values. However, the FP32 format’s computational intensity poses a challenge for
implementation on hardware-constrained devices (Yang et al., 2022; Syed et al., 2021;
Cattaneo et al., 2018). The 24-bit FP (FP24) (Junaid et al., 2022), 16-bit FP (Bfloat16
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and DLFloat) (Burgess et al., 2019b; Agrawal et al., 2019), and 8-bit (FP8) (Wang et al.,
2018) formats are examples of lower-bit FP formats that reduce computational complexity
and energy consumption, making them advantageous for hardware and energy-restricted
systems. Conversely, formats such as 64-bit FP (FP64) (IEEE 754, 2019) are utilized in
environments necessitating heightened calculation precision (Botta et al., 2021).

As evident, there exists a plethora of FP formats, each with varying bit rates, offer-
ing distinct qualities in digital representation, dynamic range, computational complexity,
and energy usage. Selecting the optimal FP format is a crucial task in both research and
practical applications, contingent upon several factors: the required digital representation
accuracy for a specific application, the range of data variance, as well as the available
hardware and energy resources. Generally, it is preferable to opt for an FP format with
fewer bits to minimize hardware demands and energy consumption while ensuring the
requisite level of representation accuracy for a specific application across the entire range
of data variance. Achieving this necessitates an efficient mechanism for evaluating the
performance of FP formats across different bit rates and data variance levels.

It is worth noting that none of the aforementioned papers dealing with the FP formats
(Junaid et al., 2022; Agrawal et al., 2019; Burgess et al., 2019a; Wang et al., 2018; Botta
et al., 2021) provide information regarding their actual performance, which is a critical
factor for practical applications. A significant stride in this direction was made in Perić
et al. (2021), Denić et al. (2023), where the correlation was established between the FP
format and a piecewise uniform quantizer, which was termed the floating-point quantizer
(FPQ). Namely, the piecewise uniform quantizer includes a number of segments, where
a unique uniform quantizer is defined in each segment (Dinčić et al., 2016; Jayant and Noll,
1984; Gersho and Gray, 1992). This actually allowed assessing the digital representation
quality of the FP format using an objective performance measure such as the signal-to-
quantization-noise ratio (SQNR) of FPQ. It’s crucial to acknowledge that the performance
of the FP format, specifically the SQNR of FPQ, relies heavily on the statistical properties
of the data, primarily the probability density function (PDF). This paper considers the
Laplacian PDF, given its extensive usage in statistically modelling various data types,
e.g., speech (Chu, 2003; Gazor and Zhang, 2003) and neural network weights (Banner et
al., 2018; 2019).

The primary goal of this paper is to make a significant advancement towards the FP for-
mat analysis by providing a performance-evaluating method that is more efficient (in terms
of computational complexity) compared to the previously developed method (Perić et al.,
2021; Denić et al., 2023). This is achieved by linking the FP format with the μ-law com-
panding quantizer (μCQ), which is actually a novel concept, as research on this topic has
not been done before. Namely, the SQNR expression for FPQ in Perić et al. (2021), Denić
et al. (2023) is not provided in a closed form but as the summation of numerous terms
(e.g., for the FP32 format, this sum comprises 254 terms, Perić et al., 2021), thereby es-
calating the complexity of FP format performance computation. Hence, the paper aims to
eliminate the mentioned drawback of the existing method for assessing the performance of
the FP format. A significant contribution is the development of a procedure for designing a
μCQ, tailoring its key parameters (μ-compression factor and xmax – maximal amplitude)



An Approximate Closed-Form Expression for Calculating Performance 127

to the FP format. The key outcome of this innovative approach is the provision of a simple
closed-form approximate expression for closely and efficiently assessing the FP format’s
performance. The advantage of this closed-form expression is its broad applicability, as
it applies universally to any bit rate and data variance. Aside from the theoretical signifi-
cance of deriving a closed-form expression for performance evaluation, this paper holds
substantial practical value by considerably simplifying the complexity of computing FP
format performance.

