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Abstract. Quantum computing has come to stay in our lives. Companies are investing billions of
dollars in it because of the potential benefits that it can achieve, providing promising applications in
almost every business sector. Although quantum computing is evolving at an exponential rate, the
development of tools, techniques, or frameworks for the evolution of current information systems
towards quantum software systems is still proving to be a challenge. This research contributes to
the evolution of current information systems towards hybrid information systems (combining the
classical and quantum computing paradigm). We propose a software modernization process, by fol-
lowing model-driven engineering principles, adapted to the quantum paradigm, based on modified
versions of standards for reverse engineering of classical, quantum software assets, and for the de-
sign of the target system. In particular, this paper focuses on the restructuring transformation from
KDM to UML models, where KDM models have been generated from Q# code. This proposal has
been validated through a case study involving 17 programmes. The results obtained show optimistic
values regarding the complexity of the UML models generated, their expressiveness and scalability.
The main implication of this research is that UML models can indeed help the software evolution
of/toward hybrid information systems.
Key words: quantum software engineering, software modernization, hybrid information systems,
model transformation, KDM, UML.

1. Introduction

The current state of quantum computing is the result of years of research by private com-
panies and public organizations. The interest in this new technology lies in its potential to
perform processing and computations at speeds that would otherwise take years to achieve,
even with today’s supercomputers (Courtland, 2017). This is mainly because quantum
computers are able to exploit some of the principles of quantum mechanics. This allows
them to employ unique new features, such as superposition and quantum entanglement
(Rieffel and Polak, 2011), that are applied to the quantum bits (“qubits”).
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It has been predicted that “services and software related to quantum computing will be
worth $1.9 billion in 2023 and this amount is estimated to have risen to $8 billion by 2027”
(Vernacchia, 2019). Perhaps in a few years or even months these values will have grown
or accelerated over time, but what is certain is that, at some point in the not-too-distant
future, most companies will adapt their classical information systems to accommodate
the quantum paradigm in order to remain competitive. This adaptation does not imply
a total discarding of their current “classical” systems, but rather an evolution of them.
What is certain is that quantum computing has the potential to help us solve problems at
speeds unattainable for today’s computers. Nevertheless, the problems that current quan-
tum computing can solve are still concrete and with very specific characteristics, which
means that not everything we run on a quantum computer is going to represent a gain
in performance compared to conventional computers (Aaronson, 2008). This implies that
information systems will evolve instead towards hybrid information systems (Piattini et
al., 2021; Jiménez-Navajas et al., 2020), i.e. combining current information systems with
quantum software.

The challenge of the evolution of information systems has already been faced before
and solved thanks to software modernization. However, software modernization must be
adapted to meet the underlying challenges of the evolution of/towards hybrid informa-
tion systems. This adaptation must be able to solve at least two problems. First, quantum
algorithms must be capable of being integrated into the information systems. Also, the
replacement of its counterparts (developed by following classical algorithmic) must take
place in an integrated way. Second, once the classical information has evolved, they must
permit the introduction in the target hybrid information system of new functionalities in-
spired and based on the quantum paradigm.

Although the field of quantum computing is still developing, the necessity for integrat-
ing quantum applications into classical information systems is already pressing (Kshetri,
2024; Kim et al., 2023), especially during the NISQ (Noisy Intermediate-Scale Quantum)
era (Preskill, 2018). Many quantum applications depend on dynamic interactions with
classical systems, where classical software not only generates quantum circuits based on
real-time data but also interprets and processes the output of quantum computations for
end-users (Zhao et al., 2024). This integration is essential for enabling hybrid information
systems that combine quantum and classical paradigms to address specific business needs
effectively (Pérez-Castillo et al., 2021b). For instance, optimizing complex operations,
such as logistics or financial modelling, often requires seamless communication between
the classical and quantum components, highlighting the urgency for robust software mod-
ernization approaches tailored to this emerging hybrid paradigm.

There exists a great diversity of programming languages and several quantum soft-
ware development platforms (Heim et al., 2020; Hevia et al., 2021), but practically none
are focused on quantum software modernization. An exception to this is a tool developed
(Pérez-Castillo et al., 2022a) on the pillars of Architecture-Driven Modernization (ADM)
(Pérez-Castillo et al., 2011a), which involves the evolution of traditional reengineering by
applying the principles of Model-Driven Engineering (MDE). The tool constitutes the sec-
ond phase of reengineering, i.e. restructuring. Within this phase, a transformation has been
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accomplished of models compliant with the Knowledge Discovery Metamodel (KDM) to
Unified Modelling Language (UML) models, as well as a generation of graphical activity
diagrams. The notation of activity diagrams has been chosen since the representation of
quantum programmes is similar to the representation of quantum circuits. Although this
representation of activity diagrams is not an abstraction with respect to a graphical repre-
sentation of a quantum circuit, it is an abstraction with regard to a quantum programme.
It should be noted that a quantum circuit cannot always represent all the elements of a
quantum programme, but a quantum programme can always implement a quantum circuit.
In addition, using this notation can be convenient both for professionals outside software
modelling (such as physicists and mathematicians) since it lies in an equivalent repre-
sentation to quantum circuits, and for professionals who do have experience in software
modelling, since UML is a well-known modelling language.

A preliminary study (Jiménez-Navajas et al., 2021) presented the automatic transfor-
mation of the representations (models) generated from quantum programmes to UML
models, thus partially addressing the second challenge. Consequently, managing UML
models addresses both challenges at the same time, since UML is already widely used in
the industry (e.g. there are many software engineers working with UML in software devel-
opments projects). Thus, UML will allow them to incorporate, modify or adapt quantum
functionalities in their current systems.

This paper proposes a model transformation from KDM models to UML models, ex-
tended for quantum computing. The primary research question focuses on determining,
through empirical validation, whether this transformation is effective and efficient for use
in hybrid software modernization processes.

The novel contribution of this work is twofold:

• The model transformation preliminary presented in Jiménez-Navajas et al. (2021) has
been technically improved with the following contributions:
– Transformation of different types of qubit declarations (including qubit tuples and

arrays).
– Improvements in the control flow, adding initial nodes and entry flows of the elements

passed as parameters of an operation.
– Transformation of more structures and datatypes through the implementation of new

rules and helpers (including the controlled and adjoint operations).
– Implementation of graphical activity diagrams generator using jsUML2.

• Empirical validation of the proposed model transformation through a case study which
involves 17 programmes developed in Microsoft’s quantum programming language Q#,
to thus demonstrate the feasibility and applicability of the KDM-to-UML transforma-
tion.

The structure of this paper will be as follows: Section 2 shows the current state of the
art of the core elements of this research, which belong to quantum computing and software
modernization. Section 3 explains the extensions accomplished in KDM and UML in or-
der to be able to represent all the different quantum entities in those metamodels. Section 4
describes how the quantum model transformation of KDM towards UML works. Section 5
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outlines the case study we conducted with the application of the model transformation and
activity diagram generation to various quantum algorithms. Finally, Section 6 describes
the implications of this research for practitioners and Section 7 depicts the conclusions
obtained and outlines possible future work.

2. State of the Art

This section is divided into four subsections. Section 2.1 gives a brief explanation of the
fundamentals of quantum computing. Section 2.2 relates how quantum software tech-
nology has emerged and evolved until its current state. Section 2.3 describes software
modernization, focusing mainly on UML, and how it can help solve the problems that
the evolution of hybrid information systems may entail. Section 2.4 covers how different
organizations will have to manage their legacy information systems and their evolution.

2.1. Quantum Computing Fundamentals

The field of quantum computing got a boost in 1982 when Richard Feynman proposed
developing a computer capable of simulating nature. At that time, it was already known
that nature at the subatomic level is subject to the laws of quantum mechanics. Therefore,
to best simulate nature, a computer that takes advantage of these laws is needed. These
new computers are quantum computers (Feynman, 2018).

Quantum computing represents a paradigm shift in how computations are performed
by leveraging the principles of quantum mechanics. Unlike classical computing, which
relies on bits representing binary states (0 or 1), quantum computing uses quantum bits
(qubits) that exist in superpositions of states. A qubit state is described as:

|ψ〉 = α|0〉 + β|1〉,

where α and β are complex probability amplitudes satisfying |α|2+|β|2 = 1. This enables
qubits to simultaneously represent multiple states, allowing quantum computers to explore
a vast solution space in parallel.

Qubits can be represented with different physics systems. For example, among other,
the spin of the electron in which the two states can be taken as spin up and spin down; or
the polarization of a single photon in which the two states can be taken to be the vertical
polarization and the horizontal polarization (Wojcieszyn, 2022).

