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Abstract. Most existing traffic trajectory recommendation methods don’t consider the driver-car-
road preferences, resulting in the poor ability to meet the driver-car-road requirements. To address
this issue, we propose a traffic Trajectory Recommendation scheme based on Edge-cloud comput-
ing Driver-car-road Preferences (named as TREDP). TREDP reduces the computational, storage,
and energy burden on the edge through edge-cloud collaborative computing. TREDP enhances the
recommended accuracy by considering driver-car-road requirements and the relationship among
driver-car-road in different traffic trajectories. Meanwhile, TREDP increases the computational ef-
ficiency through edge-cloud computing. Thus, it improves the driver experience of intelligent traffic
trajectory recommendation systems.
Key words: traffic trajectory, trajectory recommendation, driver-car-road preference, personalized
recommendation, edge-cloud computing.

1. Introduction

The purpose of personalized recommendation is to recommend information and products
that users are interested in according to their interests and purchasing behaviours (Guo et
al., 2024; Kurnianto and Sfenrianto, 2024; bin Zulkiflee et al., 2024). Traffic trajectory
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recommendation is an important part of intelligent transportation (Li et al., 2023). It can
be applied in many scenarios, including automatic driving (Cao et al., 2024), multi-task
trajectory (Lei et al., 2025), automated parking (Dudakli and Baykasoğlu, 2024), path
planning (Jian et al., 2024), travel trajectory (Deng et al., 2025), etc. The high-quality
traffic trajectory recommendation system can provide drivers with fast, safe and person-
alized travel, which indirectly affects the urban environment (Kalaivani Jayaraman and
Malarvizhi, 2024) and economic development (Jin and Choi, 2024) in smart cities. There-
fore, more and more researchers pay attention to the research of traffic trajectory recom-
mendation.

At present, the main content of traffic trajectory recommendation research includes
how to save energy, reduce driving time (Xing and Hao, 2022), enhance safety, and even
improve the profitability of commercial cars (Liu et al., 2024). The traffic trajectory rec-
ommendation model may be divided into three categories: traffic trajectory recommenda-
tion model for connected automated vehicles (Yang et al., 2021; Yao et al., 2024; Cheng
et al., 2023; Zhang et al., 2023; Zhao et al., 2023; Jiang et al., 2024), traffic trajectory
recommendation model based on multi-objective optimization (Ning et al., 2024; Xiao
et al., 2024; Nishida et al., 2024; Li et al., 2024; Peng et al., 2024) and traffic trajectory
recommendation model based on trajectory similarity (Qu et al., 2019; Lim et al., 2021;
Yu et al., 2023; Liu et al., 2023; Lai et al., 2024). These models are proposed to improve
various problems in daily traffic and enhance drivers’ satisfaction with the trajectory rec-
ommendation system.

However, the existing models cannot personalize traffic trajectory recommendations
based on driver-car-road preferences. In fact, the preferences have a crucial impact on
their traffic trajectories. Unexpected real-time factors from driver-car-road may make the
driver dissatisfied with the current recommended trajectory. For example, a driver may
suddenly feel ill and need to go to the nearest hospital, a sudden air leak on the tire may
force the driver to go to the nearest repair shop, a road section may collapse suddenly,
etc. However, existing recommendation models do not take these sudden driver-car-road
situations into account.

Therefore, this paper proposes a traffic Trajectory Recommendation scheme based on
Edge-cloud computing Driver-car-road Preferences (named as TREDP). TREDP improves
the problems in a practical application of traffic trajectory recommendation systems by
considering driver-car-road requirements and the relationship among driver-car-road in
different traffic trajectories. Thus, it improves the driver experience of intelligent traf-
fic trajectory recommendation systems. The calculation of TREDP can be divided into
the following three categories. (1) TREDP considers the relationship among driver-car-
road based on the traffic trajectory analysis on the cloud. (2) TREDP analyses driver-car-
road requirements on the edge. (3) TREDP computes driver-car-road preferences based
on edge-cloud collaborative computing. Through the above edge-cloud computing driver-
car-road preferences, we could enhance recommended accuracy, reduce computational
overhead and save traffic consumption (including fuel consumption, electricity consump-
tion, driving time, etc). Meanwhile, via the edge-cloud collaborative computing, TREDP
could achieve the real-time recommendation for providing drivers with better trajectory
recommendation services.
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Our contributions are summarized as follows.