The paper’s methodology involves designing an appropriate μCQ, linearizing it, and
deriving a piecewise uniform quantizer based on the μ-law compression function (PUQμ).
The paper demonstrates that by selecting the appropriate values of the crucial design pa-
rameters of the μCQ, the structure of its linearized version, PUQμ, aligns with the FPQ
structure. Notably, the paper provides a closed-form expression for the SQNR of μCQ for
the Laplacian PDF, obtained by simplifying the general SQNR expression for μCQ pro-
vided in Perić et al. (2010). The accuracy of the derived closed-form SQNR expression
for μCQ is examined considering versions of the FP format with 8-bit exponent, FP24
and FP32, and a very wide dynamic range of input data variances. It is shown that the pro-
posed SQNR expression is highly efficient in estimating FP performance when confronted
with the existing approach (Perić et al., 2021; Denić et al., 2023), with the SQNR calcu-
lation error below 1% defining the reasonable accuracy of the SQNR formula (Na, 2011).
Thus, utilizing the proposed approach instead of the previously introduced one based on a
summation of numerous terms ensures a high level of accuracy and leads to a noteworthy
reduction in computational complexity.

The rest of the paper is organized as follows. In Section 2, the description of the R-bit
FP format is provided, and its connection with the piecewise uniform quantization is ex-
plained. The main result is exposed in Section 3, which performs the design of the μCQ
along with its linearized version tailored to the FP format and provides the closed-form ex-
pression for estimating FP format performance. Section 4 presents simulation results and
highlights the benefits of the approach studied in the paper. Section 5 gives concluding
remarks.

2. Description of the Floating-Point Format

A real number x is encoded in the R-bit FP format as IEEE 754 (2019):

x = (sae−1 . . . a1a0bm−1 . . . b1b0)2, (1)

consisting of one bit s to indicate the sign, e bits (ae−1 . . . a1a0) to represent the expo-
nent E, and m bits (bm−1 . . . b1b0) to represent the significand M of the number x, whereas
R = e + m + 1. The exponent E = ∑︁e−1

i=0 ai2i can take values from 0 to 2e − 1, but the
values E = 0 and E = 2e − 1 are reserved according to IEEE 754 (2019), leaving
LFP = 2e − 2 values of E (from 1 to 2e − 2) that can be used to represent numbers.
The parameter M = ∑︁m

i=1 bm−i2m−i can take values from 0 to 2m − 1. The number x,
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represented with (1), can be calculated in its decimal form as IEEE 754 (2019):

x = (−1)s2E∗
(︃

1 + M

2m

)︃
, (2)

where E∗ = E − bias denotes the biased exponent and bias = LFP/2 is a predefined
parameter. Therefore, the biased exponent E∗ takes values from E∗

min = 1 − LFP/2 to
E∗

max = LFP/2. For example, for FP32 we have e = 8 and m = 23 (IEEE 754, 2019),
while for FP24 we have e = 8 and m = 15. Due to the same e value, both FP32 and
FP24 formats have identical values for the following parameters: LFP = 254, bias = 127,
E∗

min = −126, and E∗
max = 127.

The R-bit FP format exhibits symmetry around 0, as every positive number in the
format corresponds to a symmetric negative number. Let’s examine positive numbers
within the R-bit FP format, without losing generality. The maximum positive number
representable in this format (for E∗ = E∗

max and M = 2m − 1) is:

xFP
max = 2E∗

max

(︃
1 + 2m − 1

2m

)︃
= 2E∗

max

(︃
2 − 1

2m

)︃
≈ 2E∗

max+1 = 2LFP/2+1. (3)

For each value of E∗ (E∗
min ⩽ E∗ ⩽ E∗

max) we define a segment SE∗ = [2E∗
, 2E∗+1)

of width δE∗ = 2E∗ , which includes 2m equidistant real numbers 2E∗
(1 + M

2m ), M =
0, . . . , 2m−1, placed at a mutual distance ΔE∗ = 2E∗

(1+ M+1
2m )−2E∗

(1+ M
2m ) = 2E∗−m.

Hence, in the positive part of the real axis, there are a total of LFP segments SE∗ , each
containing 2m equidistant numbers with a step size of ΔE∗ . Due to symmetry, the same
structure of LFP segments with 2m equidistant numbers also exists in the negative part of
the real axis. Since

δE∗+1 = 2E∗+1 = 2 · 2E∗ = 2δE∗ (4)

and

ΔE∗+1 = 2E∗+1−m = 2 · 2E∗−m = 2ΔE∗ , (5)

it can be concluded that the width of segment SE∗+1 is twice as large as the width of
segment SE∗ , and the distance between adjacent numbers in SE∗+1 is twice as high as
in SE∗ . Therefore, as the value of E∗ increases, the distance between adjacent numbers
increases, meaning that the FP format provides a finer representation of smaller numbers.

