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Abstract. The accelerated progress of aquaponics offers a promising remedy for food production
in arid regions, where success heavily hinges on sustaining optimal water quality parameters of
aquaponic system. However, managing water parameters in large-scale aquaponic farms, given their
complex and interconnected nature, poses significant challenges. Various control approaches have
been introduced over the years, but selecting the most suitable one is vital for ensuring stability,
efficiency, and high productivity. In this study, a novel fuzzy-based Multiple Criteria Decision Mak-
ing (MCDM) methodology is proposed, which combines the Intuitionistic Fuzzy Ordinary Priority
Approach (OPA-IF) with the Neutrosophic-TOPSIS strategy. This methodology aims to identify
the most appropriate control strategy for large-scale aquaponic systems. The OPA-IF analysis re-
veals that the ‘Capability to Handle MIMO Systems’ is the most critical criterion, leading to the
conclusion, through the Neutrosophic-TOPSIS approach, that ‘Model Predictive Control (MPC)’ is
the optimal choice for managing large-scale aquaponic systems. Additionally, a comparative anal-
ysis using the BWM-Neutrosophic-TOPSIS strategy further supports the findings of the proposed
method. The results are further validated through statistical analysis and sensitivity testing, ensuring
their robustness and reliability. Overall, this study not only contributes to the scientific understand-
ing of control strategies in aquaponics but also offers practical insights for farmers and aquaponic
practitioners. The ultimate goal is to enhance the sustainability and efficiency of aquaponic systems,
promoting their adoption and long-term success in sustainable food production.
Key words: OPA-IF, TOPSIS, neutrosophic sets, aquaponic systems, control strategy.
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1. Introduction

Fulfilling the nutritional needs of an expanding global population, projected to reach
10 billion by 2050, stands as a significant global concern (Worldometer: https://www.
worldometers.info/world-population/ “Accessed 5 Feb 2024”). Various factors such as the
COVID-19 pandemic, conflicts, and erratic weather patterns due to climate change have
hindered progress toward achieving the first Millennium Development Goal of eradicat-
ing extreme poverty and hunger (WHO, 2000. Millennium Development Goals (MDGs)
[WWW Document]: https://www.who.int/topics/millennium_development_goals/about/
en/. Accessed 29 Nov 2000). The report from the State of Food Security and Nutrition in
the World (SOFI) indicates that since 2019, an additional 122 million people have faced
hunger, with the global hunger rate stabilizing between 2021 and 2022 but persistent crises
in many regions prompting calls for international action to address underlying causes
(Ewan Thomson. This is the state of food security in 2023: https://www.weforum.org/
agenda/2023/08/food-security-hunger-global/. Accessed 2 August 2023). Meeting the in-
creased food demands necessitated by a nearly 30% population growth requires a potential
50% rise in global food production (Ivanovich et al., 2023). However, various challenges
such as natural disasters, climate change, land degradation, rapid urbanization, unfair trade
practices, and others have significantly impeded food production rates (Basumatary et al.,
2023). According to forecasts by Kumar et al. (2023), even with endeavours aimed at en-
hancing crop yields and refining production methodologies, current trajectories indicate
that the global food demand might not be satisfied by 2050. Climate change alone is pro-
jected to lead to the loss of up to 18% of arable land by the end of the century, exacerbating
food insecurity in vulnerable regions (Qiu et al., 2023). These challenges underscore the
growing need for innovative practices, systems, and methods in the food production in-
dustry.

As a practical response to food and environmental challenges, aquaponics farming is
gaining increasing recognition as a means to rapidly boost food production without harm-
ing the environment. Aquaponics represents an eco-friendly and sustainable approach to
food production, leveraging the principles of the circular economy and biological systems
to maximize output while minimizing inputs and waste. It integrates two core production
methods: aquaculture, focusing on aquatic animal breeding, primarily fish, and hydro-
ponics, which involves growing plants without soil (refer to Fig. 1) (Baganz et al., 2022).
Within an aquaponic system, waste from aquatic animals is converted into organic fertil-
izers through microbial processes, while hydroponic plants purify the water by absorbing
nutrients, thus facilitating its recycling in the fish tank (Kushwaha et al., 2023). In essence,
aquaponics functions as an ecosystem where fish, plants, and microbes coexist symbiot-
ically, contributing to sustainable food production. To support crucial bacteria involved
in nutrient cycling and maintain system integrity, aquaponic setups prohibit chemical ad-
ditives and antibiotics, resulting in naturally healthy crops grown essentially organically
(David et al., 2022). Due to its closed circular nature, aquaponics enhances labour effi-
ciency and offers potential for sustainable output growth, thereby enhancing food security
and agricultural profitability (Thakur et al., 2023). Compared to conventional farming,
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Fig. 1. The aquaponic cycle.