• We design an edge-cloud computing traffic trajectory recommendation framework.
The framework has two modules to support each other. The two modules provide
drivers with timely and continuously updated traffic trajectory recommendation ser-
vices through iterative analysis.

• We propose a lightweight computing method on the edge to reflect the driver-car-road
real-time requirements for enhancing the recommended accuracy.

• We provide a traffic trajectory analytic method on the cloud for analysing the relation-
ship among driver-car-road based on historical trajectory data.

• We construct a traffic trajectory recommendation scheme based on edge-cloud collab-
orative computing. Extensive experimental results show that our scheme significantly
outperforms the existing methods with regard to the recommended accuracy and com-
putational efficiency. The results further verify the validity of our framework.

The rest of this paper is organized as follows. Section 2 discusses related works. Sec-
tion 3 designs our framework. Section 4 shows our scheme TREDP. Section 5 provides
the experimental analysis and Section 6 concludes this paper.

2. Related Work

The current traffic trajectory recommendation models may be divided into the following
three categories.

2.1. Traffic Trajectory Recommendation Model for Connected Automated Vehicles

For Connected Automated Vehicles (CAVs), the traffic trajectory recommendation model
(Wang et al., 2019; Jaurker and Pradhan, 2023) tries to optimize CAV trajectories, while
reducing the total travel time and CAV fuel consumption. Secondly, the model is iteratively
optimized in order to use real-time data. The model takes traffic sensor data and CAV
trajectory information as input based on a large number of traffic data flows. It aims to
minimize the total travel time of the trajectory to obtain the expected velocity profile of
CAV. Then, with the goal of reducing fuel consumption, the quadratic optimization is
carried out to generate the optimal CAV trajectory conforming to the velocity profile.

Meanwhile, Yang et al. (2021) take advantage of advances in CAV technology to de-
sign an ecological driving and queuing system that could improve fuel efficiency and oper-
ational efficiency of cars on highways. Yao et al. (2024) present a full-sample trajectory re-
construction method for the mixed traffic flow of common cars and connected cars. Cheng
et al. (2023) provide a deep reinforcement learning model for hybrid traffic flow control
based on Adam optimization to guide the longitudinal trajectory of CAV on a typical urban
road with signal-controlled intersections. Zhang et al. (2023) introduce CAVSim, which
is a micro-traffic simulator that emphasizes feedforward decision-making, planning com-
ponents and collaborative decision in the CAV environment. Zhao et al. (2023) propose a
strategy that allows CAV to remain safe with respect to the car in front and behind. Jiang
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et al. (2024) design an optimal control strategy to coordinate the forced lane change of
autonomous cars from the common lane to the special lane. Deng et al. (2025) constructs
a trajectory reconstruction method that makes full use of CAV debris observation data.

2.2. Traffic Trajectory Recommendation Model Based on Multi-Objective Optimization

Traffic trajectory recommendation model based on multi-objective optimization could
generally be divided into two modules. The first module is the function optimization mod-
ule, which uses a multi-objective optimization function to optimize multiple objectives
such as minimizing travel time, improving traffic safety and minimizing fuel consump-
tion. It recommends driver trajectory through the ideal value of each target represented in
the optimization function. The second module is the traffic track prediction module. This
module realizes the prediction of future traffic state by analysing the recent traffic track
condition, and timely feedback to the function optimization module to evaluate the future
traffic track driving cost.

Ning et al. (2024) present a multi-objective optimization model for autonomous car
traffic light intersections based on the near-end strategy optimization algorithm. Xiao et
al. (2024) propose a sustainable and stable trajectory planning scheme for smart city pub-
lic transportation based on multi-objective optimization. Nishida et al. (2024) design an
improved version of Pareto Deep Q-Network (PDQN), which is a multi-objective deep
reinforcement learning method for optimizing crowd trajectory guidance strategies, etc.
Li et al. (2024) provide an improved non-dominated sorting genetic algorithm based on
considering the travel intentions of drivers and passengers, which is a multi-objective op-
timization model with the goal of minimizing the loss of time for drivers and passengers.
Peng et al. (2024) develop an improved constrained multi-objective evolutionary algo-
rithm based on designing an improved genetic operator and repairing constraint process-
ing technique to enhance the overall performance of the algorithm in seeking the Pareto
optimal solution. Zhao et al. (2025) construct a multi-objective model for system opti-
mization of dynamic traffic guidance.