A practical example to understand the power of quantum computing could be the prob-
lem to search for the shortest path between two points, which could have millions of pos-
sible routes (N). While a classical computer would need to go one by one analysing all the
paths until finding the desired one (this means N/2 steps or iterations), a quantum com-
puter takes advantage of quantum parallelism to consider several paths simultaneously
(i.e. in

√
N operations).

Another principle of quantum mechanics used by these computers is quantum entan-
glement. This principle causes that when two qubits are in this state, they will always be
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correlated to the measurement on the other qubit. This implies that the quantum state of
each qubit cannot be described independently of the quantum state of the other (Horodecki
et al., 2009). This is a key element of quantum communications.

Other important characteristic derived from superposition and entanglement is how
the result is measured for a particular qubit. When something is measured at the quantum
level, the quantum object that have been measured is no longer in a superposition of states,
rather it collapses to a single classical state (Yanofsky and Mannucci, 2008). This means
that once the spin of the electron or photon is measured (i.e. its value is observed), the
possible values for the qubit are 0 or 1, and this value is unmodifiable afterwards. Thus,
quantum computing initializes and uses qubits that work in the probability space until
these values are measured becoming actual values.

There are currently different ways of working with quantum computing, including
gate-based, adiabatic, and topological quantum computing among others, with the most
frequently used is gate-based quantum computing. Gate-based quantum computing works
in a similar way to the assembly language of conventional computers, where commands
act directly on the hardware. However, in this type of quantum computing such commands
are quantum gates which affect qubits by altering their properties (such as applying super-
position, entanglement, modifying their amplitude, etc.).

2.2. Quantum Software Technologies

Developing quantum programmes in the gate-base quantum computing paradigm is usu-
ally done through quantum circuits. In these quantum circuits, qubits are represented by
horizontal lines and, in order to alter their state (i.e. develop algorithms), quantum gates
are placed on top of the qubits. Depending on the type of gate that is applied on the qubit,
the qubit’s state will be altered in one way or another (e.g. with the Hadamard quantum
gate the qubit goes into a superposition state). Figure 1 shows an example of a quantum
circuit that represents the quantum teleportation algorithm where the lines labelled q00,
q01 and q02 represent the qubits, and the squares over those lines represent the quantum
gates. The squares with an “H” represent the Hadamard gate, and their function is to set
the qubits in a superposition state. The gates with a cross in the middle and connected to
another qubit are Controlled Not gates, whose function is to change the state of a qubit
(in this case, q02) if the value of the state of the other qubit (q01) is equal to 1. The black

Fig. 1. Quantum teleportation algorithm.
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gates with a semicircle and a line represent the measurement gate, which reveals the qubit’s
state. The green gate with an “X” is a Not gate and negates the state of the qubit. Finally,
the gate with a “Z” flips the phase of the qubit.

There is a great range of programming languages and frameworks that allow us to
work with this type of gate-based quantum programming languages, e.g. OpenQASM,
Q#, Qiskit (IBM), Cirq (Google), pyQuil (Rigetti), etc. (Heim et al., 2020; Garhwal et al.,
2021; Jimenez-Navajas et al., 2024b); as well as multiple development platforms, e.g. IBM
Q Experience, Quantum Programming Studio, QPath, DWave Leap, Amazon Bracket,
Orquestra, Strangeworks Quantum Computing, Classiq, or Quantum Inspire (Hevia et al.,
2021).

Unfortunately, the radical differences between quantum and classical software have
led mathematicians and scientists to follow non-systematic ways for developing quan-
tum software (Piattini et al., 2021). Nevertheless, with the advent of “industrial” quantum
software and its increasing use in many different business domains, a demand is grow-
ing for quantum software to be produced in a more systematic way (Dwivedi et al., 2024;
Pérez-Castillo et al., 2024). This much was stated in “The Talavera Manifesto for Quantum
Software Engineering and Programming” (Piattini et al., 2020) where it said that “given
the recent rapid advances in quantum hardware, it is urgent that we step up our efforts in
quantum software” (QuSoft, 2022). Similarly, the European Quantum Flagshipś Strategic
Research Agenda (Flagship, 2020) proposes to investigate the “development of software
stacks to integrate quantum computing into current computing environments”.

2.3. Software Modernization

Just like all technology, software is also affected by the course of time and, as a result, it
must be constantly updated (Ulrich, 2002). In the case of seeking to maintain the busi-
ness knowledge of such an information system, the use of reengineering might be useful.
“Reengineering allows the preservation of business knowledge, by carrying out the evo-
lutionary maintenance of the legacy information systems with low risks and low costs in
comparison with (re)development from scratch” (De Lucia et al., 2008). The reengineer-
ing process, usually represented as a horseshoe model (cf. Fig. 2), is a process divided
into three phases:

• Reverse engineering: all the different components which build the system, including its
interrelationships, are represented through abstract representations of the system.

• Restructuring: at the same relative abstraction level, a transformation of the represen-
tations of the system is carried out. Furthermore, the system’s internal structure can be
upgraded while the external behaviour of the system is preserved.

• Forward engineering: through means of the automatic generation of tools, the new
source and software artefacts are built at a lower abstraction level.

Furthermore, the code cannot be the only software asset that the standardization cov-
ers, since “the code does not contain all the information that is needed” (Müller et al.,
2000). As a way to ensure that the source code and business rules (i.e. the knowledge
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Fig. 2. The horseshoe model of the reengineering process (adapted from Pérez-Castillo et al., 2011a).

of the systems) are properly integrated, the reengineering process must be formalized.
Additionally, any possible failure in complex legacy systems must be avoided through a
reengineering process which is sufficiently mature and repeatable (Canfora and Di Penta,
2007), and to minimize the maintenance costs automated tools should be provided for this
reengineering process (Sneed, 2005). The evolution of software reengineering towards
Architecture-Driven Modernization (ADM) has addressed the aforementioned problems
(Ulrich and Newcomb, 2010). ADM applies the principles of Model-Driven Engineer-
ing (MDE) [33] in order to facilitate the modernization of tasks like analysis, refactoring
and transformation of an existing system in order to support new requirements, together
with the migration of systems or even their interoperability. The automatic transforma-
tion of abstract models accomplishes the different stages of software reengineering. The
computation-independent model (CIM), the platform-independent model (PIM), and the
platform-specific model (PSM) (see Fig. 2) are the most frequently employed models.
ADM introduces the KDM standard to provide a metamodel to represent all the knowl-
edge extracted by analysing software artefacts during reverse engineering, i.e. at PIM level.
Similarly, UML could be used as PIM during forward engineering.

The KDM specification has several perspectives and to facilitate its management, 4 lay-
ers were defined. Each layer uses outputs from the previous layer and, within each layer,
contains several packages representing different concerns related to legacy information
systems. Depending on the particular artefact to be analysed, one or another layer (with
its corresponding packages) will be used. As KDM has been used in this study to analyse
source code, the “Programme Elements” layer and its packages “Code” and “Action” have
therefore been used.



8 L. Jiménez-Navajas et al.

In order to address the need for the modernization of information systems that have suf-
fered from the passage of time and the possible obsolescence of the technology with which
they were developed, in 2009 the OMG presented the Knowledge Discovery Metamodel-
ISO/IEC 19506 (KDM) standard (Pérez-Castillo et al., 2011b).

KDM models all the software artifacts involved in a legacy information system, which
includes the source code of the information system itself, among other software artefacts.
The high abstraction KDM models means that they are able to represent, in a technology-
agnostic way, the different components as well as their interrelationships.

2.4. Software Modernization of Hybrid Information Systems

Once companies have access to quantum service providers to integrate some of their func-
tionalities into the new paradigm, they will then need to evaluate which components of
their information systems must be replaced or modernized. There are several reasons to
believe that companies will not completely replace their information systems, but will
rather opt for modernizing those systems (Pérez-Castillo et al., 2021b). Among other rea-
sons, it is only on certain problems that quantum computing can achieve performances
that are unattainable for classical computing. In short, not everything that we execute in
this new paradigm will necessarily imply an improvement in performance. Another reason
to think that this evolution will be partial only is that those “classical systems may embed
a vast amount of critical-mission knowledge that probably is not located elsewhere and
their replacement is highly risky” (Pérez-Castillo et al., 2022a). This raises the possibility
that in the future, classical and quantum information systems will be used together to form
hybrid information systems.

These hybrid information systems will be composed of two main parts, a classical
computing section that will implement all those functions that do not make sense to “quan-
tumfy”, and which will perform a transformation of the output of the quantum functions
into legible information, and a quantum computing part that will implement such func-
tions, either in the cloud or through simulations.

To carry out the modernization of the information systems of those organizations that
will need to embrace the quantum paradigm in order to remain competitive, it is neces-
sary to introduce quantum computing into the field of software engineering and, more
specifically, into the field of software modernization.

