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Abstract. Sustainable practices are essential for long-term societal development, minimizing envi-
ronmental impacts while promoting the efficient use of resources. Multi-criteria decision-making
(MCDM) approaches can play a vital role in assessing and prioritizing sustainability solutions
by considering diverse economic, social, and environmental factors. This study proposes a multi-
criteria group decision-making approach based on the Objective Pairwise Adjusted Ratio Analysis
(OPARA) method in a fuzzy environment and presents its application for the assessment of sustain-
able agriculture solutions. In the proposed approach, the evaluation criteria weights are determined
by combining subjective weights from experts and objective weights obtained from the MEREC
(Method Based on the Removal Effects of Criteria) method. The Relative Preference Relation (RPR)
approach is employed for ranking fuzzy numbers and final evaluation. Sensitivity analysis and com-
parison with other methods are conducted to assess the robustness and validity of the proposed
approach. The results demonstrate the effectiveness of the proposed approach in evaluating solu-
tions. Based on the final evaluation from the case study, the most important criteria are “Availability
and quality of water”, “Focus on immediate economic returns”, and “Financial incentives and ac-
cess to credit”, while the most suitable solutions for advancing sustainable agriculture are “Financial
and credit support”, “Education and enhancement of farmers’ knowledge”, and “Enhancement of
research and development”.
Key words: group decision-making, MCDM, fuzzy OPARA, MEREC, sustainability, sustainable
agriculture.
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1. Introduction

Multi-criteria decision-making (MCDM) methods have been refined and enhanced over
time to become powerful tools for addressing complex and multidimensional problems.
These methods assist decision-makers in selecting the best option in situations where mul-
tiple and sometimes conflicting, objectives must be considered. By evaluating various
criteria, MCDM ensures a comprehensive and balanced assessment, enhancing both the
accuracy and credibility of the decision-making process (Aycin et al., 2024; Nagy et al.,
2024). In real-world applications, decision-making is often challenged by uncertainty and
ambiguity, where fuzzy MCDM proves highly effective. By modelling these uncertainties,
fuzzy approaches allow decision-makers to integrate qualitative and imprecise informa-
tion, making the process more adaptable and realistic, especially when precise quantitative
data is unavailable or subjective judgements are essential (Bechar et al., 2024; Lefranc et
al., 2025). This flexibility is particularly valuable in domains such as sustainable agricul-
ture, where evaluating diverse solutions requires balancing economic, environmental, and
social considerations under uncertain conditions.

Sustainable agriculture is a holistic approach to farming that balances meeting present-
day food and fiber needs with conserving the planet’s resources for future generations. By
minimizing reliance on nonrenewable inputs and incorporating biological sources, it en-
sures productivity while protecting the environment (Rao and Rogers, 2006; Thompson,
2007). This system, rooted in an understanding of ecosystem services, aligns with prin-
ciples from organic farming, regenerative agriculture, permaculture, and agroforestry to
promote environmental resilience and long-term sustainability (Hayati et al., 2011; Pretty,
2008). Sustainable agriculture encourages multifunctionality by striking a balance be-
tween environmental health and productivity, producing food while contributing to public
goods such as water conservation and biodiversity, and adapting to local conditions and
social dynamics (Arora, 2018; Zhen and Routray, 2003). In order to fulfill the growing
demands for food, feed, and biofuels, there is a greater need for agricultural products.
Economically speaking, price volatility brought on by the growing demand for agricul-
tural products can affect both the affordability of goods for consumers and the livelihoods
of farmers (Bathaei and Štreimikienė, 2023; Martos et al., 2021). In terms of society,
this demand intensifies competition for limited resources, such as water and land, which
can lead to conflicts and uneven allocation of resources. In terms of the environment, the
drive for increased production frequently leads to soil deterioration, deforestation, exces-
sive chemical input use, and water resource depletion—all of which exacerbate climate
change and biodiversity loss (Janker and Mann, 2020; Janker et al., 2019; Montgomery,
2007).

To achieve sustainable agriculture, it is essential to adopt a variety of solutions that
are prioritized according to factors such as geographical, economic, social, and political
conditions. Deciding which solution should take precedence requires a thorough evalua-
tion from multiple angles, as sustainable agriculture is crucial not only for environmental
protection but also for fostering economic growth and social development (Godfray and
Garnett, 2014; Rockström et al., 2017). Despite the numerous challenges impeding the
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broader adoption of sustainable agriculture, the variety of solutions emphasizes that as-
sessing the efficacy of solutions to achieve sustainable agriculture can be approached as an
MCDM problem (Keshavarz-Ghorabaee, 2023b; Pretty et al., 2018). In this structure, ex-
perts establish criteria specific to the conditions and challenges of sustainable agriculture,
providing a comprehensive framework for evaluation. Decision-makers can then evaluate
the effectiveness of different solutions based on these criteria and, through MCDM tech-
niques, identify near-optimal solutions that align with the existing conditions (Cicciù et
al., 2022; Keshavarz-Ghorabaee, 2023a).

This study introduces a fuzzy multi-criteria group decision-making approach that in-
tegrates the Objective Pairwise Adjusted Ratio Analysis (OPARA) method, the Method
Based on the Removal Effects of Criteria (MEREC), and the Relative Preference Rela-
tion (RPR). OPARA is a new MCDM method, and its efficiency and robustness have
been rigorously validated through various analyses (Keshavarz-Ghorabaee et al., 2024).
MEREC, which has been extensively applied in empirical studies, has been shown to be
effective in determining objective weights in MCDM problems (Keshavarz-Ghorabaee
et al., 2021). The proposed approach is employed to assess sustainable agriculture so-
lutions by integrating subjective weights—representing expert-assigned weights of eval-
uation criteria—with objective weights derived from MEREC, ensuring a balanced and
realistic weighting scheme. The fuzzy OPARA method is utilized for the evaluation pro-
cess, leveraging comprehensive decision-making data while incorporating parameters that
adjust evaluations based on the range and linearity of criteria. To rank fuzzy numbers, the
RPR approach is applied, enabling a relative assessment within a set rather than in isola-
tion (Wang, 2015). The proposed approach provides a robust framework for addressing a
wide range of decision-making problems in fuzzy environments.

The remainder of the paper is structured as follows. Section 2 provides a review of
the literature, focusing on recent research in the field. Section 3 details the methodology
employed in this study. Section 4 presents the results and discussion, where the practical
application of the proposed approach and the analysis of its results are examined. Finally,
the conclusion summarizes the key findings of the study.

2. Literature Review

This section reviews several studies on the application of MCDM methods to agricultural
research from recent years. At the end, a table provides a summary of the key features of
the reviewed studies.

Zamani et al. (2020) investigated farmers’ perceptions and stakeholders’ views on cli-
mate change adaptation strategies in the Jarreh agricultural water resources system in
southwest Iran. Six adaptation scenarios were developed, and TOPSIS (Technique for
Order of Preference by Similarity to Ideal Solution) and PROMETHEE II (Preference
Ranking Organization METHod for Enrichment of Evaluations) methods were used for
evaluation. Results favoured enhancing irrigation efficiency and reducing cultivated area
as the most effective strategies to mitigate climate change impacts. Ebad Ardestani et al.
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(2020) addressed the issue of water resource management in Iranian drainage basins. They
utilized a framework to evaluate agricultural water supply systems, emphasizing cooper-
ation among all stakeholders. They compared different water supply alternatives across
social, economic, bioenvironmental, and technical criteria. Through MCDM techniques,
the research showcased the effectiveness of evaluating projects for sustainable develop-
ment. De Marinis and Sali (2020) investigated the use of participatory Analytic Hierarchy
Process (AHP) in agricultural development projects. The method was utilized for choice
criteria elicitation and resource allocation. The methodology facilitated team training and
established a shared resource allocation pattern aligned with international guidelines for
sustainable agricultural development in the region. Manafi Mollayosefi et al. (2020) evalu-
ated agricultural sustainability in East Azerbaijan Province using Entropy and fuzzy AHP
techniques. Key indicators included water consumption efficiency, conservation tillage,
health, agricultural employment, and greenhouse land. The study emphasized the impor-
tance of considering multiple evaluation methods to avoid misleading results.

Rani et al. (2021) aimed to address the uncertainty in assessing agricultural residues-
to-energy conversion technologies using Pythagorean fuzzy sets (PFSs). Through a com-
bined approach incorporating weighted discrimination-based approximation (WDBA),
they improved the assessment process by developing a new ranking method and a score
function-based linear programming model to estimate unknown attribute weights. Mishra
et al. (2021) addressed the uncertainty of season crop assessment as a complex MCDM
problem. They proposed a new decision-making framework, combining CRITIC (Crite-
ria Importance Through Intercriteria Correlation) and VIKOR (VlseKriterijumska Op-
timizacija I Kompromisno Resenje) approaches under PFSs environment. The CRITIC
model estimated objective criteria weights, while VIKOR provided simple and accurate
results for crop assessment. Yazdani et al. (2021) studied the impacts of flooding on agri-
cultural supply chains within a circular economy framework. They utilized the SWARA
(Stepwise Weight Assessment Ratio Analysis) and EDAS (Evaluation Based on Distance
from Average Solution) methods, to identify and rank flood risk drivers. Tork et al. (2021)
investigated the modernization of surface water distribution. They employed a combina-
tion of structural and non-structural methods alongside automation, evaluating scenarios
based on technical, social, economic, and environmental criteria. They applied the AHP
and COPRAS (Complex Proportional Assessment) for prioritization.