The described structure of the FP format fully corresponds to the structure of a sym-
metric piecewise uniform quantizer with a maximum amplitude xFP

max defined with (3),
which in the positive part has LFP segments SE∗ = [2E∗

, 2E∗+1), E∗
min ⩽ E∗ ⩽ E∗

max,
each segment undergoing uniform quantization with 2m quantization levels and with the
step size ΔE∗ = 2E∗−m = 2E∗−R+e+1. This model of quantizer, whose structure mir-
rors that of the FP format, is known as the floating-point quantizer − FPQ (Perić et al.,
2021; Denić et al., 2023). This analogy between the FP format and the FPQ is significant,
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enabling the FP representation quality to be assessed using an objective measure such as
SQNR of the FPQ. SQNR is generally defined as Jayant and Noll (1984), Chu (2003),
Gersho and Gray (1992):

SQNR(σ ) = 10 log10
σ 2

D(σ)
, (6)

where σ 2 represents the variance of data to be quantized and D (σ ) is distortion that
represents an error that occurred during quantization. In the case of FPQ, σ 2 represents
the variance of data to be represented in the FP format, while distortion of FPQ represents
the error that occurred during FP representation of real numbers and can be expressed in
general form as Perić et al. (2021), Denić et al. (2023):

DFPQ(σ ) = 2
E∗

max∑︂
E∗=E∗

min

Δ2
E∗

12
PE∗(σ )

⏞ ⏟⏟ ⏞
D

FPQ
g (σ )

+ 2
∫︂ +∞

xFP
max

(︁
x − xFP

max

)︁2
p(x, σ )dx

⏞ ⏟⏟ ⏞
D

FPQ
ov (σ )

. (7)

Multiplication by 2 in the expression (7) is used to account for the distortion in the neg-
ative part of the real axis. The first term in (7), expressed as a sum, represents the gran-
ular distortion D

FPQ
g in LFP segments SE∗ (E∗

min ⩽ E∗ ⩽ E∗
max), where PE∗(σ ) =∫︁ 2(E∗+1)

2E∗ p(x, σ )dx represents the probability that the real number x belongs to segment
SE∗ , with p(x, σ ) representing the PDF of the input data. The second term in (7) repre-
sents the overload distortion D

FPQ
ov that occurs during quantization of numbers outside the

support region of the FPQ.
This paper examines the zero-mean Laplacian PDF of variance σ 2, defined as Jayant

and Noll (1984), Gersho and Gray (1992):

p(x, σ ) = 1√
2σ

exp

(︃
−

√
2|x|
σ

)︃
. (8)

For p(x, σ ) defined with (8), based on (3), (6), and (7), the following SQNR expression
for the FPQ quantizer is obtained:

SQNRFPQ(σ ) = −10 log10

[︃ LFP/2∑︂
E∗=1−LFP/2

22(E∗−R+e)

3σ 2

(︃
exp

(︃
−2E∗+1/2

σ

)︃

− exp

(︃
−2E∗+3/2

σ

)︃)︃
+ exp

(︃
−2(LFP+3)/2

σ

)︃]︃
. (9)

Using (9), it is possible to compute the performance of the R-bit FP format for any value
of data variance. However, expression (9) contains the sum of LFP elements, being com-
putationally demanding since LFP is typically a large number (Perić et al., 2021; Denić et
al., 2023). This issue will be solved in the next section, where an approximate closed-form
expression is supplied for efficiently calculating the performance of the R-bit FP format.
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3. A Closed-Form SQNR Expression Derivation by Designing and Linearizing
a μ-Law Companding Quantizer Related to FPQ

A key outcome of this section is a simple closed-form SQNR expression for an appro-
priately designed μ-law companding quantizer (μCQ) that can be used as a very close
performance approximation for FP formats, reducing the complexity associated with cal-
culating the performance of FP formats explained in Section 2. In the following, we give
the design of a μCQ in such a way that its linearization yields a piecewise uniform quan-
tizer (PUQμ) whose structure closely resembles that of the FPQ. It will be shown that the
performance of μCQ and PUQμ are very close, providing a basis for utilizing the derived
SQNR formula of μCQ as a very good approximation of FP formats’ performance.