An adaptation of software modernization has already been proposed in Jiménez-
Navajas et al. (2020). In that solution, “quantum software reengineering” was presented,
and it was stated that it could help software modernization in three different scenarios (see
Fig. 3):

• To integrate existing quantum algorithms into the new hybrid information systems.
• To evolve the actual/classical legacy information systems toward hybrid information

systems.
• To implement new business operations supported by quantum software into the target

hybrid information systems.
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Fig. 3. Quantum software modernization approach.

Figure 3 shows the overall process of quantum software modernization. In this pro-
cess, it is intended to employ already existing standards such as KDM or UML. The first
phase, which can be seen on the left-hand side of Fig. 3, consists of reverse engineering,
where a model represents the different components of a system in a technology-agnostic
way. This model is built through the analysis of the artifacts of the classical system (sce-
nario 1) and quantum elements – if they exist (scenario 2). The second phase, which is
at the top centre of Fig. 3, is the restructuring and is the main scope of this study. In this
second phase the extended KDM models that were previously generated are transformed
into high-abstraction level models. The meta-model chosen was UML since it is a widely
known modelling language that has been widely embraced in the industry and which fol-
lows the technology-agnostic philosophy of the reverse engineering phase. Finally, on the
right-hand side of Fig. 3 the forward engineering phase is depicted. In this final step of
the quantum software modernization approach various tools could be used to automati-
cally generate code fragments of the hybrid system which was designed employing the
extended UML models.

The Quantum Software Modernization process can be used for any case that aims to the
evolution of a classical information system towards a hybrid one. A possible case would be
the modernization of a shipping routing system belonging to a logistics company, where
it is intended to implement a quantum algorithm that, taking advantage of quantum par-
allelism, calculates the optimal route (cf. Section 2.1). Firstly, the company could explore
the development of a quantum algorithm that calculates optimal routes (programmes for
similar problems already exist, at least for quantum annealing devices, Weinberg et al.,
2023). Secondly, once the quantum algorithm is developed, the company could have a
quantum programme, that needs to be operated almost manually. Finally, the company
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will need to integrate with other parts of the existing classical software systems. This is
crucial since the input parameters for the quantum algorithms come from those classical
systems. The output of the quantum algorithms is essential for the classical counterparts,
so users can make decisions based on them. In this scenario, the proposed software mod-
ernization process consists of:

• Reverse engineering to get the KDM model representing both the classical information
system and the quantum programme. This quantum programme could be an implemen-
tation of a quantum circuit in a quantum programming language, but not the graphical
quantum circuit. This is where the change of the abstraction level lies, as to model a
quantum programme in KDM, one necessarily must change the abstraction level.

• Based on a model transformation, the target hybrid information system is restructured.
In this phase, the UML representations of the quantum programme are integrated with
the classical system representations, resulting in the design of the target hybrid infor-
mation system.

• To cover all aspects of the model transformation, expert-based model refactoring would
be employed. In our example, the integration of classical software parameters, and quan-
tum response integration could be modelled.

• Finally, in the forward engineering phase, the source code backbone for the target hybrid
information system is generated, at least the backbone that can be then completed by
engineers.

As mentioned above, the notation of activity diagrams has been chosen since the rep-
resentation of quantum programmes is similar to the representation of quantum circuits.
However, it should be noted that the KDM models used in this proposal are not quan-
tum circuits, but quantum programmes. Quantum circuits are already an abstraction of
quantum code, as well as our representation based on UML. However, having quantum
programmes represented in UML is an advantage when dealing with the modernization
of information systems, as these UML quantum models can be integrated together with
the UML models of the classical information system.

3. Metamodel Extensions for Quantum Software

This section depicts the two extensions developed in KDM and UML that are needed to
represent the different quantum software elements. Section 3.1 presents how the KDM
standard was used to represent quantum entities employing its default extension mecha-
nism, i.e. the extension family. Then, Section 3.2 presents, among all the possible ways to
extend the UML standard, the Quantum UML Profile.

3.1. Quantum KDM Extension

Despite all the efforts of OMG and the Architecture-Driven Modernization Task Force
(ADMTF) to build a robust standard with the potential to represent all the components of
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Fig. 4. Q-KDM extracted from Jiménez-Navajas et al. (2020).

Table 1
Matching KDM elements with the defined ones of the extension family.

an information system that are needed to be modernized, they never considered the quan-
tum paradigm since quantum computing was not relevant in 2003 when the ADMTF was
formed. Therefore, it was necessary to “extend the KDM metamodel through its built-
in extension mechanism to support the representation of the different quantum entities”
(Jiménez-Navajas et al., 2020). The KDM’s default extension mechanism is the exten-
sion family, Fig. 4 depicts the different components within this mechanism that can be
found in a quantum programming language. The KDM extension is referred hereinafter
as “Q-KDM”.

Whenever quantum programmes are reverse engineered, the Q-KDM appears in the
KDM model of the quantum programme. In addition, each quantum component (i.e.
a quantum gate or a qubit) is also defined in the KDM metamodel according to its opera-
tion. Table 1 shows which elements defined in KDM correspond to those in the Q-KDM.
For example, if a qubit appears in a quantum algorithm, this qubit will be represented
in KDM as a StorableUnit or ParameterUnit and will also point to the extension fam-
ily stereotype “Qubit”. Associating quantum elements with their corresponding extension
family stereotypes allows us to extend the semantics of KDM, since stereotypes may be
used to indicate a difference in meaning or usage between two elements with identical
structures (Pérez-Castillo et al., 2011b). This is necessary since the elements of quantum
software are radically different from the elements that appear in classical software, which
forces us to extend the metamodel to preserve as much information as possible. In addi-
tion, it is preferred to use standards already embraced by the industry as these have greater
tool support and dominance by industry experts.
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The CodeModel element is assigned to the root element of every KDM model, as
this element has the aim of collecting the facts of the same programme, so the stereo-
type “Quantum Programme” was assigned. In Q#, the classical methods bear the name of
the operation (i.e. quantum operations), so as they can be called between them, and the
stereotype “Quantum Operation” was assigned to the CallableUnit element. Finally, the
ActionElement elements are those which describe a basic unit of behaviour. This definition
is suitable for quantum gates, so the “Quantum Gate” and “Qubit measure” stereotypes
were assigned to the ActionElements.

3.2. Quantum UML profile

For the restructuring phase of the Quantum Software Reengineering process (explained
in Section 2.4), the well-known UML standard was selected. The reengineering phase
consists of the generation of high-level models where the relevant redesigns for the sub-
sequent generation of the target hybrid information system are carried out. To perform
this task, UML (Group, 2017) was chosen as the modelling language given that it is such
a popular metamodel in the industry (it is a OMG and ISO/IEC standard), with a wide
variety of tools available and a large community of software engineers who are proficient
in this metamodel. It is worth highlighting the good results obtained when using UML for
the analysis and design of information systems.

During the design of hybrid information systems, may occur problems concerning the
representation of the new semantics and building blocks that quantum software can bring.
However, like KDM, UML is not designed to represent these certain elements that may
appear in a quantum algorithm, such as quantum gates or qubits. This is the reason why
it was necessary to create an extension of the metamodel. UML offers three extension
mechanisms (Ribo and Franch Gutiérrez, 2002):

• A new instance of the MOF model. This approach consists of creating a completely
new metamodel based on MOF. The result of this heavyweight approach is a new
Domain-Specific Modelling Language (DSML).

• Derivation of a new UML metamodel. This approach adds new metamodel elements
to the existing one. As occurs with the first approach, it creates a different metamodel,
but it at least considers the original UML metamodel as it is.

• UML Profile. This is a lightweight extension approach that is based on the UML built-
in extension mechanism, UML Profiling. UML profiles are created as a set of stereo-
types, tagged values, and constraints defined for some of the existing UML elements.

Of these three options, the last one was finally chosen – i.e. to extend UML through
the creation of a UML Profile. There were two reasons for implementing it in this way: all
models generated using such a profile will be fully compliant with the UML standard; and,
in addition, it is easier to maintain extensions that have been defined as UML profiles, since
the associated modelling tools do not need to be adjusted after each change. Furthermore,
there is already an UML quantum profile that represents quantum elements through class
and sequence diagrams (Pérez-Delgado and Perez-Gonzalez, 2020).
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Fig. 5. Quantum UML Profile extracted from Pérez-Castillo et al. (2021a).

The Quantum UML Profile previously proposed in Pérez-Castillo et al. (2021a) allows
the representation of quantum programmes through activity diagrams (see Fig. 5). On the
right-hand side of Fig. 5, the different stereotypes added to the metamodel to represent the
quantum components that might appear in a quantum programme can be seen: quantum
circuit, qubit, quantum gate, controlled qubit, measure, and reset. Then, on the left-hand
side of Fig. 5, an excerpt of the UML metamodel for representing Activity Diagrams is
shown. Finally, the arrows which point from the stereotypes to the different metaclass
elements indicate that the stereotype extends the properties of the metaclass elements.
The UML extension is referred hereinafter as “Q-UML”.