Kumar et al. (2021) employed frequency ratio and AHP methods, integrating remote
sensing and geographic information system (GIS) to identify suitable land for agriculture.
The results indicated that a significant portion of the area is unsuitable for agriculture, with
only a small fraction being highly suitable. Hoose et al. (2021) addressed the challenge of
optimizing product mixes in the agricultural machinery industry while considering sus-
tainability. Using AHP and data envelopment analysis (DEA), they identified seven alter-
natives for grain trailer production. The AHP results highlighted one optimal alternative,
while the DEA revealed two efficient options, allowing managers to choose between lower
environmental impact and higher profitability. Puška et al. (2021) focused on the selection
of sustainable suppliers for agricultural production, addressing the challenge of asymmet-
ric information in supplier evaluation. They applied MCDM methods, specifically interval
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fuzzy logic, using PIPRECIA (PIvot Pair-wise RElative Criteria Importance Assessment)
to determine criteria weights and MABAC (Multi-Attributive Border Approximation Area
Comparison) for supplier ranking. This approach aids agricultural producers in making
informed decisions despite information asymmetry. Erdoğan (2022) addressed the chal-
lenge of adopting Agriculture 4.0 technologies for sustainable resource use in agriculture.
She proposed a decision-making framework utilizing MCDM that incorporates interval-
valued spherical fuzzy numbers to manage uncertainty. The study extended the SWARA
and MAIRCA (MultiAtributive Ideal-Real Comparative Analysis) methods, demonstrat-
ing their effectiveness in prioritizing farmers’ perceptions of these technologies.

Namiotko et al. (2022) examined the agri-environmental situation of selected Euro-
pean Union countries. They utilized SAW (Simple Additive Weighting), TOPSIS, and
EDAS to identify strategies for improving agricultural practices and environmental con-
ditions. The study revealed consistent trends across all methods, with Finland, Ireland,
and Sweden showing the best agri-environmental performance, while the Netherlands,
Denmark, and Germany ranked the lowest. Roy et al. (2022) focused on assessing land
suitability for rain-fed cultivation in the red and lateritic zones of West Bengal, India. They
employed a GIS-based MCDM approach, analysing factors such as slope, soil moisture,
and geology. The AHP was used to assign weights and rank the sub-criteria. The study
identified four land suitability categories, achieving 85% accuracy in mapping, which sup-
ports optimized agricultural practices and drought risk reduction. Çürük and Alptekin
(2022) examined the Turkish floriculture industry to propose sustainable strategies. They
conducted a SWOT (strengths, weaknesses, opportunities, and threats) analysis to assess
the current state of the industry and utilized an MCDM approach with an ANP (Ana-
lytical Network Process) model to evaluate economic, environmental, and socio-political
dimensions of sustainability. Puška et al. (2022) investigated the selection of green suppli-
ers for agricultural producers. They employed Z-numbers alongside fuzzy LMAW (Log-
arithm Methodology of Additive Weights) and fuzzy CRADIS (Compromise Ranking of
Alternatives from Distance to Ideal Solution) methods to account for uncertainty in ex-
pert decision-making. The study confirmed the model’s stability through validation and
sensitivity analysis.

Abualkishik et al. (2022) addressed the challenge of improving agricultural production
efficiency and sustainability through smart agriculture. They developed a fuzzy MARCOS
(Measurement Alternatives and Ranking according to Compromise Solution) to evaluate
agricultural solutions. The results indicated that specific aspects of agriculture are sig-
nificantly influenced by the findings, emphasizing the importance of selecting effective
smart agriculture solutions. Rouyendegh and Savalan (2022) developed a hybrid model
based on AHP and TOPSIS to aid in selecting sustainable agricultural solutions. The case
study highlighted the complexity of agricultural production techniques, emphasizing the
need for a holistic assessment approach. The model effectively integrated qualitative and
quantitative criteria, demonstrating its validity in evaluating technology suitability. Bar-
bosa Junior et al. (2022) investigated the barriers to adopting sustainable agriculture. They
identified these barriers through a literature review and analysed their influence using the
fuzzy DEMATEL (Decision Making Trial and Evaluation Laboratory) method. The study
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revealed eleven barriers, with “technical knowledge and qualified workforce” being the
most significant. Radmehr et al. (2022) focused on sustainable water resources manage-
ment to enhance water efficiency and food security. They proposed a novel spatial fuzzy
strategic planning framework combined with MCDM and a conceptual agricultural wa-
ter use model, which was applied to an irrigation network in Iran. Using SWOT analysis,
AHP and TOPSIS, they identified and ranked barriers to sustainable practices.

Anusha et al. (2023) addressed the issue of land suitability for agriculture to enhance
sustainable land use strategies. They developed a conceptual process for land suitability
analysis using thematic layers derived from satellite images and collateral data. The study
applied AHP, providing valuable insights for identifying viable agricultural lands. Abrams
et al. (2023) employed triangular fuzzy numbers, Monte Carlo simulations and TOPSIS to
rank five countermeasures for remediating contaminated agricultural land. Their findings
indicated that incorporating uncertainties from linguistic scores, weights, and decision-
maker disagreements significantly challenged deterministic rankings, resulting in a fuzzy
ranking that encouraged decision-makers to reconsider the perceived superiority of alter-
natives. Tuan and Canh (2023) focused on developing priority strategies for agricultural
development, amid drought challenges. They utilized the SWOT analysis to identify 15
strategies and employed the fuzzy ANP to rank these factors. The study highlighted ef-
fective strategies for agricultural production, emphasizing drought evaluation and market
development for key crops. Mokarram et al. (2023) investigated the spatial distribution of
fig trees infected by the invasive pest to identify areas prone to fig cultivation in Iran. They
employed a multi-step approach, which included land suitability mapping through AHP
and GIS. The results indicated that central and parts of the east and northwest regions
were most suitable for fig cultivation.

Zkik et al. (2023) examined the barriers and enablers to adopting blockchain tech-
nology for sustainable supply chain performance in e-enabled agricultural supply chains.
They utilized a novel hybrid method combining PFS, cumulative prospect theory, and
VIKOR. The results provided strategies for blockchain technology implementation. Zhai
et al. (2023) addressed the challenge of encouraging continued investment in agri-
food supply chains. They developed an integrated decision-making framework based on
MEREC and PFSs alongside other methods to evaluate and prioritize risks. An empiri-
cal case study demonstrated the framework’s effectiveness in assessing risks. Keskes et al.
(2024) developed an MCDM framework to assist decision-makers in selecting sustainable
agricultural practices and waste recovery methods. This framework integrated the 2-Tuple
model for uncertainty and VIKOR for ranking sustainability scenarios. A case study on the
olive oil life cycle in Sfax, Tunisia, demonstrated the framework’s effectiveness. Nguyen
et al. (2024) focused on the barriers to digitalization and innovation in the agricultural
supply chain. They developed a model combining DEMATEL and ANP with Spherical
Fuzzy Sets (SFSs) to identify and quantify these barriers. The SFS-TOPSIS method was
then applied to rank potential solutions. The results identified technology and institutional
barriers as the most significant.

Prabhjyot et al. (2024) employed Agro-Eco-Resource zonation using meteorological,
soil, and groundwater data to classify areas based on crop suitability. The AHP assigned
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weights to various factors, while GIS facilitated the creation of thematic maps. The find-
ings provided a roadmap for sustainable agricultural practices, recommending a reduc-
tion in resource-intensive crop cultivation. Yang and Solangi (2024) focused on promot-
ing sustainable development in China by evaluating natural resource management, envi-
ronmental protection, and agricultural economics. They utilized fuzzy AHP and fuzzy
VIKOR methods to analyse uncertainties in decision-making. The study identified eco-
nomic viability, policy and governance, and environmental impact as key criteria influ-
encing sustainability. Tao et al. (2024) examined the critical success factors necessary for
enhancing productivity and performance in Chinese agriculture systems. They identified
and prioritized 12 factors from a pool of 18 using the Delphi method, validated by ex-
perts’ opinions. Employing SWARA and ARAS (Additive Ratio ASsessment), the study
revealed that an entrepreneurial mindset, entrepreneurial awareness among farmers, and
technology transfer significantly influence agricultural growth. Atlı (2024b) focused on
the challenges of selecting target markets for agricultural products. He employed fuzzy
AHP and fuzzy COPRAS techniques to rank and evaluate market alternatives. The fuzzy
AHP method assessed the importance levels of criteria, revealing that economic factors
carried the most weight. The fuzzy COPRAS method ranked six importing countries, with
the European Union identified as the top target market for processed agricultural products.
In another study, Atlı (2024a) investigated the selection of sustainable fertilizer suppliers
within the agricultural supply chain. He utilized AHP and ARAS techniques to evaluate
and rank supplier alternatives. The AHP method determined the importance of criteria.
Subsequently, the ARAS method ranked the suppliers.