3.1. Design of a μ-Law Companding Quantizer Inspired by the FP Format

Companding quantizers are typically implemented as a cascade connection compressor–
uniform quantizer–expander. For a symmetric μCQ, the compressor function cμ(x) :
[−xmax, xmax] → [−xmax, xmax] is defined as Jayant and Noll (1984), Gersho and Gray
(1992):

cμ(x) = xmax

ln(1 + μ)
ln

(︃
1 + μ|x|

xmax

)︃
sgn(x), 0 ⩽ |x| ⩽ xmax, (10)

where μ is a compression factor and xmax is the maximal amplitude of the quantizer. The
decision thresholds x

μ
j and representational levels y

μ
j of the μCQ quantizer in the positive

part of the real axis can be specified in the following way (Dinčić et al., 2021; Perić et al.,
2010):

x
μ
j = c−1

μ

(︃
2j

xmax

N

)︃
= xmax

μ

(︁
(1 + μ)

2j
N − 1

)︁
, 0 ⩽ j ⩽ N/2, (11)

y
μ
j = c−1

μ

(︃
(2j − 1)

xmax

N

)︃
= xmax

μ

(︁
(1 + μ)

2j−1
N − 1

)︁
, 1 ⩽ j ⩽ N/2, (12)

where N denotes the number of representational levels, while Δu = 2xmax/N defines the
step size of the uniform quantizer and c−1

μ (x) is the inverse μ-law compression function
that defines the expander. Note that the decision thresholds and representational levels of
the μCQ depend on the parameters μ and xmax, whose values will be selected based on
the condition that PUQμ, as a linearized version of the μCQ, has the same structure as
the FPQ.

The next step is the piecewise linearization of the μCQ, achieved by approximating
the compressor function cμ(x) defined with (10) by a symmetric piecewise linear com-
pressor function gμ(x) : [−xmax, xmax] → [−xmax, xmax]. Due to the symmetry of gμ(x)

around 0, we can consider only the positive part of the real axis where gμ(x) is defined
as:

gμ(x) = ajx + bj , x ∈ [︁
x

seg
j−1, x

seg
j

]︁
, 1 ⩽ j ⩽ L, (13)
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where aj and bj are coefficients that will be determined latter in this section, L is the
number of linear segments in the positive part and x

seg
j (0 ⩽ j ⩽ L) are the boundaries

between segments, where x
seg
0 = 0 and x

seg
L = xmax. The function gμ(x) must satisfy the

condition of having the same values as the function cμ(x) in the segments’ boundaries
x

seg
j :

gμ

(︁
x

seg
j

)︁ = cμ

(︁
x

seg
j

)︁ ≡ xmax

ln(1 + μ)
ln

(︃
1 + μx

seg
j

xmax

)︃
, 0 ⩽ j ⩽ L. (14)

This yields a symmetric PUQμ with L linear segments in the positive part of the real axis,
performing uniform quantization with K uniformly spaced quantization levels within each
segment. To ensure that all segments [xseg

j−1, x
seg
j ) (1 ⩽ j ⩽ L) contain the same number

of quantization levels, the values of gμ(x) within the segments’ boundaries x
seg
j (0 ⩽

j ⩽ L) must be equidistant within the range [0, xmax], i.e. it must hold that gμ(x
seg
j ) −

gμ(x
seg
j−1) = xmax/L = const, 1 ⩽ j ⩽ L. This will be achieved if the following condition

is fulfilled:

gμ

(︁
x

seg
j

)︁ = j
xmax

L
, 0 ⩽ j ⩽ L. (15)

From conditions (14) and (15) it follows:

xmax

ln(1 + μ)
ln

(︃
1 + μx

seg
j

xmax

)︃
= j

xmax

L
, 0 ⩽ j ⩽ L. (16)

From here it is easy to obtain x
seg
j :

x
seg
j = xmax

μ

(︁
(1 + μ)j/L − 1

)︁
, 0 ⩽ j ⩽ L, (17)

which is also influenced by μ and xmax. To ensure equivalence between PUQμ and FPQ,
we will set the parameters of the considered PUQμ to be equal to the corresponding pa-
rameters of the FPQ:

xmax = xFP
max, L = LFP, K = 2m = 2R−e−1, N = 2LK = 2R

(︁
1 − 21−e

)︁
,

(18)

but also it is necessary for the PUQμ to satisfy the condition (4) valid for the FPQ that the
width of each segment is twice as large as the width of the previous one:

x
seg
j+1 − x

seg
j = 2

(︁
x

seg
j − x

seg
j−1

)︁
, 1 ⩽ j ⩽ LFP − 1, (19)

which will be achieved by selecting an appropriate value for the parameter μ, as will be
demonstrated in the next Theorem 1.
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Theorem 1. PUQμ with parameters defined by (18) will be equivalent to the FPQ if
μ = 2LFP − 1.