2.3. Traffic Trajectory Recommendation Model Based on Trajectory Similarity

The core content of the traffic trajectory recommendation model based on trajectory sim-
ilarity is how to sketch the driven trajectory, so as to recommend the high satisfaction
trajectory to the driver. The model can collect massive traffic trajectory data mainly based
on the online filtering sampling method and offline filtering sampling method. The on-
line filtering sampling method is primarily aimed at the traffic trajectory data that can be
collected in real-time, and these data often require rapid analysis. The online filtering sam-
pling method mainly adopts intermittent sampling, which requires the acquisition device
to record the data once every fixed period of time and record the data in the cache area.
When the data in the cache area reaches a certain amount, the data would be calculated to
get the average value of the trajectory data in the window.

The difficulty of this model lies in how to measure the driver’s satisfaction with a
certain trajectory and how to measure the similarity between different trajectories. Mea-
surement of satisfaction with a certain trajectory includes the measurement of a variety
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of driver concerns, including time cost, economic cost, convenience of driving and road
conditions. It is necessary to find a reasonable measurement method to measure it and take
them into comprehensive consideration. Similarity measurement between trajectories is
also a difficulty in this model. Trajectory states are different in different time and space,
and real-time changes in trajectory states may bring difficulties in algorithm complexity
and trajectory complexity.

Qu et al. (2019) propose an adaptive shortest-range cruising trajectory method ASER
for personalized traffic trajectory recommendation. In ASER, a probabilistic network
model is established, which uses Kalman filter method to predict the picking probabil-
ity and picking capacity of each position. It also considers the load balance between pas-
sengers and cars, and introduces the shortest expected cruising distance to calculate the
potential cruising distance of cars. In addition, it utilizes MapReduce and KDS-Tree to
improve recommendation efficiency. Lim et al. (2021) provide a hybrid trajectory plan-
ning method that combines the advantages of sampling and optimization. The sampling
method of transverse motion is used to deal with different trajectories of various maneu-
vers. This helps generating response trajectories in dynamically changing environments.
Yu et al. (2023) design a diverse sensory trajectory publication/subscription framework
that performs query trajectory matching between continuous location set queries on the
trajectory data stream. Liu et al. (2023) develop a spatiotemporal dependency and sim-
ilarity perception method called dependency and similarity perception temporal graph
convolutional network. Lai et al. (2024) solve the problem of insufficient labels by ef-
fectively using the knowledge from several existing measurement methods as the source
measurement method.

All kinds of personalized recommendation models mentioned above do solve some
problems encountered in real life. However, as ignoring driver-car-road preferences, the
above models are difficult to carry out personalized recommendations flexibly and timely
for drivers with different driver-car-road needs. Meanwhile, the lack of edge-cloud com-
puting results in insufficient computing efficiency of these models when used in our frame-
work.

3. Framework

Our edge-cloud computing traffic trajectory recommendation framework is shown in
Fig. 1. The framework has two modules: the edge module and cloud module. The edge
module has three submodules: data collection, driver-car-road requirements, and traffic
trajectory recommendation. The cloud module also has three submodules: data prepro-
cessing, analytic method, and traffic trajectory analysis.

First, driver-car-road in the driver-car-road requirements submodule generates massive
traffic data for the data collection submodule. Meanwhile, the submodule also generates
real-time driver-car-road requirements for the traffic trajectory recommendation submo-
dule. Second, the data collection submodule collects the massive traffic data for the data
preprocessing submodule based on GPS, car sensors, traffic websites, history trajectories,
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Fig. 1. Edge-cloud computing traffic trajectory recommendation framework.

etc. Third, the traffic data is represented, transformed, cleaned and integrated by the data
preprocessing submodule for the analytic method submodule. Fourth, based on suitable
analytic methods, the traffic trajectory analysis submodule analyses historical trajectory
data to find valuable knowledge such as the relationship among driver-car-road. When
the traffic trajectory recommendation submodule receives the feedback analysed results,
the submodule combines the edge-cloud analytic results to get the edge-cloud comput-
ing driver-car-road preferences. Fifth, the submodule recommends traffic trajectories to
drivers based on the driver-car-road preferences. Finally, driver-car-road generates new
traffic data based on the recommended results, and the new traffic data can provide the lat-
est services via analysis. Through the above iterations, the framework could continuously
improve service quality.