Puška et al. (2024) examined the increasing electricity demand in agricultural produc-
tion and the potential of renewable energy sources. They utilized fuzzy MCDM methods
to develop a decision-making model. Their findings highlighted that economic criteria
were prioritized, with solar energy identified as the most promising option for sustainable
agricultural practices. Ismail et al. (2024) addressed the challenge of selecting the best
supplier among competitors in agriculture. They developed an MCDM approach based
on MEREC and MABAC, incorporating triangular neutrosophic sets to manage uncer-
tainties. Comparison with the WSM (Weighted Sum Model) further validated the results.
Bozorgi et al. (2024) focused on the risks associated with agricultural water distribution
due to various natural and human-caused hazards. They developed a framework using a
fuzzy dynamic Bayesian network model for risk assessment. The study defined and imple-
mented several risk management scenarios and ranked them using WASPAS (Weighted
Aggregated Sum Product Assessment), TOPSIS, and MOORA (Multi Objective Opti-
mization by Ratio Analysis) methods. Singh et al. (2024) examined the disparities in
agricultural development across districts in Uttar Pradesh, India. They utilized a com-
bination of factor analysis (FA) and TOPSIS to create a composite index system based on
twenty-six agricultural indicators. Biswas et al. (2024) investigated the practices for wheat
cultivation using conservation agriculture methods. They employed TOPSIS and AHP to
evaluate alternative tillage approaches. The performance of these regimes was assessed
based on various parameters, including energy use and economics. Tran et al. (2024) ad-
dressed the issue of post-harvest losses in the agricultural supply chain. They employed a
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two-stage cause-effect approach using SFSs to manage uncertainty. The Spherical fuzzy
Delphi method identified critical criteria, while the Spherical fuzzy DEMATEL method
analysed relationships among these factors. The study revealed that transportation was the
most significant causal factor.

Table 1 summarizes and examines the studies reviewed above based on their consid-
eration of sustainability, the use of a single or integrated approach, the incorporation of
uncertainty, the MCDM methods used, and the research problem addressed.

3. Methodology

In this section, the preliminaries of the proposed methodology are provided. Then a novel
multi-criteria group decision-making approach in a fuzzy environment is presented.

3.1. Preliminaries

3.1.1. Fuzzy Sets
Definition 1. A fuzzy subset Ã in a universal set X is described through its membership
function μ

Ã
(x), which assigns a degree of membership to each element x. A fuzzy number

represents a specific type of fuzzy subset that is both convex and normalized. A fuzzy
number Ã is classified as a trapezoidal fuzzy number if its membership function takes the
following form (Wang and Lee, 2007; Zimmermann, 2010):

μ
Ã
(x) =

⎧⎪⎪⎨⎪⎪⎩
(x − a)/(b − a), a ⩽ x ⩽ b,

1, b ⩽ x ⩽ c,

(d − x)/(d − c), c ⩽ x ⩽ d,

0, otherwise.

(1)

Such a fuzzy number can be represented as a quadruplet Ã = (a, b, c, d).

Definition 2. Let x̃1 = (xa
1 , xb

1 , xc
1, x

d
1 ) and x̃2 = (xa

2 , xb
2 , xc

2, x
d
2 ) represent two positive

trapezoidal fuzzy numbers (xa
1 > 0 and xa

2 > 0), with k as a crisp number. The operators
applicable to these fuzzy numbers and utilized in this study are defined as follows (Chen
and Hwang, 1992; Wang et al., 2006):

• Addition:

x̃1 ⊕ x̃2 = (︁
xa

1 + xa
2 , xb

1 + xb
2 , xc

1 + xc
2, x

d
1 + xd

2

)︁
, (2)

x̃1 + k = (︁
xa

1 + k, xb
1 + k, xc

1 + k, xd
1 + k

)︁
. (3)

• Multiplication:

x̃1 ⊗ x̃2 = (︁
xa

1 × xa
2 , xb

1 × xb
2 , xc

1 × xc
2, x

d
1 × xd

2

)︁
, (4)

x̃1.k =
{︄

(xa
1 × k, xb

1 × k, xc
1 × k, xd

1 × k), if k ⩾ 0,

(xd
1 × k, xc

1 × k, xb
1 × k, xa

1 × k), if k < 0.
(5)
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Table 1
Summary of reviewed studies.

No. Reference Sustainability Single
approach

Integrated
approach

Uncertainty MCDM
method

Problem description

1 Zamani et al.
(2020)

✘ ✘ ✓ ✓ TOPSIS-
PROMETHEE

Agricultural water allocation

2 Ebad Ardestani
et al. (2020)

✓ ✓ ✘ ✘ TOPSIS Agricultural water supply

3 De Marinis and
Sali (2020)

✘ ✓ ✘ ✘ AHP Resource allocation in
agricultural development
projects

4 Manafi
Mollayosefi
et al. (2020)

✓ ✓ ✘ ✓ AHP Evaluation of agricultural
sustainability

5 Rani et al.
(2021)

✓ ✓ ✘ ✓ WDBA Assessment of bioenergy
technologies

6 Mishra et al.
(2021)

✘ ✘ ✓ ✓ CRITIC-VIKOR Agriculture crop selection

7 Yazdani et al.
(2021)

✘ ✘ ✓ ✘ SWARA-EDAS Agriculture supply chain risk

8 Tork et al.
(2021)

✘ ✘ ✓ ✘ AHP-COPRAS Agriculture water distribution
system

9 Kumar et al.
(2021)

✓ ✓ ✘ ✘ AHP Land evaluation for
sustainable development

10 Hoose et al.
(2021)

✓ ✘ ✓ ✘ AHP-DEA Selection of production mix

11 Puška et al.
(2021)

✓ ✘ ✓ ✓ PIPRECIA-
MABAC

Selecting a sustainable
supplier

12 Erdoğan (2022) ✓ ✘ ✓ ✓ SWARA-
MAIRCA

Assessing farmers’ perception
to Agriculture 4.0
technologies

13 Namiotko et al.
(2022)

✓ ✘ ✓ ✘ SAW-TOPSIS-
EDAS

Assessment of
agri-environmental situation

14 Roy et al.
(2022)

✓ ✓ ✘ ✘ AHP Land suitability analysis

15 Çürük and
Alptekin (2022)

✓ ✓ ✘ ✘ ANP Developing sustainable
agriculture strategies

16 Puška et al.
(2022)

✘ ✘ ✓ ✓ LMAW-
CRADIS

Green supplier selection

17 Abualkishik
et al. (2022)

✘ ✓ ✘ ✓ MARCOS Evaluating smart agricultural
production

18 Rouyendegh
and Savalan
(2022)

✘ ✘ ✓ ✓ AHP-TOPSIS Analyse agricultural
production

19 Barbosa Junior
et al. (2022)

✓ ✓ ✘ ✓ DEMATEL Adoption of sustainable
agriculture

20 Radmehr et al.
(2022)

✘ ✘ ✓ ✓ AHP-TOPSIS Agricultural water
management

21 Anusha et al.
(2023)

✓ ✓ ✘ ✘ AHP Land suitability analysis

22 Abrams et al.
(2023)

✘ ✓ ✘ ✓ TOPSIS Measures for remediation of
agricultural land

23 Tuan and Canh
(2023)

✘ ✘ ✓ ✓ ANP Developing sustainable
agriculture

24 Mokarram et al.
(2023)

✓ ✓ ✘ ✘ AHP Sustainable agriculture
development

25 Zkik et al.
(2023)

✓ ✓ ✘ ✓ VIKOR Exploration of barriers and
enablers of blockchain
adoption

26 Zhai et al.
(2023)

✘ ✘ ✓ ✓ MEREC-GLDS Agriculture supply chain risks

27 Keskes et al.
(2024)

✓ ✓ ✘ ✓ VIKOR Agricultural sustainability
problem

28 Nguyen et al.
(2024)

✘ ✘ ✓ ✓ DEMATEL-
ANP-TOPSIS

Digital transformation in
agricultural supply chain

(continued on next page)
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Table 1
(continued)

No. Reference Sustainability Single
approach

Integrated
approach

Uncertainty MCDM
method

Problem description

29 Prabhjyot et al.
(2024)

✓ ✓ ✘ ✘ AHP Zonation for sustainable
agriculture

30 Yang and
Solangi (2024)

✓ ✘ ✓ ✘ AHP-VIKOR Natural resource management

31 Tao et al.
(2024)

✘ ✘ ✓ ✘ SWARA-ARAS Entrepreneurship factors to
promote agriculture systems

32 Atlı (2024b) ✘ ✘ ✓ ✓ AHP-COPRAS Target market selection
33 Atlı (2024a) ✓ ✘ ✓ ✓ AHP-ARAS Fertilizer supplier selection
34 Puška et al.