The root element of a model which represents a quantum circuit will be a metaclass
of type Activity with the «QuantumCircuit» stereotype. Inside this Activity, the qubits
are typified as ActivityPartition with the «Qubit» stereotype because it is intended that
the qubits are seen as horizontal lines where the quantum gates can be placed (as is done
by IBM Quantum Experience (IBM, 2024) or any circuit composer). The quantum gates
are represented by the metaclass Action but with the «QuantumGate» stereotype – but
depending on what action they perform on the qubits, different metaclasses and stereo-
types can be assigned. Further details of Q-UML can be seen in Pérez-Castillo et al.
(2021a).
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Fig. 6. Graphical representation of this study.

4. KDM to UML Model Transformation

This section presents the technical details for the proposed model transformation that is
then empirically validated in Section 5. The general view of the proposal is shown in
Fig. 6.

The left-hand side of Fig. 6 shows the ATL-based model transformation (explained in
Section 2.4), where extended KDM models are transformed into extended UML models.
Employing KDM models helps us to represent in a completely technology-agnostic way
the different components and interrelationships of information systems and, thanks to the
quantum extension family (explained in Section 3.1), it is now also possible to represent
the different components of quantum algorithms independently in technology and pro-
gramming languages. For this reason, the same technology-agnostic approach has been
followed for the later stages of the Quantum Software Reengineering process. The UML
models thus generated can be used for the later stages of analysis and design of the hybrid
information systems in restructuring and forward engineering stages. Represented on the
right-hand side of Fig. 6 is the activity diagram generation (explained in Section 3.2). This
second step in the study consists of the generation of concrete syntax from the abstract one
(the UML models built from the ATL model transformation) to generate graphical activity
diagrams.

4.1. ATL Model Transformation

The designed KDM-to-UML transformation was accomplished employing the ATLAS
Transformation Language (ATL) (Eclipse Foundation, 2024). ATL is “a model transfor-
mation language as a combination of declarative and imperative language that provides
mechanisms to produce a set of target models compliant with the specified metamodel,
from a set of source models” (Jouault et al., 2008). A programme developed in ATL is
composed of rules which define the transformation of the elements of the input metamodel.

The first step of the model transformation is to decide which metamodel will corre-
spond to the input and which one will be the output. In this model transformation we have
employed as the input the Q-KDM (i.e. the KDM extension already presented as input,
as explained in Section 3.1), and the ECORE metamodel for UML version 2.5.1, which
defines the abstract syntax of UML, as the output. This ECORE metamodel can be seen in
the Github repository of this technique1 and contains the UML model description compli-
ant with the Essential Meta Object Facility (EMOF) metamodel. The EMOF “provides a

1https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/uml.ecore

https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/uml.ecore
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Table 2
Summary of the transformation accomplished.

straightforward framework for mapping MOF models to implementations such as JMI and
XMI for simple metamodels” (Group, 2019). The UML metamodel is used as is, although
a quantum UML profile as depicted in Pérez-Castillo et al. (2021a) is used for modelling
quantum circuits as UML activity diagrams (cf. Section 3.2).

Once the input and output metamodels have been established, the ATL transformation
rules are designed. These rules identify the quantum entities and define their transforma-
tion into the previously assigned elements of the UML metamodel. The equivalences and
definitions of the Quantum UML Profile have been previously explained in Section 3.2.
This identification of the elements with the metamodel is essential for the transformation.

During the definition of the different rules for the transformation, a descending order
was followed, i.e. the rules for transforming those elements that group the rest were defined
first (e.g. the definition of a method groups a set of atomic operations and, at the same
time, the definition of a class can group several methods). In the case of KDM, the root
element is the Segment and the more atomic element is the actionRelation, which specifies
on which qubit a quantum gate has acted and its flow control.

Table 2 shows a short summary of the transformations that have been carried out,
where the Q# element that has been analysed is on the left-hand side, its KDM modelling
is in the central column, and its UML transformation is on the right-hand side.

4.1.1. Quantum Programme Rules
The CompilationUnit element is employed in KDM to represent the full quantum pro-
gramme. This is due to the fact that the CompilationUnit defines a container of all the
programme elements. This element has therefore been transformed into Interaction since
this last element groups all the elements or actions that share a common objective.

A simplified and graphic example of this transformation can be seen in Fig. 7. On the
left-hand side of the image, the input model defined in KDM is located that contains a
CompilationUnit and a qubit nested inside (with the attribute “name”) and a CallableUnit
(which has the attribute “name” that defines the name of such operation). In the middle
of the image there is the transformation programme with the CompUnit2Interaction rule,
where it is defined that the name of the output Interaction will be the same as the Compi-
lationUnit found in the input. Furthermore, in the same rule it is defined through OCL that
every codeElement in the input which has the type of CallableUnit will be transformed
into ownedBehavior with the same name.
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Fig. 7. Quantum programme rule transformation.

Fig. 8. StorableUnit to ActivityPartition.

4.1.2. Qubit Declaration Rules
The StorableUnit type was employed for defining the qubits in the Q-KDM model. This
is because, looking at it from another perspective, a qubit is nothing more than a variable
which stores a value. However, for the Q-UML model, those StorableUnits, as mentioned
before, have been transformed to ActivityPartition because the qubits in the final model
will be represented as horizontal lines on which the quantum gates (such as IBM Q Experi-
ence (IBM, 2024) or Quirk (Gidney, 2019)) can be placed, thus representing that a certain
quantum gate acts on a certain qubit.

The rule used to transform the StorableUnit into ActivityPartition can be seen in Fig. 8,
where the ActivityPartition simply has the same “name” attribute as the StorableUnit.

4.1.3. Quantum Gates and Execution Flow
All the quantum gates have been identified as ActionElement in Q-KDM since this kind
of element can be used whenever an element performs any action on other element (like
qubits under those gates are applied). Nevertheless, UML is provided with several ele-
ments in a way that allows for a more precise definition of the actions, i.e. depending on
the quantum gate employed in the algorithm, one or another element will be used.

The whole Hadamard’s gate transformation to Q-UML can be seen in Fig. 9. As it af-
fects only the state of a qubit, it has been defined as CallOperationAction in UML. This is
because CallOperationAction transmits an operation call request to a target object. On the
left-hand side of the image one can see the gate represented in Q-KDM with two attributes
(“name” and “id”) and three children (one “source” and two “actionRelation”). The ac-
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Fig. 9. StorableUnit to ActivityPartition.

tionRelation element of type Addresses points the “to” attribute to the qubit on which the
quantum gate is applied and to the gate that acts (i.e. itself). The actionRelation element of
type Flow specifies the flow that the information follows, where the “to” attribute points
to the quantum entity that precedes it.

In the middle of Fig. 9 one can see the two rules necessary for the transformation.
The upper part shows the rule for the transformation of Address to CallOperationAction
(to make it simpler, the methods that check whether such quantum gate is Hadamard or
not have been omitted), where the attributes of the output model defined in that rule are
“name” and “inPartition”. The “name” attribute specifies the name of the gate and is taken
from the element pointed to by its “from” attribute, and the “inPartition” attribute defines
on which qubit the quantum gate is acting, which, as mentioned before, explains why
the “to” attribute is used. In the lower middle part of the image, one can see the rule to
transform the actionRelation from Flow to ControlFlow type. The standard mechanism
of UML for specifying the flow of the information is by means of ControlFlow, therefore
this transformation is one of the most important. As a result, in order to define the target
and source of the flow of the information, the “to” and “from” attributes of Flow were
employed.

Finally, on the right-hand side of Fig. 9 one can see how the transformation ends
with CallOperationAction and ControlFlow – each one with its corresponding attributes.
Thanks to the bidirectionality of the transformation, the outgoing attribute is set automat-
ically in CallOperationAction due to the target attribute in ControlFlow. The real Q-UML
representation of the Hadamard’s gate can be seen in Fig. 10.

4.2. Activity Diagram Generation

As explained previously, the UML standard is defined as a metamodel compliant with
MOF (Meta-Object Facility). Every metamodel has two separate but related syntax: “i) an



18 L. Jiménez-Navajas et al.

Fig. 10. StorableUnit to ActivityPartition transformation.

abstract syntax that describes the concepts in the language, their characteristics and inter-
relationships; and ii) a concrete syntax that defines the specific textual or graphical nota-
tions required for the abstract elements” (Pérez-Castillo et al., 2021a). Although the ATL
model transformation can generate UML models from KDM, these UML models are the
abstract syntax representation. Whilst a second transformation from the abstract to the
concrete syntax representation allow to visualize the UML diagrams in a graphical way.