aquaponics requires less land and water, making it a viable solution for arid regions and
contributing to economic development through its rapid production capabilities. Conse-
quently, aquaponics emerges as an innovative, low-carbon farming technique character-
ized by its intensity, sustainability, circularity, and high productivity (Okomoda et al.,
2023).

Aquaponic systems operate within a closed-loop water environment, hosting fish, mi-
croorganisms, and plants. The physical, chemical, and biological aspects of the circu-
lating water are crucial for the survival of all three components. Hence, it’s imperative
to maintain optimal water quality parameters to ensure the independent thriving of each
component. Fish growth rate in aquaponics holds significant importance with implica-
tions for ecology, evolution, and conservation. Key water quality factors affecting fish
growth encompass temperature, dissolved oxygen levels, water pH, ammonium concen-
tration, nitrate levels, and more (Krastanova et al., 2022). Temperature directly influences
fish metabolism, impacting energy balance, behaviour, appetite, digestion, energy produc-
tion, and nutrient absorption (Lindmark et al., 2022). Inadequate temperatures can lead
to fungal infections, affecting both juvenile and adult fish, potentially leading to egg and
larvae decay (Cascarano et al., 2021). Dissolved oxygen levels are critical for fish respira-
tion, essential for their survival. Water pH also influences fish growth, with slightly acidic
environments potentially impacting reproduction rates (Yanes et al., 2020). Ammonia is
a significant parameter in aquaponic systems, even small amounts can be highly toxic to
fish, especially in strongly acidic or alkaline conditions (Levit, 2010). Nitrate levels in wa-
ter also affect fish growth, particularly detrimental to fry and juvenile fish, impairing their
growth (Tilak et al., 2007). However, due to system dynamics and environmental factors,
these parameters often deviate from ideal values, causing stress, disease, and even death in
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fish, affecting the productivity and sustainability of the aquaponic systems (Anando et al.,
2022). Moreover, these water quality parameters are interconnected. Temperature affects
oxygen solubility in water, warmer water holding less dissolved oxygen (Butcher and Cov-
ington, 1995). pH influences ammonia toxicity, with its proportion of forms influenced by
pH levels (Levit, 2010). Understanding these relationships underscores the importance of
holistic system management in aquaponics. Maintaining optimal water quality parameters
is essential for promoting optimal fish growth, ensuring a stable, well-balanced environ-
ment that meets the physiological needs of fish and supports nutrient cycling for both fish
and plant health.

The nature of an aquaponic system, which integrates fish, microorganisms, and plants
within a closed-loop water environment, requires effective control strategies to maintain
optimal water quality parameters. As aquaponics continues to evolve and expand, espe-
cially towards industrial-scale operations, various control strategies can be implemented
to ensure the success of the system. However, selecting the most appropriate control ap-
proach is crucial for achieving the best outcomes, considering some specific criteria of the
aquaponic system. One essential aspect to consider when choosing control strategies is the
size and scale of the aquaponic system. Smaller-scale systems may require more hands-
on, manual control methods, while larger industrial systems can benefit from automated or
semi-automated control systems. Automation can help monitor and regulate water quality
parameters more efficiently, reducing the need for constant human intervention and en-
suring consistent conditions for the aquatic and plant components (Channa et al., 2024).
Another factor to consider is the complexity of the system and the interrelationships be-
tween its components. Aquaponic systems are dynamic and interconnected, with changes
in one component affecting others. Control strategies should account for these interac-
tions to maintain balance and harmony within the system (Rossi et al., 2024). Addition-
ally, the specific requirements of the fish and plant species being cultivated should inform
control strategies. Different species have varying tolerance levels for factors such as tem-
perature, pH, and nutrient concentrations. Tailoring control approaches to meet the needs
of the organisms within the system is essential for maximizing growth and productivity
while minimizing stress and potential health issues (Lennard and Goddek, 2019). Further-
more, the availability of resources, technology, and expertise will influence the selection
of control strategies. Some systems may have access to advanced monitoring equipment,
data analysis tools, and specialized knowledge, allowing for more sophisticated control
approaches. In contrast, others may rely on simpler, more cost-effective methods that pri-
oritize basic water quality monitoring and manual intervention (Rossi et al., 2024). Ul-
timately, the objective of selecting control strategies in aquaponics is to enhance system
performance, productivity, and sustainability while minimizing risks and resource usage.
With a plethora of options available, including ON-OFF control, open-loop control, PID
control, model predictive control, rule-based control, programmable logic control, and
others, determining the most suitable approach can be challenging. Consequently, ensur-
ing long-term success and achieving desired outcomes requires careful consideration and
evaluation of these various control methods and selecting the best one.
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1.1. Literature Review