4. TREDP

The main symbols and corresponding explanations used for TREDP are given in Table 1.

4.1. Sectioned Trajectory

Figure 2 shows a running example of traffic trajectory. The definitions and formulas in this
paper could be more easily understood by referring to this example.

Definition 1 (Sectioned trajectory). Let T be a set of historical trajectory data with the
same beginning and ending point, i.e. T = {t1, t2, . . . , tn}. Meanwhile, S denotes a set
of road sections in T , i.e. S = {s1, s2, . . . , sn}. ∀ti ∈ T ∧ sj ∈ S ∧ sk ∈ S ∧ sj �= sk ,
ti = {sj , . . . , sk}.

Corresponding to Fig. 2, the set of sectioned trajectories is shown in Fig. 3. For exam-
ple, t1 = {s1, s2, s7} and t2 = {s1, s3, s8} denote two different trajectories, respectively.
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Table 1
The main symbols for TREDP.

Symbol Explanation

D a set of drivers in the system
d a driver in D

T a set of historical trajectory data with the same beginning and ending point
S a set of road sections in T

|Tsi | the total number of trajectories containing road section si in T

|tsi
j

| the total number of road sections included in trajectory tj that contains road section si

|T | the total number of trajectories in T

Csi the number of cars on road section si

|C| the total number of cars in T

|dj
si

| the number of times driver dj has passed through road section si

|dj
S
| the total number of times driver dj has passed through the road sections in S

Idj

si
the average time for driver dj ’s car to pass through road section si

rd driver d’s requirement
g
si
d

driver d’s requirement for road section si

g
si
cd

the requirements of d’s car for road section si

gsi the emergency of road section si

max(f (bd )) the maximum value of section preferences among all road sections closest to beginning point bd

max(δ(T )) the maximum value of trajectory references among all trajectories

Fig. 2. A running example of traffic trajectories.

4.2. Traffic Trajectory Analysis on the Cloud

Definition 2 (Importance of road section). If road section si is included in multiple tra-
jectories, it indicates that the importance of section si for the distance from the beginning
point to the ending point is relatively high. The recommended traffic trajectory for drivers
may include si as much as possible. We use Mean Specific Gravity (MSG) to record how
important si is to the distance. The calculation process of MSG is shown in equation (1),
where |Tsi | denotes the total number of trajectories that contain road section si in trajec-
tory set T and |t sij | denotes the total number of road sections included in trajectory tj that
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Fig. 3. Sectioned trajectories.

contains road section si .

MSGsi = |Tsi |∑|T |
j=1 |t sij |

. (1)

Larger |Tsi | causes larger MSGsi , indicating that road section si is more important.

Definition 3 (Trajectory fluency). As the traffic on the important road section may often
be busy, simply relying on MSG to mine the traffic trajectory may ignore the impact of
the trajectory fluency. For this reason, TREDP uses Inverse Document Frequency (IDF)
to measure the trajectory fluency. The calculation process of IDF is shown in equation (2),
where |T | denotes the total number of trajectories in T .

IDFsi = log

( |T |
|Tsi | + 1

)
. (2)

If there are fewer trajectories containing section si (i.e. smaller |Tsi |), then the IDFsi is
larger, indicating that section si has a better trajectory fluency. In other words, trajectories
containing this section may provide smooth traffic.

Definition 4 (Section frequency). Calculating the trajectory fluency alone is not enough,
and it is also necessary to calculate the usage frequency of the road section itself. Thus,
our Section FreQuency (SFQ) is calculated as equation (3), where Csi denotes the number
of cars on section si and |C| denotes the total number of cars in T .