To carry out the graphical representation, several tools that perform the same pro-
cess of drawing an activity diagram based on a model were studied. Among the possi-
ble tools, this work considered Visual Paradigm (Paradigm, 2024) and jsUML2 (Romero,
2011). jsUML2 was chosen because it is an open-source library and it also has support
for designing use case, classes, and activity diagrams, among others, and has support for
JavaScript-based web applications. This entails the advantage of a better integration into
a REST API solution.

Although the quantum algorithms modelled with the Quantum UML Profile were valid
according to the standard, in order to represent them graphically with jsUML2, it was nec-
essary to modify the models so that the library would generate activity diagrams. Among
the different types of diagrams that jsUML2 allows to design, activity diagrams were cho-
sen for modelling quantum programmes according to the UML extension. This is because
the UML models built with the UML Profile belong to the abstract syntax specification
of UML activity diagrams.

Activity diagrams work can be seen in a similar way to the quantum circuits developed
with platforms such as IBM Quantum Experience or Quirk. The results of the definition
of a quantum programme named “TeleportationSample.qs” can be seen in Fig. 11.

Figure 12 shows the adaptation carried out, where the modification can be seen. There
are no more headers (from line 1 to line 5 in Fig. 11), and attributes such as “x”, “y”,
“width” or “height” appear, which define the visual attributes of the components of the
diagrams.

Afterwards, the definition of the operations (whose analogues are the traditional meth-
ods) and the qubits in the metamodel are carried out, as shown in Fig. 13. In line 1, we
can see the operation is declared with the type “uml:Activity”, and in line 2, the qubit is
declared with the type “uml:ActivityPartition”. The latter type will cause each qubit to be
represented by horizontal lines.

If we go back to Fig. 1, we can get an idea of how we want to visualize the qubits,
where each qubit used in the algorithm corresponds to a line and the quantum gates placed
above it indicate the operation that has been performed on each one. Each operation will
be represented by an “UMLActivity” (line 1 in Fig. 14) where the different elements of
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Fig. 11. Quantum programme UML definition.

Fig. 12. Activity programme adaptation.

Fig. 13. Programme operation and qubit declaration.

the circuit, including the qubits (from line 5 to 16 in Fig. 14), will be placed inside. The
representation of the qubits with the jsUML2 library is done with two components, with
line 5 of Fig. 14 showing the main component and each line (i.e. each qubit declared in
the operation) being specified by the type “Swimlane” (line 9), inside of which there will
be all the quantum gates that will operate on the qubit in question.

Next, a graphical representation of an activity diagram will be presented. For this, the
teleportation algorithm will be used. The Q-KDM model generated from QRev, as well as
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Fig. 14. Complete representation of an operation and two qubits declaration.

Fig. 15. Quantum Teleportation Algorithm.

the The Q-UML obtained from the transformation, can be seen in Jimenez-Navajas (2023).
The resulting image of the circuit can be seen in Fig. 15, where the three operations can
be found (Teleport, TeleportClassicalMessage and TeleportRandomMessage) and each of
the gates are located on the “Swimlane” which corresponds to the relevant qubit, including
their corresponding stereotypes as defined in the Quantum UML Profile.
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5. Case Study

This section will present a multi-case study to validate the KDM-to-UML transformation
proposed in the previous section and support the research question of this paper. Sec-
tion 5.1 depicts how the case study has been designed. Section 5.2 shows the answers
obtained from the research questions. Finally, Section 5.3 describes the evaluation of the
validity of the results obtained in order to answer the research questions.

5.1. Case Study Design

This case study has been designed and conducted following the protocol proposed by
Runeson and Höst (2009). Therefore, the following subsections have been divided in ac-
cordance with this protocol.

5.1.1. Rationale and Objectives
As explained previously, companies that could benefit from quantum computing will even-
tually have to evolve their information systems towards hybrid information systems. The
literature in this field suggests that software reengineering can help in this endeavour, and,
for this reason, an adaptation called “Quantum Software Reengineering” was created. In
this context, the restructuring phase is of great importance as organizations will be able
to design their information systems using UML diagrams generated from classical infor-
mation systems together with UML diagrams generated from quantum programmes.

The specific objectives of this case study are to determine whether it is possible to
generate (i) non-complex UML models, i.e. which are easy to understand and modify,
(ii) with enough expressiveness, and (iii) to check whether it is possible to transform KDM
into UML in a linear time. The main research hypothesis is that if those three conditions
are achieved, then the proposed model transformation can be used for the automation of
software modernization of hybrid information systems.

5.1.2. Research Questions
This study defines three research questions. Firstly, RQ1 is related to the complexity of
the UML models. Several studies have demonstrated that complexity is related to under-
standability and modifiability of outgoing models (Iacob et al., 2018; Cruz-Lemus et al.,
2010). This fact is important since UML models, obtained through a model transforma-
tion, might have to be modified to refine them and complete them with missing elements.
Also, a low complexity contributes to a better understanding, which is important in this
context of modernization of hybrid information systems since it might be not only ad-
dressed by software engineers, but also by professionals outside software modelling (such
as physicists and mathematicians experts in quantum computing). Secondly, RQ2 is re-
lated to the expressiveness of the output model and is introduced in this research as the
ratio of input models that are eventually transformed into output elements. Finally, RQ3 is
related to the efficiency of the model transformation. This focuses on scalability as regards
the size of the input models to thus demonstrate its applicability even to larger systems.
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This is because we do not have benchmarks of similar model transformations to compare
the transformation time:

• RQ1. How is the complexity of the UML models generated by the model transforma-
tion?

• RQ2. How expressive are the UML models generated by the model transformation?
• RQ3. How scalable is the model transformation for larger models?

5.1.3. Concepts and Measures
In this case study, several measures have been employed to answer the research questions
previously contemplated and to obtain the correct conclusions. Table 3 provides a sum-
mary of the study variables, indicating for each one: (i) the research question that it will
help to answer, (ii) the concept that will be measured, (iii) a short definition (or formula)
of the variable involved, (iv) the scale type, and (v) the range definition for all the possible
values.

The independent variable of the case under study is the output UML model generated
from each selected system, which is the unit of analysis. Regarding RQ1, the case study
considers various variables that are directly related to complexity. As Genero et al. (2004)
stated, there is a lack in the literature for validating metrics for UML activity diagrams. The
only paper which proposes some metrics for activity diagrams is Muñoz et al. (2010) but
this is related to the modelling of processes related to data warehouses. So, for evaluating
the output models we have had to consider measures used in similar output models for
assessing complexity (Iacob et al., 2018; Schütz et al., 2013; Caivano et al., 2018; Pérez-
Castillo et al., 2022b), as well as those measures proposed by Cruz-Lemus et al. (2021)
for measuring the understandability of quantum circuits, which is in fact what the UML
activity diagram represents.

• Size. This is defined as the set of elements or relationships in the output UML model.
It is distinguished as between elements (Sizeele) and relationships (Sizerel). Size is an
instrumental measure, but it is still associated with complexity (Iacob et al., 2018).
– Sizeele measures the size of the sets of quantum elements and their mechanisms for

aggrupation. The Activity represents a set of actions which have a specific purpose.
An ActivityPartition represents a qubit that will be declared within an activity and
which contains the different quantum gates that can act on it: the QuantumGates. The
number of constrainedElements is subtracted from the number of quantum gates.
This element indicates that a quantum gate has been represented by two elements
in UML. By subtracting these constraints we obtain the actual number of quantum
gates that have been transformed.

– Sizerel measures the size of the set of relationships in the respective model. The In-
Partition attribute of each quantum gate associates itself with the qubit on which it
acts. The outgoing and incoming attributes of the quantum gates indicate the flow
of the information, indicating where the information is coming from with incoming,
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and where it is going to with outgoing.

Sizeele = #Activity + #ActivityPartition + #(QuantumGates
− ConstrainedElement),

Sizerel = #InPartition + #Outgoing + #Incoming.

• Connectivity. This is the ratio between the total number of relationships and the total
number of elements.

Connectivity = Sizeele
Sizerel

.

• Density. This represents the ratio between the total number of relationships in a model
and the maximum number of possible arcs (considering UML models as directed
graphs). Both connectivity and density affect the complexity (and therefore the un-
derstandability and maintainability) in a negative manner (Caivano et al., 2018). This
means that lower connectivity and density values lead to UML models which are more
understandable and modifiable, thanks to a lower level of intricacy.

Density = Sizerel
Sizeele∗(Sizeele−1)

2

.

• Heterogeneity (entropy). This concept is related to the measure of relationships in the
UML model. It measures the diversity of the kind of elements or relationships used in
a certain UML model. Heterogeneity is directly related to complexity (Caivano et al.,
2018; Schütz et al., 2013).