(2024)
✓ ✘ ✓ ✓ DiWeC-RAWEC Renewable energy integration

35 Ismail et al.
(2024)

✘ ✘ ✓ ✓ MEREC-
MABAC

Agricultural machinery
supplier selection

36 Bozorgi et al.
(2024)

✘ ✘ ✓ ✓ WASPAS-
TOPSIS-
MOORA

Risk management for water
systems

37 Singh et al.
(2024)

✘ ✘ ✓ ✘ FA-TOPSIS Assessment of agricultural
development

38 Biswas et al.
(2024)

✘ ✘ ✓ ✘ AHP-TOPSIS Evaluation of cropping system

39 Tran et al.
(2024)

✘ ✘ ✓ ✓ Delphi-
DEMATEL

Strategic agricultural supply
chain

40 Current study ✓ ✘ ✓ ✓ MEREC-
OPARA

Assessment of sustainability
solutions

• Division:

x̃1 � x̃2 = (︁
xa

1 /xd
2 , xb

1/xc
2, x

c
1/x

b
2 , xd

1 /xa
2

)︁
, (6)

x̃1/k =
{︄ (︁

xa
1 /k, xb

1/k, xc
1/k, xd

1 /k
)︁
, if k > 0,(︁

xd
1 /k, xc

1/k, xb
1/k, xa

1 /k
)︁
, ifk < 0.

(7)

• Exponentiation:

x̃⋏k
1 = (︁(︁

xa
1

)︁k
,
(︁
xb

1

)︁k
,
(︁
xc

1

)︁k
,
(︁
xd

1

)︁k)︁
. (8)

• Defuzzification:

def(x̃1) = 1

3

(︃
xa

1 + xb
1 + xc

1 + xd
1 − xd

1 xc
1 − xa

1 xb
1

(xd
1 + xc

1) − (xa
1 + xb

1 )

)︃
. (9)

Definition 3. Let S = {x̃1, x̃2, . . . , x̃n} denotes a set consisting of n trapezoidal fuzzy
numbers, where x̃i = (xa

i , xb
i , xc

i , x
d
i ). Assume z̃ = (za, zb, zc, zd) represents the average

of the n fuzzy numbers. Then the RPR degree of x̃i over z̃ is calculated as follows (Wang,
2015):

RPR(x̃i) = 1

2

(︃
(xa

i − zd) + (xb
i − zc) + (xc

i − zb) + (xd
i − za)

2∥Ts∥ + 1

)︃
, (10)
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where

∥Ts∥ =
⎧⎨⎩

(t+a
s −t−d

s )+(t+b
s −t−c

s )+(t+c
s −t−b

s )+(t+d
s −t−a

s )

2 , if t+a
s ⩾ t−d

s ,

(t+a
s −t−d

s )+(t+b
s −t−c

s )+(t+c
s −t−b

s )+(t+d
s −t−a

s )

2 + 2(t−d
s − t+a

s ), if t+a
s < t−d

s

(11)

and, t+a
s = maxi xa

i , t+b
s = maxi xb

i , t+c
s = maxi xc

i , t+d
s = maxi xd

i , t−a
s = mini xa

i ,
t−b
s = mini xb

i , t−c
s = mini xc

i , t−d
s = mini xd

i .

3.1.2. MEREC
MEREC determines criteria weights by evaluating the impact of removing each criterion
on the performance of alternatives. Criteria that have a greater influence on performance
are assigned higher weights. To apply this method, it is first necessary to define a measure
for the performance of alternatives. The objective weights are then calculated using the
following steps (Keshavarz-Ghorabaee et al., 2021).

Step 1. Create the decision matrix. In this step, a decision matrix is formed, representing
the ratings or values of each alternative with respect to each criterion. The matrix elements,
denoted as xij , must be greater than zero (xij > 0; n alternatives and m criteria). If any
negative values are present in the decision matrix, they should be converted into positive
values using a suitable transformation method.

Step 2. Normalize the decision matrix (N ). The normalized elements are represented as
nx

ij . For criteria, where B denotes the set of beneficial criteria and N the set of non-
beneficial criteria, the normalization process is carried out using the following equation.

nx
ij =

⎧⎨⎩
mink xkj

xij
, if j ∈ B,

xij

maxk xkj
, if j ∈ N.

(12)

Step 3. Determine the overall performance of the alternatives (Si). Using the normalized
values from the prior step, it is ensured that smaller nx

ij values result in higher performance
scores (Si). The calculation is performed using the following equation.

Si = ln

(︃
1 +

(︃
1

m

∑︂
j

⃓⃓
ln

(︁
nx

ij

)︁⃓⃓)︃)︃
. (13)

Step 4. Evaluate the performance of alternatives by excluding each criterion. The overall
performance of the i-th alternative when the j -th criterion is removed is denoted as S′

ij .
The following equation is applied for these calculations.

S′
ij = ln

(︃
1 +

(︃
1

m

∑︂
k,k≠j

⃓⃓
ln

(︁
nx

ik

)︁⃓⃓)︃)︃
. (14)
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Step 5. Determine the total absolute deviations. Let Ej represent the effect of removing
the j -th criterion. This value can be computed using the following equation.

Ej =
∑︂

i

⃓⃓
S′

ij − Si

⃓⃓
. (15)

Step 6. Calculate the final criterion weights. Here, wj represents the weight assigned to
the j -th criterion. The following formula is employed to compute wj .

wj = Ej∑︁
k Ek

. (16)

3.2. Proposed Integrated Approach

The proposed approach is based on group decision-making, integrating both subjective
and objective decision criteria weights. It utilizes the MEREC weighting method, ap-
plies the fuzzy OPARA method, and ranks fuzzy values through the RPR approach. The
integration of subjective weights, determined based on decision-makers’ opinions, with
objective weights, calculated using the efficient MEREC method and derived from the
decision matrix data, enables a more realistic decision-making process. Moreover, the
OPARA method, as a novel MCDM approach, facilitates a systemic decision-making pro-
cess where the evaluation of each alternative requires considering the entirety of the de-
cision matrix data, rather than focusing solely on the information related to that specific
alternative. This is achieved by employing pairwise adjusted ratios to determine the dom-
inance or significance degree of each alternative in comparison to the others (Damjanović
et al., 2024; Keshavarz-Ghorabaee et al., 2024).

Notably, two parameters in this method allow decision-makers to adjust the influence
of each criterion on the dominance or significance degree of an alternative. One parameter
adjusts based on the range of each criterion, while the other modifies it according to the
degree of linearity of the criterion. This section outlines the process of implementing
the fuzzy OPARA method. At the end of the fuzzy OPARA implementation, the overall
fuzzy performance of each alternative is determined. To rank the resulting fuzzy values,
an efficient fuzzy ranking method called RPR is utilized.

The procedure for applying the proposed approach is illustrated in Fig. 1. The following
sections provide a step-by-step explanation of the implementation process with detailed
descriptions.

Step 1. Formation of a decision-making group. The first step involves assembling a
decision-making group composed of d decision-makers (experts or stakeholders) each
with relevant knowledge and experience. This group is responsible for evaluating the
decision criteria and alternatives, ensuring a comprehensive and collaborative decision-
making process.

Step 2. Identification and definition of evaluation criteria by the decision-making group. In
this step, the decision-making group identifies and defines a total of m evaluation criteria,
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Fig. 1. The procedure of the proposed approach.

which will serve as the basis for assessing the performance of alternatives. These criteria
are collaboratively determined to align with the decision-making objectives.

Step 3. Establishment of a set of alternatives or solutions by the decision-making group.
In this step, the decision-making group establishes a set of potential n alternatives or
solutions to be evaluated. These alternatives should represent feasible options that address
the objectives of the decision-making process.
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Step 4. Collection of decision-makers’ opinions on the importance of each criterion. In
this step, the opinions of the decision-makers regarding the importance of each criterion
are gathered. These opinions can be expressed using linguistic variables, such that w̃s

jr

represents the importance of the j -th criterion as expressed by the r-th decision-maker.

Step 5. Obtaining aggregated subjective weights based on the corresponding fuzzy values
of the linguistic variables and normalizing them. In this step, the aggregated subjective
weights (w̃s

j ) are obtained based on the corresponding fuzzy values, and then normalized
(w̃sn

j ) using the following equations, ensuring that the sum of the weights is approximately
equal to 1.

w̃s
j = 1

d

(︃ d∑︂
⊕ r=1

w̃s
jr

)︃
, (17)

w̃sn
j = ws

j �

(︃ m∑︂
⊕j=1

w̃s
j

)︃
. (18)

Step 6. Eliciting decision-makers’ opinions on the performance of each alternative on each
criterion. In this step, the opinions of the decision-makers regarding the performance of
each alternative on each criterion are gathered. x̃ijr in this step represents the performance
of i-th alternative on j -th criterion as expressed by r-th decision-maker.

Step 7. Calculating the aggregated performance of alternatives on all criteria. In this step,
the aggregated performance values of each alternative on each criterion, i.e. the decision
matrix elements, are derived. Based on the fuzzy operators and the corresponding fuzzy
numbers, the performance values obtained from the decision-makers are aggregated using
the following equation:

x̃ij = 1

d

(︃ d∑︂
⊕ r=1

x̃ijr

)︃
. (19)

Step 8. Deriving the objective weights of criteria using the MEREC method. In this step,
the objective fuzzy weights of each criterion are calculated using the decision matrix data
and the MEREC weighting method. This process involves the following sub-steps to de-
termine the objective weights systematically.