Proof. From (17) and (19), it follows:

xFP
max

μ
(1 + μ)j/LFP(︁

(1 + μ)1/LFP − 1
)︁ = 2

xFP
max

μ
(1 + μ)(j−1)/LFP(︁

(1 + μ)1/LFP − 1
)︁
,

(20)

where 1 ⩽ j ⩽ LFP. From (20) we get that:

(1 + μ)j/LFP = 2(1 + μ)(j−1)/LFP
, 1 ⩽ j ⩽ LFP. (21)

Based on (21), it is obvious that:

(1 + μ)1/LFP = 2. (22)

Finally, it follows that:

μ = 2LFP − 1, (23)

which concludes the proof.

By establishing all crucial parameters, the design of the observed PUQμ, as well as
μCQ (see (11) and (12)), is completed. Based on (17), (23), (18), and (3), we obtain the
final expression for the segments’ boundaries of the PUQμ:

x
seg
j = xFP

max
2j − 1

2LFP − 1
= 2LFP/2+1 2j − 1

2LFP − 1
≈ 2−LFP/2+1(︁2j − 1

)︁
, 0 ⩽ j ⩽ LFP.

(24)

The coefficients aj and bj (1 ⩽ j ⩽ LFP) in (13) can be determined as:

aj = gμ(x
seg
j ) − gμ(x

seg
j−1)

x
seg
j − x

seg
j−1

= xFP
max/L

FP

xFP
max

2j−1

2LFP −1

≈ 2LFP−j+1

LFP , (25)

bj = gμ

(︁
x

seg
j

)︁ − ajx
seg
j = xFP

max

LFP
(︁
j − 2 + 21−j

)︁ = 2LFP/2+1

LFP
(︁
j − 2 + 21−j

)︁
. (26)

By introducing the step size within the j -th segment of PUQμ:

Δj = (︁
x

seg
j − x

seg
j−1

)︁/︁
K ≈ 2−LFP/2+j−R+e+1, 1 ⩽ j ⩽ LFP, (27)
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we finally define the decision thresholds xj,i (0 ⩽ i ⩽ K = 2R−e−1) and the representa-
tional levels yj,i (0 ⩽ i ⩽ K = 2R−e−1) of PUQμ within the j -th segment:

xj,i = x
seg
j−1 + iΔj ≈ 2−LFP/2+1(︁2j−1(︁1 + i2−R+e+1)︁ − 1

)︁
, (28)

yj,i = x
seg
j−1 + (i − 1/2)Δj ≈ 2−LFP/2+1(︁2j−1(︁1 + (2i − 1)2−R+e

)︁ − 1
)︁
. (29)

3.2. Performance Evaluation

Here, we provide the performance (SQNR) expressions for the discussed μCQ and PUQμ.
For μCQ, the granular distortion D

μ
g (the distortion component introduced in the granular

part [−x max, x max]) can be assessed using Bennett’s integral (Jayant and Noll, 1984; Chu,
2003; Gersho and Gray, 1992):

Dμ
g (σ ) = 2

Δ2
u

12

∫︂ xmax

0

p(x, σ )

[c′
μ(x)]2 dx, (30)

where c′
μ(x) is the first derivative of cμ(x), while the overload distortion D

μ
ov (the distor-

tion component introduced outside the granular part) is given by Jayant and Noll (1984),
Chu (2003), Gersho and Gray (1992):

Dμ
ov(σ ) = 2

∫︂ +∞

xmax

(x − xmax)
2p(x, σ )dx. (31)

The granular distortion of PUQμ, DPUQμ

g , can be evaluated according to the following
expression (Jayant and Noll, 1984; Chu, 2003; Gersho and Gray, 1992):

DPUQμ

g (σ ) = 2
LFP∑︂
j=1

Δ2
j

12
Pj (σ ), (32)

where Pj (σ ) = ∫︁ x
seg
j

x
seg
j−1

p(x, σ )dx denotes the probability of the j -th segment (1 ⩽ j ⩽

LFP), while the overload distortion of PUQμ, DPUQμ

ov , can be estimated by (31). Theorem 2
indicates the performance of the two mentioned quantizers.