SFQsi
= Csi

|C| . (3)

The smaller Csi brings smaller SFQsi
, which indicates that the usage frequency of

section si is lower. That is, the road section may be more smooth for a more possible
recommendation.
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Definition 5 (Driver attention). Besides the above definitions, TREDP also considers the
Driver Attention Degree (DAD) of road section si . To a certain extent, DAD measures the
driver’s preference for section si . The calculation process of DAD is shown in equation (4),
where |dj

si | denotes the number of times driver dj has passed through section si and |dj
S |

denotes the total number of times driver dj has passed through the road sections in S.

DADsi =
∑|D|

j=1 |dj
si | + 1∑|D|

j=1 |dj
S |

. (4)

Larger |dj
si | indicates driver dj prefers road section si .

Definition 6 (Driving time). Driving time is also important in traffic trajectory recom-
mendations. Thus, the calculation process of Average Driving Time (ADT) on road section
si is shown in equation (5), where I dj

si
denotes the average time for driver dj ’s car to pass

through road section si .

ADTsi = Average
( |D|∑

j=1

I dj

si

)
. (5)

Drivers certainly want less driving time. Therefore, the road section with less driving
time is more likely to be recommended.

4.3. Driver-Car-Road Requirements on the Edge

The real-time and unexpected driver-car-road requirements are performed on the edge as
follows.

Definition 7 (Driver requirement). Driver d’s requirement rd = 〈bd, ed, gd〉, where bd

denotes d’s beginning point, ed denotes d’s ending point and gd denotes d’s road section
requirements, i.e. gd = {gsi

d , . . . , g
sj
d }. ∀g

si
d ∈ gd , g

si
d denotes driver d’s requirement for

road section si .

For example, if driver d has already entered fatigued driving, they may need to stay
and rest at a hotel on road section si . In this case, g

si
d may be a larger value. Larger g

si
d

indicates the more urgent need of driver d for road section si .

Definition 8 (Car requirement). gcd
denotes the requirements of d’s car for road sections,

i.e. gcd
= {gsi

cd
, . . . , g

sj
cd

}. ∀g
si
cd

∈ gcd
, g

si
cd

denotes the requirements of d’s car for road
section si .

For example, driver d’s car needs to be charged or refueled at the gas station on road
section si . In this case, g

si
cd

may be a larger value. Larger g
si
cd

indicates the more urgent
need of d’s car for road section si .
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Definition 9 (Road emergency). gS denotes the road emergencies of road section set S,
i.e. gS = {gsi , . . . , gsj }. ∀gsi ∈ gS , gsi denotes the emergency of road section si .

For example, if an accident occurs on road section si , causing certain traffic congestion,
gsi is a relatively large value.

Definition 10 (Real-time unexpected factor). The calculation on the cloud in Section 4.2
only includes the historical relationships among driver-car-road. However, drivers’ phys-
ical conditions, car operating conditions and road conditions are all constantly changing,
so the cloud calculations lack the calculation of real-time unexpected factors (such as sud-
denly discovering that the car is out of battery, unstable vital signs of the owner during
safety checks, and accidents on the road ahead). Therefore, our calculation method for
Real-time Unexpected Factors (RUF) is shown in equation (6).

RUFsi = g
si
d + g

si
cd

gsi

. (6)

Larger RUFsi indicates a more possible recommendation for road section si .

4.4. Edge-Cloud Computing

Definition 11 (Section preference). Section preference refers to the importance of road
section si in trajectory set T . Its calculation process is shown in equation (7):

f (si) = MSGsi × IDFsi × DADsi × RUFsi

SFQsi
× ADTsi

. (7)

Larger f (si) indicates that more drivers may prefer road section si . However, as more
and more cars enter si , f (si) would become smaller, resulting in fewer drivers choos-
ing si . This is a game process that continuously updates recommendations through our
framework.