A comprehensive review of the existing literature has been conducted to identify and de-
fine the problem statement surrounding control strategies in aquaponic systems. Goddek
et al. (2015) highlight the various challenges involved in implementing effective control
strategies within aquaponic systems, emphasizing the unique complexities of these en-
vironments. Similarly, Yep and Zheng (2019) provide a review that addresses the chal-
lenges faced when applying control systems in aquaponics, noting the intricate nature of
the system and the difficulties in achieving effective regulation. Okomoda et al. (2023)
offer an in-depth discussion of the challenges associated with the adoption of aquaponics,
focusing on the inherent complexities such as nonlinear behaviour, the Multi-Input Multi-
Output (MIMO) characteristics of the system, and other system-specific intricacies. Ad-
ditionally, Ng and Mahkeswaran (2024) examine the technological barriers in aquaponic
systems, which further complicate the implementation of control strategies, thus limit-
ing their potential for optimization. Through this extensive analysis, it became evident
that, given the complexities and challenges identified in the literature, there is a pressing
need to explore and identify suitable control approaches that can address the unique needs
of large-scale aquaponic systems. The ultimate objective of the study is to enhance the
production efficiency, profitability, and sustainability of aquaponic systems—goals that
cannot be achieved without the effective implementation of control strategies. Therefore,
addressing this issue and selecting the most appropriate control strategy for large-scale
applications is the central focus of our research.

In recent years, there has been a notable increase in proposals for control mechanisms
designed specifically for aquaponic systems. These mechanisms employ a variety of strate-
gies, including ON-OFF control, Rule-based control, Open-loop control, PID (Propor-
tional Integral Derivative), MPC (Model Predictive Control), and PLC (Programmable
logic control), each offering unique advantages and applications. However, a significant
portion of these proposals focuses on small-scale aquaponic setups, such as kitchen gar-
dens, indoor aquaponic farming, and balcony gardening. In response to the growing inter-
est in small-scale aquaponics, researchers have begun integrating Artificial Intelligence
(AI) and Internet of Things (IoT) technologies with traditional ON-OFF control methods.
For instance, Vernandhes et al. (2017) introduced a smart aquaponics monitoring and con-
trol system utilizing a sensor network for water quality parameters, managed through a mi-
crocontroller. Similarly, Dutta et al. (2018) and Zamora-Izquierdo et al. (2019) integrated
IoT technology and sensor networks to regulate water quality parameters. Khaoula et al.
(2021) implemented an IoT-based solution for monitoring and controlling water quality
and environmental parameters using sensors for water level, temperature, and CO2, along
with actuators. Additionally, Channa et al. (2024) explored the integration of Artificial
Intelligence and IoT in a smart aquaponics system to monitor and control essential param-
eters using Rule-based Control approach. While, much of the focus remains on control
mechanisms for small-scale aquaponic systems, there is also emerging interest in apply-
ing machine learning techniques for aquaponic setups. Debroy and Seban (2022a, 2022b)
proposed prediction methods for fish weight estimation using Artificial Neural Network
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(ANN) and its hybrid with fuzzy logic (ANFIS), as well as ANN models for predicting
tomato biomass in aquaponic systems, respectively. Eneh et al. (2023) presented a yield
prediction method for aquaponic systems employing various machine learning algorithms.
Furthermore, Rajendiran and Rethnaraj (2024) discussed a study on IoT-integrated Ma-
chine Learning-based Indoor Aquaponics farming.