Theorem 2. If L ≫ 1, distortions of μCQ and its linearized version PUQμ converge.

Proof. As the overload distortion for these two models is defined with the same expres-
sion (31), it is sufficient to show that Bennett’s integral (30) closely approximates the
granular distortion of PUQμ for L ≫ 1. Let dj = x

seg
j −x

seg
j−1 denotes the width of the seg-

ment [xseg
j−1, xseg

j ) and let yseg
j = (x

seg
j +x

seg
j−1)/2 denotes the middle of the segment, where

1 ⩽ j ⩽ L. From the condition L ≫ 1, it follows that the segment’s width dj is very
small, so the PDF of the input data can be considered as almost constant within the segment
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[xseg
j−1, x

seg
j ), i.e. p(x, σ ) = p(y

seg
j , σ ) for x ∈ [xseg

j−1, x
seg
j ); hence the segment’s proba-

bility can be defined as Pj (σ ) = ∫︁ x
seg
j

x
seg
j−1

p(x, σ )dx = p(y
seg
j , σ )

∫︁ x
seg
j

x
seg
j−1

dx = p(y
seg
j , σ )dj .

In addition, the slope of the compression function cμ(x) can also be considered as nearly
constant within the segment [xseg

j−1, x
seg
j ), i.e. c′

μ(x) = c′
μ(y

seg
j ) = Δu

Δj
(Jayant and Noll,

1984), from which follows that Δj = Δu

c′
μ(y

seg
j )

. Now expression (32) can be written as:

DPUQμ

g (σ ) = 2
L∑︂

j=1

Δ2
j

12
Pj (σ ) = 2

Δ2
u

12

L∑︂
j=1

p(y
seg
j , σ )

[c′
μ(y

seg
j )]2

dj

≈ 2
Δ2

u

12

∫︂ xmax

0

p(x, σ )

[c′
μ(x)]2

dx, (33)

thus concluding the proof.

Since L = LFP and LFP ≫ 1, the condition of Theorem 2 is fulfilled, ensuring the
closeness of the distortions of the quantizers μCQ and PUQμ.

Applying (8) and (10) in (30) and combining it with (31), we arrive at the closed-form
expression for the total distortion of μCQ provided in Perić et al. (2010):

Dμ(σ) = ln2(1 + μ)

3N2

(︃(︃
xmax

μ

)︃2

+ σ
√

2
xmax

μ
+ σ 2

)︃
⏞ ⏟⏟ ⏞

D
μ
g (σ )

+ σ 2 exp

(︃
−√

2
xmax

σ

)︃
⏞ ⏟⏟ ⏞

D
μ
ov(σ )

.

(34)

Since xmax = xFP
max, then according to (3) and (23), we have that xFP

max/μ =
2LFP/2+1/(2LFP − 1) ≈ 2LFP/2+1/2LFP = 2−LFP/2+1 ≪ 1; hence the last expression
becomes:

Dμ(σ) = σ 2
(︃

ln2(1 + μ)

3N2 + exp

(︃
−√

2
xFP

max

σ

)︃)︃
. (35)

Based on (3), (18), and (23), expression (35) can be written as:

Dμ(σ) = σ 2
(︃

1

3 · 22R

(︃
LFP ln 2

1 − 21−e

)︃2

+ exp

(︃
−2(LFP+3)/2

σ

)︃)︃
. (36)

Using (6) and (36), we derive the following final SQNR expression for μCQ:

SQNRμ(σ ) = −10 log10

(︃
1

3 · 22R

(︃
LFP ln 2

1 − 21−e

)︃2

+ exp

(︃
−2(LFP+3)/2

σ

)︃)︃
. (37)
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Based on (6), (27), and (32), knowing that for the Laplacian PDF
∫︁ x

seg
j

x
seg
j−1

p(x, σ )dx =
1
2 (exp(−√

2x
seg
j−1/σ) − exp(−√

2x
seg
j /σ )), the SQNR expression for PUQμ is delivered:

SQNRPUQμ

(σ )

= −10 log10

[︃ LFP∑︂
j=1

2−LFP+2j−2(R−e)