Step 8.1. Decomposing the fuzzy decision matrix elements into their components. If the
elements of the decision matrix are defined as trapezoidal fuzzy numbers, represented
as x̃ij = (xa

ij , x
b
ij , x

c
ij , x

d
ij ), then four crisp matrices are derived from the fuzzy decision

matrix as follows: X1 = [xa
ij ]n×m, X2 = [xb

ij ]n×m, X3 = [xc
ij ]n×m and X4 = [xd

ij ]n×m.

Step 8.2. Calculating the weights of criteria using the MEREC method for each individual
matrix. In this step, the weights of the criteria are calculated for each crisp matrix derived
in Step 8.1 using the MEREC method. If the weights obtained for the matrices X1 to X4
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are denoted as wu
j1, wu

j2, wu
j3, and wu

j4, respectively, then the elements of fuzzy objective
weights w̃o

j = (wo
j1, w

o
j2, w

o
j3, w

o
j4) are determined as follows:

wo
j1 = min

q
wu

jq, (20)

wo
j4 = max

q
wu

jq, (21)

wo
j2 = min

q,wu
jq ≠wo

j1

wu
jq, (22)

wo
j3 = max

q,wu
jq ≠wo

j4

wu
jq. (23)

In fact, wo
j1 to wo

j4 represent the sorted values of wu
j1 to wu

j4.

Step 9. Combining subjective and objective weights of each criterion to obtain final
weights. In this step, subjective and objective weights calculated in the previous steps
are combined using θ parameter, as shown in the following equation, where θ is a param-
eter within the range [0, 1]. This process results in more realistic and accurate weights for
the evaluation process.

w̃j = (︁
θ.w̃sn

j

)︁ ⊕ (︁
(1 − θ).w̃o

j

)︁
. (24)

Step 10. Assigning values to the OPARA method parameters by the decision-makers.
To implement the OPARA method, its four parameters (α, β, τj and ω) must be assigned
specific values by the decision-makers, based on the characteristics of the decision-making
problem and its associated data.

Step 11. Calculating the range-based pairwise (RP) adjusted ratio and linearity-based pair-
wise (LP) adjusted ratio values for k-th alternative over l-th alternative. These values are
derived based on the specified parameters and the aggregated data from the previous steps
using the following equations.

˜︂RPkl =
[︃ ∑︂

⊕j∈B

(︁
w̃j ⊗ (︁

x̃T
kj � x̃T

lj

)︁⋏ρj
)︁]︃ ⊕

[︃ ∑︂
⊕j∈N

(︁
w̃j ⊗ (︁

x̃T
lj � x̃T

kj

)︁⋏ρj
)︁]︃

, k ≠ l,

(25)

˜︂LPkl =
[︃ ∑︂

⊕j∈B

(︁
w̃j ⊗ (︁

x̃T
kj � x̃T

lj

)︁⋏τj
)︁]︃ ⊕

[︃ ∑︂
⊕j∈N

(︁
w̃j ⊗ (︁

x̃T
lj � x̃T

kj

)︁⋏τj
)︁]︃

, k ≠ l,

(26)

where

ρj =
⎧⎨⎩

(α−1) maxi xd
ij +mini xa

ij

α maxi xd
ij

, if
maxi xd

ij −mini xa
ij

maxi xd
ij +mini xa

ij

> β,

1, otherwise,
(27)

x̃T
kj = (︁

1 − min
i,j

xa
ij

)︁ ⊕ x̃ij . (28)
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Eq. (28) transforms the fuzzy elements equal to zero in the decision matrix into values
greater than zero, ensuring the proper execution of fuzzy division in Eqs. (25) and (26).
In fact, a transformed matrix is used to calculate the ˜︂RP and ˜︂LP values. If k = l, then it is
assumed that ˜︂RPkl = ˜︂LPkl = (1, 1, 1, 1).

It should be noted that in Eqs. (25) and (26) B shows the set of beneficial criteria and N

denotes the set of non-beneficial criteria.

Step 12. Calculating the aggregated pairwise (AP) adjusted ratios. Using the following
equation and the parameter ω, the ˜︂RP and ˜︂LP values are aggregated to obtain the ˜︂AP
values.

˜︂APkl = (ω.˜︂RPkl) ⊕ (︁
(1 − ω).˜︂LPkl

)︁
. (29)

Step 13. Calculating the sum of elements in the columns of the fuzzy AP matrix. In this
step, the sum of the elements in each column of the fuzzy AP matrix is calculated.

˜︃SAPl =
n∑︂

⊕ k=1

˜︂APkl . (30)

Step 14. Obtaining the overall fuzzy performance of each alternative. In this step, the over-
all fuzzy performance of each alternative is determined based on the values of aggregated
pairwise adjusted ratios calculated in the previous steps.

˜︂PFi = 1

n

(︃ n∑︂
⊕ l=1

(˜︂APil � ˜︃SAPl )

)︃
. (31)

Step 15. Determining the final scores for the overall fuzzy performances and ranking the
alternatives. In this step, the crisp scores corresponding to the fuzzy performances are
calculated using the RPR approach described in previous sections. Based on the obtained
scores, the final ranking of the alternatives is determined, such that higher scores corre-
spond to higher ranks for the alternatives.

Si = RPR(˜︂PFi ). (32)

4. Results and Discussion

In this section, the results of applying the proposed approach to evaluate solutions for
achieving sustainable agriculture are first presented. Subsequently, a sensitivity analysis
and a comparison of the results with other methods are conducted. Finally, a detailed
discussion is provided.

4.1. Application of the Proposed Approach

This study explores the assessment of solutions to promote sustainable agricultural prac-
tices using a novel integrated multi-criteria group decision-making approach based on
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fuzzy OPARA. In this section, the proposed approach is demonstrated through its ap-
plication to a case study involving one of Iran’s most agriculturally significant regions,
known for its diverse production of crops and its potential for advancing sustainable agri-
cultural solutions. Golestan’s rich diversity in crop and fruit production has established it
as a key agricultural hub, with significant potential for the expansion of agro-industries
and food processing sectors. These characteristics make the province an exemplary case
for evaluating sustainable agricultural practices tailored to regional needs.

To conduct this research, 30 experts were invited to contribute to the study. Of these,
24 experts agreed to participate, comprising 13 practitioners actively engaged in agri-
culture and 11 academic specialists in the field. Their expertise played a pivotal role in
providing a comprehensive perspective on the problem and validating the criteria and so-
lutions under consideration (Step 1).

The criteria and alternatives were defined through a combination of expert opinions
and insights drawn from the literature. Specifically, the study by Cao and Solangi (2023)
served as a foundational reference for the experts in this process. This collaborative pro-
cess led to the establishment of a decision-making structure that reflects the region’s spe-
cific challenges and opportunities (Steps 2 and 3), with 10 criteria (C1 to C10) categorized
into economic, social, and environmental dimensions, along with 8 solutions (SL1 to SL8)
defined by the experts, as detailed in Tables 2 and 3.

Experts’ opinions were systematically gathered using linguistic variables defined in
Table 4. To evaluate the importance of the criteria, experts rated them using linguistic
variables ranging from “very low” to “very high” (Step 4). Similarly, the effectiveness of
each proposed solution in relation to each criterion was evaluated using linguistic variables
ranging from “very poor” to “very good” (Step 6). Due to space limitations, only the
responses of the first expert are presented as an example in Table 5, while the complete
dataset is provided as supplementary material in reference (Keshavarz-Ghorabaee, 2025).
These assessments are instrumental in quantifying the relative significance and impact of
the criteria and solutions within the decision-making framework.

As previously mentioned, the aggregated subjective weights of the criteria (Step 5)
are obtained based on the opinions gathered from experts and the corresponding fuzzy
numbers associated with linguistic variables. Additionally, the aggregated performance
and effectiveness of the alternatives or solutions (Step 7) are calculated. Following this, the
objective weights of the criteria are determined using the decision matrix and the MEREC
method (Step 8). By integrating both subjective and objective weights, the final weights
of the criteria for assessing the solutions are determined, where θ is set to 0.5 (Step 9).
A portion of the aggregated decision matrix is illustrated in Table 6, while Table 7 presents
the subjective, objective, and combined weights of the criteria. The complete decision
matrix is included as supplementary material in reference (Keshavarz-Ghorabaee, 2025).
Using the RPR approach, the values of the combined weights are ranked and presented in
the last column of Table 7.

According to the results presented in Table 7, the criteria “Availability and quality
of water” (C9), “Focus on immediate economic returns” (C4), and “Financial incentives
and access to credit” (C1) are the most important criteria based on the RPR values of the
combined weights.
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Table 2
Assessment criteria for sustainable agriculture solutions.

Dimension Criteria Description

Economic Financial
incentives and
access to credit
(C1)

The availability of financial incentives and access to credit plays a
crucial role in promoting the adoption of sustainable agricultural
practices. When farmers are encouraged through financial support,
they are more likely to invest in innovative technologies, premium
materials, and necessary training to enhance sustainability.