Definition 12 (Trajectory preference). According to driver-car-road preferences for dif-
ferent trajectories, TREDP finds out the trajectories with high driver satisfaction. The
computing method of trajectory tj ’s preference is shown in equation (8):

δ(tj ) =
∑
si∈tj

f (si). (8)

After getting the section preference and trajectory preference list according to equa-
tion (7) and equation (8) respectively, TREDP could recommend personalized traffic tra-
jectories to drivers.
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4.5. Algorithm

Algorithm 1 takes driver-car-road requirements (rd , gcd
, gS), a set of historical trajecto-

ries T and a set of drivers D as input. Meanwhile, it takes a recommended trajectory Td

for driver d as output.
First, Algorithm 1 calculates the importance of road section si as equation (1)

(Steps 2–7). Second, it generates the section preference of si as equation (7) (Steps 8–19).
Third, it computes driver d’s driver-car-road preferences for traffic trajectory tj (i.e. δ(tj ))
(Steps 22–25). Fourth, if road section si satisfies the following three conditions, tj is the
best trajectory for driver d (Steps 28–31). (1) si is closest to beginning point bd (Step 28).
(2) The section preference of si is the maximum value among all road sections that are
closest to bd (Step 28). (3) The trajectory preference of tj containing si is the maximum
value among all trajectories (Step 29). Otherwise, we could only recommend to driver d

one section (i.e. si) step by step by iteratively calling Algorithm 1 with new rd, gcd
, gS, T

and D (Steps 32–37).
Actually, Algorithm 1 can serve a group of drivers with the same beginning/ending

point at the same time. And it could be naturally extended for serving various drivers with
random beginning/ending points. The scheme proposed in this paper has a high require-
ment for data updates, and only the preferred trajectories calculated according to the latest
data could provide drivers with timely recommendation services. Therefore, our frame-
work and scheme are integrated to provide drivers with intelligent transportation services.
The continuous iteration of the framework could bring timely data updates to the scheme
and real-time personalized services to the driver.

5. Experimental Analysis

5.1. Experimental Setup

We first establish our experiments from the following three aspects.

Dataset. The experimental dataset used in our experiments is the actual trajectory data of
taxis in Shanghai, China during a certain period of time. This dataset uses GPS to record
the longitude, dimension, direction, and passenger information of taxis at regular inter-
vals. This dataset contains 4316 taxi drivers, each recording approximately 1800 records,
totaling approximately 7.8 million records.

Experimental environment. Table 2 shows the experimental environment.

Compared method. ASER (Qu et al., 2019) is a traffic trajectory recommendation model
based on trajectory similarity. As ASER is most relevant to our scheme, we compare our
scheme TREDP with ASER in recommended accuracy and computational efficiency.

5.2. Recommended Accuracy

The dataset is divided into two parts in chronological order, with 70% of the older data
used for data analysis and the remaining newer data used for verifying recommended accu-
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Algorithm 1 TREDP
Input: rd , gcd , gS , T , D

Output: Td

1: Td = ∅
2: MSG = 0
3: for si ∈ S do
4: for tj ∈ T do
5: MSG = MSG + |tsi

j
|

6: end for
7: MSGsi = |Tsi

|
MSG

8: IDFsi = log
( |T |
|Tsi

|+1

)
9: SFQsi = Csi|C|

10: DAD1 = DAD2 = 0
11: ADTsi = 0
12: for dj ∈ U do
13: DAD1 = DAD1 + |dj

si |
14: DAD2 = DAD2 + |dj

S
|

15: ADTsi = ADTsi + Idj

si
16: end for
17: DADsi = DAD1+1

DAD2

18: RUFsi = g
si
d +g

si
cd

gsi

19: f (si) = MSGsi
×IDFsi

×DADsi
×RUFsi

SFQsi
×ADTsi

20: end for
21: for tj ∈ T do
22: δ(tj ) = 0
23: for si ∈ tj do
24: δ(tj ) = δ(tj ) + f (si)

25: end for
26: end for
27: while bd �= ed do
28: if f (si) == max(f (bd)) ∧ si is closest to bd then
29: if ∃tj ∈ T ∧ si ∈ tj ∧ δ(tj ) == max(δ(T )) then
30: Td = tj
31: bd = ed

32: else
33: Td = Td ∪ si
34: bd = the ending point of si
35: update rd , gcd , gS, T , D based on bd

36: Td = Td ∪ TREDP(rd , gcd , gS, T , D)

37: end if
38: end if
39: end while
40: return Td
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Table 2
Hardware parameters.