3σ 2

(︃
exp

(︃
−2−(LFP−3)/2(2j−1 − 1)

σ

)︃

− exp

(︃
−2−(LFP−3)/2(2j − 1)

σ

)︃)︃
+ exp

(︃
−2(LFP+3)/2

σ

)︃]︃
. (38)

Since provided in closed form, expression (37) exhibits substantially lower computational
complexity in contrast to expressions (9) and (38). The next section will demonstrate that
the numerical results yielded by (9), (37), and (38) closely align, implying that the closed-
form expression (37) serves as a very precise approximation for the SQNR of the FPQ,
and therefore for the performance of the FP format.

4. Numerical Results and Discussion

In this Section, we present and discuss numerical results for the derived SQNR formulas
(37) and (38) obtained in evaluating the performance of the R-bit FP format with e = 8
(8-bit exponent) in a very wide variance range, where R = 24 and 32 (i.e. FP24 and FP32
formats). Note that the diversity across bit rate R is introduced to show the generality
of the given formulas, whose effectiveness is measured with respect to formula (9). To
facilitate the observation of variance across a wide range, it is usual to define variance in
the logarithmic domain as σ 2 [dB] = 10 log10(σ

2/σ 2
ref), where σ 2

ref represents the referent
variance. Without loss of generality, we can assume that σ 2

ref = 1, obtaining σ 2 [dB] =
10 log10 σ 2. Substituting σ = 10σ 2 [dB]/20 into the previously derived expressions for
SQNR yields the dependence of SQNR on σ 2 [dB].

Figure 1 shows the performance (SQNR) of the FP24 and FP32 formats over a very
wide variance range σ 2 [dB] ∈ [− 500 dB, 800 dB], calculated using (9), (37), and (38).
It’s worth mentioning that the chosen variance range is significantly broader than that
commonly used for scalar quantizer analysis (typically σ 2 [dB] ∈ [− 20 dB, 20 dB] or
σ 2 [dB] ∈ [− 30 dB, 30 dB], as seen in Perić et al. (2010), Denić et al. (2023)). From
the given figure, it can be noted that the results for SQNR formulas (9) and (38) are in
excellent agreement for each considered σ 2 [dB]. Based on this performance matching,
we argue that the discussed PUQμ and FPQ are compatible, proving the correctness of the
applied design process. It can also be observed that the SQNR values achieved by (37) are
very close to those achieved by (38) (and accordingly by (9)), which is in agreement with
Theorem 2. From Fig. 1, it is clearly evident that there is a threshold variance, denoted
by σ 2

t [dB], such that for σ 2 [dB] ⩽ σ 2
t [dB] the granular distortion D

μ
g dominates, so
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Fig. 1. Performance (SQNR) of FP24 and FP32 formats in a very wide variance range, estimated using different
formulas.

SQNRμ becomes:

SQNRμ ≈ 10 log10

(︃
σ 2

D
μ
g

)︃
= −10 log10

(︃
1

3 · 22R

(︃
LFP ln 2

1 − 21−e

)︃)︃
= const, (39)

i.e. it remains constant and does not depend on the data variance σ 2. This can be inter-
preted as follows. Since the SQNRμ is independent of the PDF parameter σ 2, then using
any non-parametric Laplacian distribution yields the same SQNR score. On the other
hand, for σ 2 [dB] > σ 2

t [dB] the overload distortion D
μ
ov prevails, leading to a sharp drop

in SQNR. The threshold variance σ 2
t [dB] is 745 dB for the FP24 format and 742 dB for

the FP32 format.
Let us introduce the relative error δ SQNR[%] as an accuracy measure of the SQNR for-

mula (37) with respect to (9). The values for δ SQNR [%] are illustrated in Fig 2. Figure 2
indicates that the SQNR calculation error for σ 2 [dB] ⩽ σ 2

t [dB] is below 0.5% in the case
of FP24 format performance evaluation and below 0.35% in the case of FP32 format per-
formance evaluation; for σ 2 [dB] > σ 2

t [dB], the SQNR error tends to zero, as predicted.
Given that δ SQNR[%] < 1%, we report that reasonable accuracy of the SQNR formula
defined in Na (2011) is achieved with the proposed approximate formula (37). Due to this
achievement and the fact that (37) is considerably less computationally intensive than (9),
which includes LFP = 254 sum members (since e = 8), we confirm that (37) can indeed
be used as an adequate tool for evaluating the performance of the FP format for Laplacian
data.