Market dynamics
(C2)

The market dynamics for sustainable agricultural products are
influenced by various factors. While sustainable goods may have
elevated production costs leading to higher retail prices, this
reflects the value of quality and eco-friendly practices.

Technological
aspects (C3)

The role of technology is vital for advancing sustainable
agriculture, as innovation plays a key part in enhancing
productivity and efficiency. Modern technologies, such as
precision farming, smart irrigation systems, and eco-friendly pest
control methods, enable farmers to optimize resource use and
minimize environmental impact.

Focus on
immediate
economic returns
(C4)

A focus on immediate economic returns is often seen in farming
and agriculture. While prioritizing short-term profits may ensure
quick financial stability, it can also lead to hesitation in adopting
sustainable techniques that promise long-term benefits.

Social Awareness and
education (C5)

The presence of awareness and education is crucial for promoting
sustainable agriculture. When farmers and community members
are informed about the importance of sustainable practices, they
are better equipped to understand their role in achieving
sustainable development.

Cultural factors
(C6)

Cultural factors play a significant role in shaping attitudes toward
sustainable agriculture, influencing how farming practices are
accepted and adopted within a community. Traditional farming
methods often hold deep roots in cultural identity, which can make
the transition to innovative techniques challenging.

Social networks
(C7)

Effective collaboration is essential for promoting sustainable
agriculture, as it enables farmers, researchers, and other
stakeholders to share knowledge and resources. While social
networks can enhance these interactions, their presence may vary
significantly across different regions.

Environmental Health of land
and soil (C8)

The health of land and soil is crucial for sustainable agriculture, as
degradation and erosion can significantly impact productivity and
ecosystem balance. Unsustainable practices, such as cultivating a
single crop type and excessive pesticide application, can lead to
the deterioration of soil quality over time.

Availability and
quality of water
(C9)

The availability and quality of water are vital components of
sustainable agriculture, as challenges such as water scarcity and
contamination can hinder agricultural productivity and
environmental health. Practices that lead to excessive extraction of
groundwater or the introduction of pollutants can compromise
water resources over time.

Climate change
(C10)

The effects of climate change present challenges for sustainable
agriculture. Shifts in weather patterns, including extreme events
such as droughts and floods, can impact crop health and soil
integrity. Additionally, changing climatic conditions may influence
growing seasons and temperature ranges, which can have
implications for crop yield and quality.
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Table 3
Identified solutions for achieving sustainable agriculture.

Solution Description

Financial and
credit support
(SL1)

It provides farmers with the necessary resources to invest in sustainable practices and
technologies. By facilitating access to loans, grants, and financial incentives, this
support enables agricultural stakeholders to adopt eco-friendly methods, enhance
productivity, and improve resource management.

Education and
enhancement of
farmers’
knowledge (SL2)

It equips farmers with the necessary skills and information to implement best practices.
By providing training on sustainable farming techniques, soil conservation, water
management, and pest control, farmers can make informed decisions that benefit both
their productivity and the environment.

Improvement of
sustainable
agricultural
policies and
regulations (SL3)

By creating policies that promote sustainable land use, water management, and soil
health, governments can guide farmers towards adopting practices that reduce
environmental impact while enhancing productivity.

Enhancement of
research and
development
(SL4)

It fosters innovation and the adoption of new technologies that improve agricultural
practices. By investing in R&D, stakeholders can explore alternative farming methods,
develop climate-resilient crops, and enhance soil and water conservation techniques.

Access to modern
technologies
(SL5)

It enables farmers to adopt innovative practices that enhance productivity and resource
efficiency. By providing access to advanced technologies such as precision agriculture
tools, sustainable pest management systems, and efficient irrigation methods, farmers
can optimize their operations and reduce environmental impacts.

Encouragement
of diverse and
alternative
cropping
practices (SL6)

It enhances biodiversity and resilience within farming systems. Promoting the
cultivation of a variety of crops can improve soil health, reduce pest and disease
pressures, and enhance overall ecosystem stability.

Access to and
encouragement
of the use of
organic fertilizers
and biological
pesticides (SL7)

It reduces reliance on synthetic chemicals and promotes ecological balance. By
providing farmers with access to organic fertilizers, such as compost and green manure,
soil fertility can be enhanced naturally, improving nutrient availability and supporting
healthy crop growth.

Improvement of
marketing and
strengthening
local markets
(SL8)

It enhances farmers’ economic resilience and supports local economies. By developing
efficient marketing strategies and providing farmers with the tools and knowledge to
effectively promote their products, access to markets can be significantly improved.

Table 4
Linguistic variables and the corresponding fuzzy numbers.

Linguistic variables for criteria Linguistic variables for solutions

Very Low (VL) = (0, 0, 0.1, 0.2) Very Poor (VP) = (0, 0, 1, 2)

Low (L) = (0.1, 0.2, 0.2, 0.3) Poor (P) = (1, 2, 2, 3)

Medium Low (ML) = (0.2, 0.3, 0.4, 0.5) Medium Poor (MP) = (2, 3, 4, 5)

Medium (M) = (0.4, 0.5, 0.5, 0.6) Fair (F) = (4, 5, 5, 6)

Medium High (MH) = (0.5, 0.6, 0.7, 0.8) Medium Good (MG) = (5, 6, 7, 8)



52 M. Keshavarz-Ghorabaee et al.

Table 5
Expert assessments using linguistic variables (sample data).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Weight H L MH MH MH ML ML ML M ML
SL1 VG G G G MP MP F MP MP MP
SL2 MP MP F F MG MG F MG MG VP
SL3 F P P F P MP MG F MP MP
SL4 VP P F P MG P MP MG G F
SL5 MP P G P P P MP F F MP
SL6 MP MP MP F P P MP G F MG
SL7 P MP P MP P MP MP F MG MP
SL8 F VG MP F VP MP F MP P VP

Table 6
The aggregated fuzzy decision matrix (partial).

C1 C2 C3 . . . C10

SL1 (7.17, 8.17, 8.96, 9.38) (5, 6, 6.38, 7.38) (5.38, 6.38, 6.75, 7.75) . . . (2.46, 3.46, 4.04, 5.04)

SL2 (3.08, 4.08, 4.92, 5.92) (2.58, 3.58, 4.04, 5.04) (2.13, 3.13, 3.63, 4.63) . . . (1.33, 2.25, 2.75, 3.75)

SL3 (1.71, 2.71, 2.92, 3.92) (1.67, 2.67, 2.96, 3.96) (1.33, 2.21, 2.79, 3.79) . . . (3.33, 4.33, 4.92, 5.92)

SL4 (1.04, 1.75, 2.38, 3.38) (1.63, 2.63, 2.75, 3.75) (5.75, 6.75, 7.25, 8.25) . . . (4.04, 5.04, 5.33, 6.33)

SL5 (0.96, 1.5, 2.38, 3.38) (0.88, 1.42, 2.21, 3.21) (7.29, 8.29, 9.08, 9.46) . . . (2.33, 3.33, 4.04, 5.04)

SL6 (1.17, 1.96, 2.54, 3.54) (2.63, 3.63, 4.25, 5.25) (2.04, 3.04, 3.33, 4.33) . . . (3.25, 4.25, 5, 6)

SL7 (1.25, 2.13, 2.63, 3.63) (1.21, 2, 2.63, 3.63) (1.04, 1.79, 2.33, 3.33) . . . (1.92, 2.92, 3.33, 4.33)

SL8 (4.5, 5.5, 5.75, 6.75) (7.33, 8.33, 9.17, 9.5) (1.17, 2, 2.5, 3.5) . . . (0.75, 1.25, 2, 3)

Table 7
The subjective, objective and combined weights of criteria.

Subjective Objective Combined RPR Rank

C1 (0.153, 0.173, 0.187, 0.193) (0.073, 0.073, 0.083, 0.096) (0.113, 0.123, 0.135, 0.145) 0.684 3
C2 (0.024, 0.042, 0.051, 0.071) (0.099, 0.101, 0.111, 0.122) (0.062, 0.071, 0.081, 0.096) 0.357 8
C3 (0.078, 0.098, 0.108, 0.128) (0.1, 0.101, 0.104, 0.105) (0.089, 0.099, 0.106, 0.116) 0.516 6
C4 (0.137, 0.157, 0.171, 0.183) (0.097, 0.102, 0.102, 0.103) (0.117, 0.129, 0.137, 0.143) 0.699 2
C5 (0.109, 0.129, 0.138, 0.158) (0.074, 0.08, 0.085, 0.087) (0.092, 0.105, 0.112, 0.123) 0.549 4
C6 (0.05, 0.07, 0.078, 0.098) (0.086, 0.098, 0.104, 0.106) (0.068, 0.084, 0.091, 0.102) 0.412 7
C7 (0.033, 0.053, 0.062, 0.082) (0.042, 0.047, 0.062, 0.065) (0.038, 0.05, 0.062, 0.073) 0.218 10
C8 (0.015, 0.024, 0.041, 0.061) (0.103, 0.108, 0.109, 0.109) (0.059, 0.066, 0.075, 0.085) 0.317 9
C9 (0.101, 0.121, 0.127, 0.147) (0.142, 0.145, 0.146, 0.147) (0.122, 0.133, 0.136, 0.147) 0.718 1
C10 (0.061, 0.081, 0.097, 0.117) (0.112, 0.115, 0.124, 0.133) (0.086, 0.098, 0.11, 0.125) 0.531 5

According to the experts’ opinions, the values of α = 5, β = 0.8, τj = 1, and ω = 0.5
are considered for the OPARA calculations. Based on equations 5 to 9 (Steps 11 and 12)
of the proposed approach, the ˜︂RP, ˜︂LP, and ˜︂AP values are calculated. Some of these values
are displayed in Tables 8 to 10, and the detailed calculations are provided as supplemen-
tary material in reference (Keshavarz-Ghorabaee, 2025). Considering that the linguistic
variables range from ‘very poor’ to ‘very good’, all criteria are treated as beneficial. This
is because, when using these linguistic variables, the performance of the alternative is
assessed independently of the inherent nature of the criterion.
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Table 8
The values of ˜︂RP (partial).