Heterogeneityele = −
n∑

e=1

pe ∗ ln(pe),

Heterogeneityrel = −
n∑

r=1

pr ∗ ln(pr),

where pe corresponds to the relative frequency of element e, and pr corresponds to the
relative frequency of relation r .

With regard to RQ2, this evaluates the expressiveness that relates the output and input
model. For this purpose, the measurable concept is the amount of class elements in the
input model that are eventually transformed into one of the possible elements in the UML
model. This seeks to provide a numeric value for the number of elements in the input
models that were useful, and which were therefore transformed into some elements in
the output model. In summary, having this research question in mind, it is expected to
evaluate the amount of embedded knowledge that can be brought from the input model to
the output model. So, the input elements that the model transformation is able to identify
and transform into the target model.
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• Transformation ratio. This is defined as the ratio between the output size and the input
size for both elements and relationships. So, for the transformation ratio of elements it
is evaluated how many elements from the input are transformed in the output. This is
the same for the transformation ratio of relationships, calculated based on the number
of relationships in the input and the output.

Transformation ratioele = Sizeele
Sizeinput,ele

,

Transformation ratiorel = Sizerel
Sizeinput,rel

.

– Sizeinput,ele is the sum of the number of CallableUnit which represents a unit that
can be called, such as procedures or functions (in this case, Q#’s operations), the
number of ParameterUnit (the qubits sent through a parameter of the operation), the
number of StorableUnits which depicts the qubits declared in the CallableUnit, and
the number of ActionElements, which are the number of quantum gates.

Sizeinput,ele = #CallableUnit + #(ParameterUnit + StorableUnit)
+ #ActionElement.

– Sizeinput,rel is the sum of the number of Reads, which represent the number of times
that a “NOT” gate is applied onto another quantum gate, the number of Addresses,
which depict the number of times a quantum gate is applied to a qubit (that can be
a ParameterUnit or a StorableUnit), and the number of Flow, which represents the
flow of the information.

Sizeinput,rel = #Reads + #(Addresses + #Flow).

Finally, to assess RQ3, related to the study of the scalability, we consider the model trans-
formation time to be analysed in comparison with Sizeinput.

• Model transformation time is the total time spent by the ATL engine to execute the
proposed model transformation and generate the UML model.

• UML diagram generation time is the total time of generation of the activity diagram
from the UML model.

5.1.4. Case Selection
To evaluate the performance of the transformation of KDM models to UML and the gener-
ation of activity diagrams from the previously generated models, it is necessary to define
criteria for choosing the quantum programmes that will be used for the evaluation of this
project. Table 4 shows the criteria chosen to select the cases.

Criterion C1 is chosen due to the fact that this paper can be considered a continuation
of QRev (Pérez-Castillo et al., 2022a). Since the tool presented was initially designed for
analysing Q# programmes, the programmes employed for this case study were developed
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Table 3
Summary of the variables.

Table 4
Criteria for case selection.

in Q#. In addition, together with OpenQASM3 and OpenQASM2, Q# is the language with
the largest number of quantum algorithms available in an open-source manner. Finally,
the last reason for selecting this criterion is that the University of Castilla-La Mancha is
a Curriculum Partner in the Microsoft Quantum Network, being as such the first Spanish
university to belong to it (Microsoft, 2018). Criterion C2 was established because nor-
mally in Q# projects there are at least two Q# files, where the first file usually has no
quantum components and acts as an entry point with C# files (or any other language but
developed in the classical paradigm), and the second file has all the necessary quantum
functions implemented. This criterion is used to sieve the first files mentioned above so
as not to generate empty activity diagrams (as they do not have quantum components, but
their generation is correct) and so that their statistics can affect the metrics obtained. Fi-
nally, criterion C3 was chosen because, as mentioned above, this paper is a continuation of
QRev and to generate a model transformation in this case it was necessary to have KDM
models as input.

After applying the selection of cases based on the criteria mentioned in the previous
section, 17 programmes from the Microsoft Quantum Repository in Github were selected.
Table 5 shows the names of the chosen algorithms, the lines of code, and their link in the
Github repository.
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Table
5

Casesselected.
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Fig. 16. Case study protocol.

5.1.5. Case Study Protocol, Data Storage and Analysis
The study protocol defines how the selected cases were analysed and how the derived data
was collected and eventually analysed.

Figure 16 shows the case study protocol which mainly consists in two phases with
various steps. The first phase (the topside of Fig. 16) compromises the UML model
transformation and the activity diagram generation. Within this phase the steps are:
(i) cloning/downloading the Q# programmes from Microsoft’s GitHub repository (check
final repository in Jimenez-Navajas (2023)); (ii) adding them to the automatic test envi-
ronment; (iii) executing QRev in order to have the most up-to-date KDM models possible;
(iv) generating the UML model from the KDM model by means of the model transforma-
tion, and (v) transforming the UML model into activity diagrams based on the concrete
syntax of the jsUML2-based tool. This phase generates the following outputs:

• The KDM model generated from reverse engineering the Q# programme extracted from
the Microsoft’s GitHub repository.

• A file containing metrics from the KDM model. For this case study, a Java script was
developed to generate metrics, such as the number of certain KDM elements, which will
later help us for the comparison between the KDM and the UML model. The metrics
generated for each programme are then integrated into the global case study dataset.

• The UML model generated from the model transformation of the KDM model accom-
plished with ATL.

• The execution time for the model transformation.
• A file containing metrics from the UML model. As well as with the metrics extracted

from the KDM model, this file was obtained from a Java script. The metrics generated
for each programme are then integrated into the global case study dataset.

• The activity diagram generated based on the concrete syntax of the jsUML2.
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• The execution time for the generation of the activity diagram.

The second phase of the case study protocol (the bottom side of Fig. 16) concerns
the collection of the information and its integration in the whole dataset from the metrics
obtained in the previous phase. This last phase consists in two tasks:

• The integration into the common case study dataset and the comparison of the metrics
obtained from the KDM and UML models.

• The collection of execution times from the model transformation and the activity dia-
gram generation.

The main dataset containing the raw data of the case study and different models gener-
ated, as well as the script for the model transformation can be checked in Jimenez-Navajas
(2023). The Github’s repository of the technique can be seen in Jiménez-Navajas et al.
(2024a).

To complete the whole dataset, the application of the tool was done on a laptop with an
i7 10510U with 2.30 GHz, 16 GB of RAM and running on an SSD with Windows 11×64
bits. Table 6 shows the whole dataset completed after the model transformation and the
visual activity diagram generation employing the 17 cases selected. The first rows of Table
6 provide information about the input KDM models that were generated from QRev from
the Q# quantum code. Then, the model transformation time in seconds is provided. The
following set of rows provides a number of elements and relationships in the outgoing
UML quantum model. Finally, the bottom rows provide the three variables to be analysed:
complexity, expressiveness, and scalability. Furthermore, Table 6 also provides aggregated
values for every row with minimum, maximum, mean, and standard deviation.

To achieve the most accurate conclusions from the analysis of the data thus obtained,
two main methods of analysis were used for each research question:

• Descriptive statistics: these were used to analyse the numerical data obtained.
– RQ1 and RQ2: Descriptive statistics were employed for checking that the expected

results of measured values after the application of the tool were acceptable.
– RQ3: The descriptive statistics were used in this research question mainly for evalu-

ating the scalability through the variables related with size and time.
• Regression model: with this analysis the relationship between two variables is eval-

uated, where one variable is considered the dependent variable and the other as the
independent variable. Then, the correlation coefficient is computed with the Pearson’s
rank correlation test.
– RQ3: The regression model considers the time-related measure as the dependent

variable and the size as the independent one.

5.2. Analysis and Interpretation

This section presents the results of the analysis carried out for each research question,
along with the main insights derived. The following subsections attempt to answer each
research question.
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Fig. 17. Bar plot of the connectivity and density of the models.

5.2.1. RQ1. Complexity of the Output UML Models
In order to evaluate the complexity of the generated UML models, we first evaluated the
size of the output models. These models’ size varies from 6 to 65 elements, and from 3 to
81 relationships (see Table 6). It can be noticed that the size of the output models does not
provide valuable information to understand the complexity of the models since it depends
on the size of the input model. Thus, these values are aligned with the input size.

Subsequently, the values obtained from the heterogeneity of the output models were as-
sessed. These are, on average, 1.03 and 1.09 for elements and relationships, respectively
(see Table 6). These values being close to 1.0 means that the design entropy is under
control, which suggests that the complexity of the output UML models is appropriate.
Figure 17 summarizes results for connectivity and density of the generated UML mod-
els. Connectivity is on average 1.17, while density is only 0.17. Low density values are
correct since we can consider the output model with limited complexity, while a greater
connectivity is desirable. Anyways, in some cases connectivity is lower than expected,
which suggests that some relationships were missing during the model transformation.