Given SQNR analysis can also be useful in selecting the optimal FP format for the
target application. Specifically, from the point of quality of digital representation, FP32
is a better solution than FP24, due to the higher SQNR score; however, from the point of
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Fig. 2. Accuracy of the SQNR formula (37) in estimating the performance of FP24 and FP32 formats.

dynamic range, both FP32 and FP24 formats are very efficient as they retain constancy
in SQNR across a very wide variance range. Due to these positive features and the fact
that its implementation complexity is lower than FP32, FP24 can be seen as an attractive
choice for various practical applications.

5. Conclusion

This paper builds upon the analogy between FP digital representation and quantization
established in literature, introducing a novel idea regarding the link between the FP for-
mat and the μCQ. It presents a method for designing and linearizing the μCQ to achieve
a piecewise uniform quantizer PUQμ tailored to the FP format. Given the FP format’s
similarity in structure to PUQμ and the close performance of PUQμ to μCQ, a closed-
form expression for the SQNR of μCQ has been proposed in this paper to evaluate FP
format’s performance, which holds general applicability across various bit rates and data
variances. Numerical assessments spanning a very wide variance range, conducted for
some commonly used FP formats with an 8-bit exponent, showed the full applicability of
the proposed SQNR expression in FP format performance evaluation, as competitive re-
sults (SQNR calculation error is below the predefined threshold of 1%) and significantly
lower computational intensity have been observed with respect to the existing method re-
liant on the summation of numerous terms (254 in the situation when e = 8). As the
computational complexity of the existing method increases even more for e > 8, a sig-
nificant simplification of the FP format evaluation process is expected by applying the
proposed method. Providing an efficient and accurate mechanism for the evaluation of FP
format performance, this paper facilitates the selection of the optimal FP bit configura-
tion for a specific application, crucial for digital representation quality, dynamic range,
computational overhead, and energy efficiency.
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A. Appendix

Table A1 provides an overview of abbreviations and specific symbols used in this paper.

Table A1
Employed abbreviations and symbols.

Abbreviations Symbols
Bfloat1616-bit floating point format E exponent of a floating point number
DLfloat 16-bit floating point format M significand of a floating point number
FP8 8-bit floating point format e number of bits for exponent
FP24 24-bit floating point format m number of bits for significand
FP32 32-bit floating point format R bit rate
FP64 64-bit floating point format E∗ biased exponent
FPQ floating point quantizer E∗

min minimal value of biased exponent
PDF probability density function E∗

max maximum value of biased exponent
PUQμ piecewise uniform quantizer

based on the μ-law
compression function

SE∗ segment in the positive part of floating point numbers

SQNR signal to quantization noise
ratio

LFP number of segments SE∗

μCQ μ-law companding quantizer ΔE∗ step size in segment SE∗
δE∗ width of segment SE∗
PE∗ (σ ) probability of segment SE∗
xFP

max maximal floating point number
σ 2 variance of input Laplacian data
D

FPQ
g granular distortion of FPQ

D
FPQ
ov overload distortion of FPQ

DFPQ total distortion of FPQ
SQNRFPQ signal to quantization noise ratio of FPQ
cμ(x) μ-law compression function
c−1
μ (x) inverse μ-law compression function

μ compression factor
xmax maximal amplitude of μCQ
x

μ
j decision thresholds of μCQ

y
μ
j representational levels of μCQ

N number of representational levels
Δu step size of the uniform quantizer
gμ(x) piecewise linear compression function
aj coefficient of gμ(x)

bj coefficient of gμ(x)

L number of segments of PUQμ

x
seg
j segment thresholds of PUQμ

K number of uniform levels within PUQμ segments
Δj step size within segment of PUQμ

xj,i i-th decision threshold within the j -th segment of PUQμ

yj,i i-th representational level within the j -th segment of PUQμ

D
μ
g granular distortion of μCQ

D
μ
ov overload distortion of μCQ

Dμ total distortion of μCQ
SQNRμ signal to quantization noise ratio of μCQ
Pj segment probability of PUQμ

D
PUQμ

g granular distortion of PUQμ

D
PUQμ

ov overload distortion of PUQμ

SQNRPUQμ signal to quantization noise ratio of PUQμ
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