SL1 SL2 SL3 . . . SL8

SL1 (1, 1, 1, 1) (0.62, 1.02, 1.38, 2.32) (0.74, 1.26, 1.69, 2.99) . . . (0.7, 1.25, 1.82, 3.36)

SL2 (0.52, 0.89, 1.2, 2.02) (1, 1, 1, 1) (0.66, 1.17, 1.62, 2.93) . . . (0.66, 1.21, 1.81, 3.38)

SL3 (0.39, 0.71, 0.97, 1.73) (0.41, 0.75, 1.06, 1.94) (1, 1, 1, 1) . . . (0.53, 1.03, 1.62, 3.16)

SL4 (0.51, 0.87, 1.15, 1.98) (0.52, 0.89, 1.21, 2.15) (0.58, 1.05, 1.44, 2.65) . . . (0.71, 1.31, 1.96, 3.71)

SL5 (0.43, 0.75, 1, 1.75) (0.46, 0.79, 1.11, 1.97) (0.5, 0.9, 1.28, 2.36) . . . (0.62, 1.16, 1.76, 3.37)

SL6 (0.47, 0.82, 1.08, 1.89) (0.5, 0.87, 1.19, 2.11) (0.53, 0.97, 1.32, 2.45) . . . (0.63, 1.19, 1.79, 3.44)

SL7 (0.42, 0.75, 1.02, 1.8) (0.42, 0.75, 1.06, 1.9) (0.48, 0.9, 1.28, 2.4) . . . (0.55, 1.07, 1.63, 3.15)

SL8 (0.35, 0.62, 0.87, 1.53) (0.41, 0.71, 1.01, 1.79) (0.51, 0.92, 1.3, 2.43) . . . (1, 1, 1, 1)

Table 9
The values of ˜︂LP (partial).

SL1 SL2 SL3 . . . SL8

SL1 (1, 1, 1, 1) (0.62, 1.05, 1.44, 2.51) (0.76, 1.36, 1.86, 3.5) . . . (0.7, 1.3, 1.91, 3.65)

SL2 (0.51, 0.9, 1.23, 2.13) (1, 1, 1, 1) (0.67, 1.25, 1.77, 3.39) . . . (0.66, 1.26, 1.91, 3.7)

SL3 (0.37, 0.68, 0.94, 1.72) (0.39, 0.73, 1.05, 1.96) (1, 1, 1, 1) . . . (0.5, 1.01, 1.62, 3.26)

SL4 (0.49, 0.86, 1.15, 2.04) (0.51, 0.89, 1.23, 2.24) (0.58, 1.09, 1.55, 3.02) . . . (0.71, 1.35, 2.05, 4.03)

SL5 (0.42, 0.74, 0.99, 1.78) (0.45, 0.79, 1.14, 2.07) (0.5, 0.94, 1.37, 2.68) . . . (0.63, 1.21, 1.85, 3.65)

SL6 (0.45, 0.8, 1.06, 1.89) (0.47, 0.85, 1.17, 2.16) (0.51, 0.97, 1.34, 2.64) . . . (0.61, 1.18, 1.79, 3.55)

SL7 (0.4, 0.73, 1, 1.81) (0.39, 0.72, 1.04, 1.92) (0.46, 0.89, 1.29, 2.58) . . . (0.53, 1.05, 1.63, 3.26)

SL8 (0.33, 0.6, 0.86, 1.56) (0.4, 0.71, 1.04, 1.9) (0.51, 0.97, 1.39, 2.76) . . . (1, 1, 1, 1)

Table 10
The values of ˜︂AP (partial).

SL1 SL2 SL3 . . . SL8

SL1 (1, 1, 1, 1) (0.62, 1.03, 1.41, 2.42) (0.75, 1.31, 1.78, 3.25) . . . (0.7, 1.27, 1.87, 3.51)

SL2 (0.52, 0.89, 1.21, 2.08) (1, 1, 1, 1) (0.66, 1.21, 1.7, 3.16) . . . (0.66, 1.24, 1.86, 3.54)

SL3 (0.38, 0.69, 0.95, 1.72) (0.4, 0.74, 1.06, 1.95) (1, 1, 1, 1) . . . (0.51, 1.02, 1.62, 3.21)

SL4 (0.5, 0.86, 1.15, 2.01) (0.51, 0.89, 1.22, 2.19) (0.58, 1.07, 1.49, 2.83) . . . (0.71, 1.33, 2.01, 3.87)

SL5 (0.43, 0.74, 1, 1.77) (0.45, 0.79, 1.12, 2.02) (0.5, 0.92, 1.32, 2.52) . . . (0.62, 1.18, 1.8, 3.51)

SL6 (0.46, 0.81, 1.07, 1.89) (0.49, 0.86, 1.18, 2.14) (0.52, 0.97, 1.33, 2.55) . . . (0.62, 1.18, 1.79, 3.5)

SL7 (0.41, 0.74, 1.01, 1.8) (0.41, 0.74, 1.05, 1.91) (0.47, 0.9, 1.28, 2.49) . . . (0.54, 1.06, 1.63, 3.21)

SL8 (0.34, 0.61, 0.87, 1.55) (0.4, 0.71, 1.02, 1.85) (0.51, 0.95, 1.34, 2.6) . . . (1, 1, 1, 1)

Based on the computed AP values presented in Table 10, it is possible to calculate the˜︃SAP values, which represent the column sums of the AP matrix, using Eq. (30) for each
column (Step 13). This calculation enables us to derive the overall fuzzy performance of
each option, effectively representing the relative effectiveness of each solution (Step 14).
The ˜︂PF values for each alternative or solution are provided in Table 11. To facilitate a
comparison of these fuzzy performances, the RPR approach is employed in this study.
This approach allows us to obtain the relative scores for each solution, thus providing
a clearer understanding of their performance in relation to one another (Step 15). The
final scores and ranking of the solutions are also presented in Table 11, illustrating the
comparative effectiveness of each alternative or solution.
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Table 11
The overall fuzzy performance and the final scores.

Solutions ˜︂PFi Si Rank

SL1 (0.041, 0.115, 0.212, 0.61) 0.5463 1
SL2 (0.036, 0.104, 0.194, 0.567) 0.5261 2
SL3 (0.026, 0.079, 0.15, 0.452) 0.4757 8
SL4 (0.033, 0.096, 0.177, 0.526) 0.5083 3
SL5 (0.028, 0.083, 0.156, 0.462) 0.4816 7
SL6 (0.031, 0.09, 0.166, 0.496) 0.4955 4
SL7 (0.027, 0.082, 0.155, 0.467) 0.4821 6
SL8 (0.027, 0.082, 0.158, 0.472) 0.4844 5

Based on the findings displayed in Table 11, “Financial and credit support” (SL1),
“Education and enhancement of farmers’ knowledge” (SL2), and “Enhancement of re-
search and development” (SL4) emerge as the top three solutions for achieving sustainable
agriculture in the region under investigation, according to the expert opinions.

4.2. Sensitivity Analysis and Comparison

In this study, sensitivity analysis is conducted to observe how the effectiveness of the
solutions or alternatives varies with changes in the importance or weights of the criteria.
This analysis serves to identify the robustness of the decision-making process and ensures
that the final recommendations remain valid despite potential fluctuations in the relative
importance assigned to each criterion.

To perform the sensitivity analysis, a specific pattern is utilized for adjusting the im-
portance of the criteria. This pattern involves creating sets corresponding to the number of
criteria, where each set allocates the highest weight to one criterion and the lowest weight
to another. The remaining criteria receive weights that lie between the minimum and max-
imum assigned values. This structured approach allows decision-makers to understand the
impact of increasing or decreasing the weights of the criteria with minimal computational
effort, making the analysis more efficient and manageable.

The overall effectiveness or performance of each alternative or solution is computed
for each weight set created. By systematically evaluating the performance under varying
weights, the analysis provides valuable insights into which criteria significantly influence
the outcomes and how robustly each solution performs across different scenarios. This
insight is crucial for informed decision-making and helps ensure that the selected solutions
are resilient to changes in the criteria weights.