Device Cloud Edge

Core frequency 3.2 GHz 2.2 GHz
RAM 32 GB 4 GB
Cores 8 2

racy. When the recommended trajectory is consistent with the actual trajectory, the recom-
mendation is accurate. The calculation method is shown in equation (9), where T denotes
a set of trajectories with the same beginning and ending point, T̃ denotes all trajectories
with different beginning and ending points in the system, tAdi

denotes the number of actual
trajectories (based on the newer data) of driver di in T , tRdi

denotes the number of the rec-
ommended trajectories (based on the older data) that are the same as the actual trajectories

for driver di in T , |DT | denotes the set of drivers in T , and Average
(∑|DT |

i=1

tRdi

tAdi

)
represents

the average recommended accuracy of trajectory T .

Accuracy = Average
(∑

T ∈T̃

Average
(|DT |∑

i=1

tRdi

tAdi

))
. (9)

Experimental comparison results are shown in Fig. 4, where |S| denotes the number of
road sections that need to be considered in personalized traffic trajectory recommendation.

As shown in Fig. 4, as more road sections |S| are considered by the personalized tra-
jectory recommendation algorithm, the accuracy rate of trajectory recommendation is
slightly decreasing. In addition, the preferred trajectories recommended by TREDP are
mainly concentrated in the Top-30 part of the trajectory preference list. At the same time,
when the number of |S| exceeds 25, TREDP has a 95% recommended accuracy. This
proves the effectiveness of TREDP in intelligent traffic trajectory recommendation.

The number of road sections included in the trajectories gradually increases with the
total number of trajectories |T | increases. This brings some challenges to TREDP and
ASER, but they still maintain a good recommendation effect in Fig. 4. Moreover, TREDP
has higher recommended accuracy than ASER method because it takes into account the
driver-car-road preferences for numerous practical application requirements and scenar-
ios.

Figure 5 shows the comparison of the recommended accuracy with the change of
driver number |D|. When the number of drivers increases, the recommended accuracy
of both TREDP and ASER decreases. This is because as |D| increases, a large number of
drivers may result in game playing and interference among them. For example, a traffic-
free road section may become less traffic-free after being recommended to many drivers,
and the probability of this road section being recommended may decrease. The interfer-
ence makes it more difficult for TREDP and ASER to determine the driver’s preferred tra-
jectory. Meanwhile, TREDP considers the real-time relationship among driver-car-road,
thus TREDP has better recommended accuracy than ASER.
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Fig. 4. Comparison of the recommended accuracy with the change of |S| and |T |.

Fig. 5. Comparison of the recommended accuracy with the change of |D|.
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Fig. 6. Comparison of the computational efficiency with the change of |T |, |S| and |D|.

5.3. Computational Efficiency

Our computational overhead includes all computing and communication time for ASER
and TREDP. The experimental results are shown in Fig. 6, where the X-axes denote |T |,
|S| and |D| respectively, and Y-axes denote running time whose unit is millisecond (ms).

All calculations of ASER are on the edge. TREDP combines the computing resources
of both edge and cloud. Even TREDP consumes the communication cost of edge-cloud,
it still significantly reduces the computational overhead based on edge-cloud computing.
Therefore, our scheme TREDP consumes less time than ASER in Fig. 6. This shows that
our scheme is more suitable for large-scale traffic data. Meanwhile, rapid analysis can
provide drivers with trajectory recommendation services in a more timely manner.

6. Conclusion

The trajectory recommendation in intelligent transportation systems has broad application
value. This paper first proposes an edge-cloud computing traffic trajectory recommenda-
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tion framework to update data and iterate services. We then propose a traffic trajectory
recommendation scheme based on edge-cloud computing driver-car-road preferences for
improving driver satisfaction when using the system based on the framework. The data
analysed by this scheme is divided into two types. The first type is historical trajectory
data analysed by the cloud, and the other type considers driver-car-road real-time require-
ments analysed by the edge. By edge-cloud collaborative computing of these two types of
data, we provide drivers with timely and accurate trajectory recommendation services. Ex-
tensive experiments validate the effectiveness of our scheme and framework. Especially
when facing a sharp increase in data, our scheme still has stable, accurate and efficient
recommendation performance.

In the future, we plan to extend the scheme to more application scenarios and plan
to introduce tensor algebra to consider more high-dimensional information, in order to
further improve recommended accuracy.
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