Cases P10 and P15 are peculiar, since they have a very high density but a lower con-
nectivity. This may be due to the fact that the elements generated from the transformation
are independent of each other. For example, for P10 we can see that it has the same num-
ber of CallableUnit (methods) as ActionElement (quantum gates), but the methods do not
call each other, but are called from an external programme. Other cases like P5 present a
higher connectivity, which implies that the representation of the number of relations of the
KDM model is in accordance with the number of quantum gates represented. So, a lower
value could tell us that the transformation does not correctly follow the information flow.

Applying a more qualitative analysis, a complexity that depends on the size of a model
and an appropriate level of modularity mean that the target UML models are suitable
for modernizing hybrid information systems. Highly modularized and structured mod-
els, first, contribute to get a faster and better comprehension of the high-level design of
the software and, second, it facilitates the improvement and addition of new functionali-
ties during the restructuring phase. These qualitative insights can be noted analysing P1,
a highly modularized case. P1 is the one with the most heterogeneity of elements since it
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Fig. 18. Bar plot of the connectivity and density of the models.

can be observed that the number of Activity, ActivityPartition, and OwnedNodes is very
similar. The same happens for case P9, where the number of InPartition, Outgoing, and
Incoming relationships is very close. Having heterogeneity close to 1 implies that there
is no big difference between the number of elements, which may mean that the code is
well modularized (in the case of heterogeneity of elements) and structured. Figure 18
shows the representation of P1, one of the quantum programme with the highest degree
of heterogeneity of elements (1.07 over 1.10). A total of 7 functions can be seen in this
programme, demonstrating that this programme has a high level of modularization and
comprehensibility. However, P12 is the case with less heterogeneity of elements (0.85).
In this programme it can be seen how in the same method a large number of quantum op-
erations on different qubits are condensed into a few functions. This could imply, among
other things, difficulties in the maintenance and scalability of the software. This gives us
to understand that obtaining an average element heterogeneity degree of 1.03 is optimal.

In summary, answering to RQ1 with regards to the complexity of the output UML
models, these results suggest that the complexity of the generated models is affordable,
as the lower connectivity and density values lead to UML models which are more under-
standable and modifiable, thanks to a lower level of intricacy.

5.2.2. RQ2. Expresiveness of the Output UML Models
To assess the expressiveness of the generated UML models, the transformation ratio mea-
sure has been used. This will help us to answer whether the UML and KDM models
express the same thing. Figure 19 shows a bar chart where the transformation ratio of the
elements and relationships for each of the cases.

With respect to the transformation ratio of elements (blue bars in Fig. 19), it can be
observed that values very close to 1 have been obtained (being the P14 case the one with
the lowest transformation ratio with a value of 0.90). This indicates that most of the el-
ements (functions, quantum gates and qubits) that were represented in KDM have been
represented successfully in UML. However, if we look at the values obtained from the
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Fig. 19. Bar chart of the transformation ratio.

Fig. 20. CNOT gate representation in KDM.

ratio transformation ratio (orange bars in Fig. 19), most elements exceed the ratio of 1.5.
It might seem strange that the transformation ratio exceeds 1% in all cases. However, to
answer RQ2, this is nevertheless a reliable indication as UML generally needs more meta-
model elements to express the same information as KDM.

One reason why the transformation ratio is so high is due to the transformation of
the Controlled Not quantum gates. Figure 20 shows the declaration of a Controlled Not
quantum gate in KDM. This gate has two qubits as input and its function is to negate the
state of the second qubit, depending on the state of the first qubit. Line 4 of Fig. 20 is used
to represent which qubit is to be acted upon, and line 5 is used to determine which qubit
is to be read. In addition, line 7 is used to indicate which is the flow of information, i.e.
which is the next gate or component.

Figure 21 illustrates how the same quantum gate would be represented in UML. First,
we would need to declare the part that contains the attribute that reads the state of the
qubit (line 6 to 11). Then, the part of the quantum gate that changes the state of the qubit
is declared (line 1 to 5). As can be seen, both representations have the same ownedNode
label, which means that, in view of the numbers, one quantum gate is transformed into
two quantum gates. There are several other similar examples.
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Fig. 21. CNOT gate representation in UML.

Case P12 is a clear example of this. Figure 19 shows that P12 is the case with the
highest transformation ratio of relationships. As explained before, to represent quantum
gates in UML almost twice as many elements are needed than in KDM, so the number
of relationships of the data flow also increases. Figure 22 shows a comparison between
the method applyOracleFromFunctionOnCleanTarget of the P12 case in KDM and UML
through the Eclipse model viewer. In Fig. 22 A) there are represented in KDM a total of 4
quantum gates (one HY gate, two Controlled Not and one Hadamard gate). In Fig. 22 B)
the same quantum gates are found, but with their respective transformation. As explained
above, the Controlled Not gate is represented by two elements in UML, where the first one
indicates the reading of the qubit and the second one the action on the second qubit. Focus-
ing only on the representations of quantum gates in the different metamodels of Fig. 22, in
KDM there are 4 quantum gates while in UML there are 6. So the relationships needed to
represent the new gates, in addition to the relationship which indicates the starting point
of the data flow. All these factors lead to a higher level of relationships than the ones in
the KDM model. Therefore, having a transformation ratio of elements higher than 1 is
desirable to deduce that the expressivity of the output models with respect to the input is
appropriate.

Figure 19 C) shows the activity diagram of the applyOracleFromFunctionOnClean-
Target function. As explained previously, Controlled gates change the state of a qubit (in
this case, target) if the value of the state of the other qubit (control) is equal to 1. In UML,
it was decided to represent this gate with two elements: AcceptEventAction and SendSig-
nalAction. This represents an extension in the semantics of the quantum circuit itself, since
the UML element of type SendSignalAction represents the evaluation of the state of the
first qubit and the AcceptEventAction element represents the change in the state of the sec-
ond qubit according to the previous evaluation. This contribution of semantic value to the
representation of quantum programmes affects the number of elements that are generated
in the transformation.

Coming back to RQ2, the average transformation ratio of the elements is 0.93, if we
include the case (P11) that could not be generated in UML, or 0.98, if we do not include it.
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Fig. 22. Comparison between the method applyOracleFromFunctionOnCleanTarget in KDM and UML.

Regarding the transformation ratio of the relationships, it is an average of 1.85. This is an
acceptable value since, as explained above, the transformations of certain elements can
be duplicated in UML, so the number of relationships increases, thus reaching a rate of
200%. In conclusion, answering to RQ2 which concerns how is the expressiveness of the
UML models generated by the model transformation, it can be considered that, with about
an average transformation ratio close to 2, the models can be considered with a reasonable
expressiveness.

5.2.3. RQ3. Efficiency of the Tool
Finally, to answer what is the efficiency of the tool, several measures of the generation
were taken. In absolute terms, the transformation spent between 0.8 and 1.49 seconds
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Fig. 23. Scalability of the tool.

with an average time of 1.11 seconds for models that range between 12 and 92 elements
in the KDM models. The input models are small. Hence, as we stated in the introduction,
efficiency is primarily assessed in this study as the scalability of the model transformation,
i.e. its capability to be applied to larger models without increasing the time exponentially.
Therefore, Fig. 23 shows the scatter plot of the transformation time in seconds and the
total size of both the input and the output model. Together with the scatter plot, the lin-
ear regression lines are visualized with the correlation coefficient. Both correlation values
are high (close to 1), especially when considering the size of the UML model. This makes
plausible the existence of a linear correlation between the size of the models and the trans-
formation time. As a result, the answer for RQ3 is that the proposal is scalable for larger
models, as the tool might have a good performance regarding the generation time for larger
models.

Figure 23 shows that there are some outlier points regarding the hypothesized correla-
tion. Regarding the input KDM size (diamond points), there are mainly two outlier points
below the line, corresponding to cases P11 and P17. P11 is the only case that has not per-
formed the model transformation because it fails at some point (see Table 6), while P17 is
the one with the largest size of elements and relationships in both input and output models.
Additionally, there are some outlier points above the line (left hand side). This is due to
the fact that there is a common, constant time period spent in every model transformation,
for example, due to the ATL transformation engine.

5.3. Evaluation of Validity

This section discusses threats to the validity of the case study and possible actions to
mitigate them.

5.3.1. Construct Validity
The construct validity tries to ensure that the measures used in the case study are appro-
priate in order to draw conclusions that are useful to answer research questions. Measures
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previously used to evaluate the complexity of models similar to UML (e.g. ArchiMate
models for Enterprise Architecture) have been used in this study. However, the lack of al-
ternative measures in the literature to carry out an evaluation of the complexity of Q-UML
may have affected certain results in this study. This also applies to the threat of validity
with respect to the expressiveness of the generated models, as there are no measures that
assess the expressivity of quantum models.