The weighting pattern for each set is illustrated in Fig. 2, while the specific values
assigned to each criterion are provided in Table 12. The effectiveness of each solution, or
its overall performance obtained using the proposed approach in different sets of criteria
weights, can be seen in Fig. 3. Moreover, Fig. 4 presents the changes in rankings of each
solution in comparison to the other options, allowing for a clear understanding of how
each alternative performs relative to the rest.

The results of the sensitivity analysis indicate that there is relative stability in the rank-
ing of the solutions as the weights of the criteria change. Specifically, the rankings for
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Table 12
The weights of the criteria in different sets.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Set 1 0.018 0.036 0.055 0.073 0.091 0.109 0.127 0.145 0.164 0.182
Set 2 0.036 0.055 0.073 0.091 0.109 0.127 0.145 0.164 0.182 0.018
Set 3 0.055 0.073 0.091 0.109 0.127 0.145 0.164 0.182 0.018 0.036
Set 4 0.073 0.091 0.109 0.127 0.145 0.164 0.182 0.018 0.036 0.055
Set 5 0.091 0.109 0.127 0.145 0.164 0.182 0.018 0.036 0.055 0.073
Set 6 0.109 0.127 0.145 0.164 0.182 0.018 0.036 0.055 0.073 0.091
Set 7 0.127 0.145 0.164 0.182 0.018 0.036 0.055 0.073 0.091 0.109
Set 8 0.145 0.164 0.182 0.018 0.036 0.055 0.073 0.091 0.109 0.127
Set 9 0.164 0.182 0.018 0.036 0.055 0.073 0.091 0.109 0.127 0.145
Set 10 0.182 0.018 0.036 0.055 0.073 0.091 0.109 0.127 0.145 0.164

Fig. 2. Weighting pattern for each set.

Fig. 3. Overall performance of solutions in different sets.
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Fig. 4. Ranking variations of solutions across different weight sets.

the three solutions “Financial and credit support” (SL1), “Education and enhancement of
farmers’ knowledge” (SL2), and “Enhancement of research and development” (SL4), as
well as for “Encouragement of diverse and alternative cropping practices” (SL6), exhibit
the least variation. This suggests that the results obtained are robust and reliable, demon-
strating the effectiveness of the proposed approach in evaluating the available solutions.
The consistency observed in these rankings reinforces the notion that the selected solu-
tions are resilient to changes in the criteria weights, thereby enhancing confidence in the
decision-making process and the overall findings of the study.

To validate the results, the outcomes of the proposed approach were compared with
those of six decision-making methods: SAW, WASPAS, COPRAS, TOPSIS, VIKOR, and
EDAS. For this purpose, the decision matrix and the combined weights were defuzzified
using Eq. (9), and the defuzzified values were utilized for the analysis. Subsequently, the
Spearman correlation coefficient (ρs) was calculated between the obtained results. The
findings of this comparison are presented in Table 13. As shown, all correlation coef-
ficients exceed 0.6, indicating a strong relationship between the results of the proposed
approach and those of other methods (Walters, 2009). This demonstrates the validity of
the outcomes achieved using the proposed approach.

4.3. Discussion of Findings

To achieve a more comprehensive and accurate evaluation, OPARA leverages the entire
decision matrix, ensuring that no critical information is omitted. This comprehensive in-
clusion enhances the accuracy and depth of assessments, capturing nuances that might
otherwise be overlooked. Furthermore, the method incorporates parameters that adjust
evaluations based on the range of variation and the linearity of criteria, providing greater
adaptability and precision in the decision-making process. Trapezoidal fuzzy numbers
were employed to model uncertainty, offering significant flexibility in representing im-
precise or vague data commonly encountered in agricultural evaluations. These fuzzy
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Table 13
Comparison of the result with other MCDM methods.

SAW WASPAS COPRAS TOPSIS VIKOR EDAS Proposed approach

SL1 1 1 1 1 1 1 1
SL2 2 2 2 2 2 2 2
SL3 7 7 8 8 5 8 8
SL4 3 3 3 3 3 3 3
SL5 6 6 6 6 7 7 7
SL6 4 4 4 5 4 4 4
SL7 5 5 7 7 6 5 6
SL8 8 8 5 4 8 6 5
ρs 0.857 0.857 0.976 0.952 0.786 0.976 –

numbers, while effective, can be replaced with alternative fuzzy sets or similar mathemat-
ical tools based on the specific context and requirements of the evaluation. To facilitate
the ranking of these fuzzy numbers, the study applied the RPR approach, which enables
comparative rankings of fuzzy numbers as a cohesive group rather than in isolation. This
relative ranking mechanism enhances the consistency and interpretability of results, mak-
ing it a robust tool for decision-making.

A key feature of the proposed approach is its integration of subjective and objective
weights to determine the relative importance of criteria. Subjective weights were derived
from experts’ opinions, reflecting practical knowledge and domain-specific insights, while
objective weights were calculated using data-driven methods, particularly the efficient
MEREC technique. By combining these perspectives, the approach ensures realistic and
balanced weight assignments, capturing both qualitative and quantitative dimensions of
the evaluation process. The results of the combined weighting process underscore the crit-
ical importance of three key criteria: “Availability and quality of water” (C9), “Focus on
immediate economic returns” (C4), and “Financial incentives and access to credit” (C1).
The prominence of these criteria was further validated by expert assessments, which high-
lighted their pivotal role in enabling sustainable agriculture. Access to sufficient and high-
quality water (C9) is fundamental for sustainable farming, as water serves as a primary
input for crop production. Efficient water management not only enhances productivity but
also mitigates resource depletion and environmental degradation. The criterion “Focus
on immediate economic returns” (C4) emphasizes the need for tangible financial benefits
to encourage farmers to adopt sustainable practices. Demonstrating short-term economic
gains can foster wider acceptance of these practices, ensuring their integration into tradi-
tional farming systems. Finally, “Financial incentives and access to credit” (C1) provide
farmers with the necessary resources to invest in modern technologies, sustainable inputs,
and eco-friendly methods, bridging the financial gap that often hinders the transition to
sustainable agriculture.

The evaluation of the eight proposed solutions further highlighted the critical role
of targeted interventions in achieving sustainable agricultural practices. Among these,
“Financial and credit support” (SL1), “Education and enhancement of farmers’ knowl-
edge” (SL2), and “Enhancement of research and development” (SL4) emerged as the top
three solutions, with “Encouragement of diverse and alternative cropping practices” (SL6)
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ranking closely behind. Each of these solutions addresses distinct yet interconnected di-
mensions of sustainable agriculture. Financial and credit support (SL1) empowers farm-
ers by enabling investments in advanced technologies, eco-friendly inputs, and modern
equipment, all of which are essential for enhancing productivity and sustainability. Edu-
cation and knowledge enhancement (SL2) equip farmers with the skills and awareness
needed to adopt innovative practices, bridging the gap between traditional methods and
contemporary sustainable solutions. Similarly, research and development (SL4) drive the
creation of context-specific technologies and strategies, fostering resilience and adaptabil-
ity in agricultural systems. Lastly, encouraging diverse and alternative cropping practices
(SL6) promotes biodiversity, improves soil health, and reduces the risks associated with
monoculture, contributing to ecological stability and long-term productivity.

Variations in the criteria weights revealed that while changes in the final scores of the
solutions were observed, the overall ranking of the solutions remained remarkably stable.
This consistency was particularly evident among the top-ranked solutions, which retained
their positions despite fluctuations in the weighting parameters. The stability of these re-
sults underscores the reliability and validity of the proposed decision-making approach,
demonstrating its capacity to deliver dependable insights even under varying conditions.

Conclusion

This study developed a multi-criteria group decision-making approach based on the
OPARA method in a fuzzy environment. The proposed method was applied to assess so-
lutions aimed at achieving sustainable agriculture. By integrating subjective expert opin-
ions with objective data, the proposed approach ensured a balanced and comprehensive
assessment. The incorporation of fuzzy logic enhanced the robustness of the decision-
making process, effectively addressing uncertainties inherent in evaluations. The findings
highlighted the critical role of key criteria such as “Availability and quality of water”,
“Focus on immediate economic returns”, and “Financial incentives and access to credit”
in driving sustainable agricultural practices. Among the proposed solutions, “Financial
and credit support”, “Education and enhancement of farmers’ knowledge”, and “Enhance-
ment of research and development” were identified as the most effective interventions.
Sensitivity analysis confirmed the stability and reliability of the rankings, demonstrat-
ing the robustness of the proposed approach even under varying weight conditions. For
future research, further exploration of different fuzzy sets—such as Gaussian, type-2, in-
tuitionistic, or Pythagorean fuzzy sets—could refine the representation of uncertainty. Ad-
ditionally, integrating OPARA with other MCDM techniques, such as BWM (Best-Worst
Method), CRITIC, or FUCOM (Full Consistency Method), may enhance decision-making
efficiency. Another promising avenue is the application of the approach to diverse agricul-
tural systems across different socio-economic and environmental contexts. Furthermore,
future studies could conduct sensitivity analysis on key OPARA parameters, such as ρ

and τ , to better understand their influence on ranking stability and decision outcomes. Ex-
tending the method beyond agriculture to domains such as environmental management,
energy policy, and urban planning could further validate its versatility and applicability.
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