We can find two main threats related to the model transformation process. The first
concerns its effectiveness, as there are no established metrics for validating the effective-
ness of a model transformation. This forced us to follow a strategy based on assessing
the model’s complexity and expressiveness, which may be considered a threat. The sec-
ond threat concerns efficiency, as there are no benchmarks with which to compare the
different times obtained in this study.

Finally, it should be noticed that the correlation and scatter plots used to evaluate the
hypothesized linear relationship (between the size/complexity of programmes and the ex-
ecution time) has been calculated with a limited number of measures. Hence, further repli-
cations by considering additional programmes will improve the insights of this study.

5.3.2. Internal Validity
Internal validity defines the degree to which conclusions can be drawn on the cause-effect
relationship (independent-dependent variables). One such fact that threatens internal va-
lidity is that all cases have been extracted from the same repository (Microsoft) and using
the same programming language (Q#). Possibly, if this same case study was replicated
with different programmes (for example Qiskit programmes), the result of the metrics
and their evaluation would be different. This thread was assumed due to the fact that the
available tool for generating KDM models from quantum software only supports the anal-
ysis of Q# code. Therefore, in the future, alternative tools or an evolution of this tool could
instead be used to generate alternative KDM models that may then be used as other input
in a replication of this study.

The reduced LOC of the quantum programmes selected in the study can be considered
as a threat, since it prevents generalizing results for larger programmes. Therefore, it would
be necessary to achieve more evidence for larger quantum programmes. However, this
is complicated since there is a lack of available open repositories of quantum software
projects. In addition, the quantum programmes, that are currently available, are not very
extensive and of course not comparable to classical software regarding the expected LOC.

5.3.3. External Validity
External validity helps us to define the degree to which the results achieved can be gen-
eralized when taking into account the population used and the other research parameters.
A total of 17 cases were used to evaluate the tool, which, as mentioned above, necessarily
had to be extracted from the Microsoft repository as this technique has been designed for
Q#. This can be considered a thread to the generalizability of the results. However, this
could be mitigated in the future by means of a replication of the study with programmes
developed in programming languages different from Q#. To do this, the tool will be ex-
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tended by incorporating KDM and UML analysis and model generation capabilities from
quantum software developed in other quantum programming languages.

In addition, another fact that may threaten external validity is that more quantum al-
gorithms are developed in Q# but cannot be generated in KDM. Of course, further ex-
perimentation might reveal more generalizable insights. Also, the type of programme can
affect the external validity of the case study, i.e. programmes which are purely quantum
algorithms have been analysed, while the entry points (which might be important in some
cases) have not.

5.3.4. Reliability
When we talk about construct reliability, we want to know how far the conclusions can
be regarded as statistically valid, i.e. whether the analysis and the results obtained are
independent of the researchers who conducted the study.

To ensure that the reliability of the study is not compromised, the possibility of using
the tool of this study to replicate the different tests is offered, as well as the data set accom-
plished in this case study (Jiménez-Navajas et al., 2024a). In addition, another measure to
mitigate the aforementioned threat was the selection of quantum programmes from rep-
utable and publicly available sources (such as the Microsoft repository) instead of using
Q# examples freely created by the community.

6. Discussions and Implications for Practitioners

This research has demonstrated that it is possible to generate quantum UML models from
quantum software previously reversed into KDM models. This can be seen as a major step
forward for software engineering as it brings model-driven engineering closer to quantum
computing and facilitates the evolution of today’s information systems towards hybrid
information systems combining classical and quantum software.

As mentioned above, during the history of the evolution of legacy systems, two main
problems have been encountered: lack of standardization and lack of automation. Both
problems have been addressed in this research. First, the transformation is carried out
between compliant models with well-known and industry-accepted standards, i.e. UML
and KDM. This implies that the models can be used in a wide variety of tools that facilitate
the analysis of hybrid information systems. Secondly, this research presents a tool for
performing the model transformation, ensuring the repeatability of the transformations.

Thanks to the case study carried out, several insights have been obtained from the
model transformation. Firstly, it has been found that the complexity and, so, its level of
modularity, of the UML models generated from the model transformation is affordable.
This means that the target UML models are suitable for modernizing hybrid information
systems, as they have a better comprehension of the high-level design of the software
and, second, it facilitates the improvement and addition of new functionalities during the
restructuring phase. Secondly, the metrics indicate that the expressiveness of the output
models is reasonable. So, this implies that the models generated do not suffer from a loss
of knowledge, which is a common issue in reengineering processes.
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Quantum software engineers have presented some efforts to adapt the MDE approach
to the field of quantum computing. Currently, there are already several adaptations of
metamodels to represent quantum programmes, such as UML (Pérez-Castillo et al.,
2021a) or BPMN (Weder et al., 2020), among others. However, quantum software model
transformations are not yet found in the literature, although it is a key aspect of MDE.
Automatic model transformation reduces the burden of other activities, such as reverse
engineering, view generation, application of patterns, or refactoring (Sendall and Koza-
czynski, 2003), which is essential when dealing with several perspectives of the system.
Model transformation is a fundamental part of MDE and in this research the first model
transformation representing quantum elements has been carried out (which, hopefully,
will be the first transformation of many more for the sake of MDE).

In this proposal, there are two main limitations. The first is related to the fact that this
proposal only generates activity diagrams using programmes developed in Q#. This is
a limitation for practitioners who develop quantum programmes in any other language.
Another limitation of the proposal is that only activity diagrams are generated. In the
case of looking for embedding quantum circuit (not quantum programmes) into hybrid
information systems, it may not be appropriate to just have representations of such circuits
in activity diagrams. Among other reasons, because these activity diagrams would not
facilitate the understanding or maintenance of these quantum circuits.

This research leads to several implications for academia and industry. Both must col-
laborate for the further development of MDE applied to the field of quantum computing,
either by developing new techniques or by giving feedback on how quantum software
development is performed. The use of models in industrial software development is com-
monplace, and the utilization of these models is a must for quantum software to be devel-
oped in an industrial and controlled manner (Piattini et al., 2020).

7. Conclusions

The interest in software modernization within the context of quantum software arises from
the pressing need to bridge the gap between classical and quantum paradigms, particu-
larly in the era of hybrid information systems. As quantum computing matures, its inte-
gration into existing classical infrastructures becomes essential to leverage its potential
while maintaining the critical knowledge embedded in legacy systems. This work con-
tributes to this objective by proposing and validating a model transformation approach
that facilitates the seamless incorporation of quantum functionalities into classical sys-
tems, ensuring scalability, compatibility, and maintainability. The growing adoption of
quantum technologies across diverse industries underscores the importance of this en-
deavour, as organizations strive to remain competitive and future-ready in an increasingly
quantum-enhanced landscape.

This first contribution of this research is a proposal to automatically transform KDM
models to UML in the context of quantum software modernization. The model transfor-
mation can generate UML activity diagrams that represent quantum circuits according
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to an UML profile. The second main contribution was the empirical validation of the
model transformation. In order to validate the proposal, 17 KDM models (generated from
programmes developed in Q#) were used to apply the model transformation. During the
validation, the complexity of the models generated, their expressiveness (i.e. whether the
models generated in UML express the same as the input models), and the scalability of
the transformation were evaluated.

The main benefit of generating quantum UML models is the fact that there is now a
widely accepted industry standard with a vast variety of applications and software engi-
neers working with it daily, and it therefore provides the ability for modelling quantum
algorithms. In the near future, when it is time to proceed with the design of hybrid in-
formation systems, software engineers may not need to know the details of how certain
quantum gates act with qubits, but this does not mean that they should not handle certain
models of quantum algorithms designed by other roles (closer to physics and mathematics)
to incorporate them into the final design of the system.

Regarding our future work, there are two main pathways to follow on the roadmap,
which are precisely related to the mentioned limitations. The first one is to generate more
types of diagrams apart from the activity ones, e.g. class diagrams for modelling designs
of hybrid systems. For accomplishing this, it will be studied which other possible diagrams
might be able to represent all the semantics of hybrid software. Additionally, the tool can
be seen as limited since it just analyses Q# code – even though the metrics obtained do
suggest a great performance. In this path of refining the tool we also include the addi-
tion of more quantum programming languages, such as OpenQASM3 or Qiskit (Python).
Additionally, the greatest challenge we need to confront is how to transfer the ideas and
techniques supported by QRev into a real environment, such as QPath (Peterssen et al.,
2022), which is a Quantum Software Development and Lifecycle Application Platform.

The second path on the roadmap is to continue with the Quantum Software Modern-
ization process explained before. Although only the forward engineering phase is yet to
be completed, other lines of research have already been opened, such as the generation of
new quantum UML diagrams or the enabling of the tool to model and transform quantum
annealing software (e.g. D-Wave code).
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