Recent studies have focused on employing PID (Proportional Integral Derivative) con-
trol strategies in aquaponics to efficiently regulate specific water quality parameters. For
example, Alipon et al. (2021) introduced a design for an automated fertigation system
that monitors photoperiod and nutrient consumption, employing a Proportional-Integral-
Derivative (PID) system. Li et al. (2022) applied PID control to regulate dissolved oxygen
concentration in aquaponic recirculating water. Kim et al. (2023) presented a Dissolved
Oxygen (DO) management system for aquaponic systems using PI and PID controllers.
Kannabiran et al. (2024) suggested that a PI controller demonstrated robustness in main-
taining pH levels within the desired range under varying operating conditions. Wei et
al. (2019) proposed a laboratory-based aquaponic system utilizing PLC (Programmable
Logic Controller) and LabVIEW. Another study by Selvalakshmi et al. (2023) developed
a PLC-based approach for a small-scale aquaponic system. Chahid et al. (2021) conducted
a comparative analysis of four Model Predictive Control (MPC) strategies for fish growth
reference tracking using a representative bioenergetic growth model in precision aqua-
culture. Ding et al. (2018) explored the opportunities and challenges associated with im-
plementing MPC in aquaponic systems. Lin et al. (2020) proposes the use of open-loop
control and Model Predictive Control (MPC) for managing greenhouse parameters. Sim-
ilarly, Debroy et al. (2024a) present an MPC-based strategy for controlling aquaponic
greenhouse parameters, and they also provide a comparison of this approach with a tra-
ditional PI controller. Another publication by Debroy et al. (2024c) presents a similar
MPC-based strategy, but for controlling water quality parameters in aquaponic systems,
and again, they compare this method with a conventional PI controller. In a recent study by
Debroy et al. (2024b), the authors employed Multi-Criteria Decision Making (MCDM)
techniques to identify the most suitable water quality parameter for an aquaponic sys-
tem. Their research aimed to evaluate and prioritize various water quality indicators by
considering multiple criteria, ultimately selecting the one most critical for ensuring the
optimal functioning and sustainability of aquaponics. The application of MCDM in this
context provides a structured approach to decision-making, helping to balance and assess
the different factors that influence water quality in aquaponic environments.

1.2. Research Gap

The existing literature clearly demonstrates the profound impact of integrating aquaculture
and hydroponics within aquaponics systems on the reliance of fish growth and yield on wa-
ter quality parameters. Maintaining these parameters at optimal levels is imperative for the
success and productivity of aquaponic systems. However, previous research has predomi-
nantly focused on monitoring and controlling small-scale smart aquaponics setups, often
employing various control approaches. While some studies have ventured into incorporat-
ing IoT-based machine learning methods to predict yields and manage system parameters,
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the diverse array of control approaches utilized poses a significant challenge in determin-
ing the most suitable one for broader application in aquaponic systems. This variability in
control strategies further complicates the selection process, particularly when considering
implementation in larger-scale aquaponic operations. Moreover, the predominant empha-
sis on small-scale setups in past research exacerbates the difficulty in identifying the ideal
control approach for industrial-scale aquaponics. The lack of specific research tailored to
the unique requirements and complexities of large-scale systems underscores a notable gap
in the current literature. Consequently, a critical research question arises: Which control
strategy is most pertinent for implementation in large-scale aquaponic systems?

Addressing this research gap is paramount for advancing our understanding of opti-
mal control strategies tailored to industrial-scale aquaponics. Such advancements are vital
for improving the sustainability, productivity, and viability of large-scale aquaponic op-
erations in real-world applications. Therefore, bridging this gap is essential for driving
progress in the field and ensuring the successful integration of aquaponics into broader
agricultural practices.

1.3. Objective of the Study

Aquaponics stands as a sustainable farming method, marrying aquaculture with hydro-
ponics to create a harmonious ecosystem. In this system, fish waste provides nutrients
for plants, while plants filter and purify the water for the fish. Given the intricate balance
required, understanding water quality parameters is paramount, as they directly impact
the health and growth of both fish and plants. However, these parameters are susceptible
to fluctuations due to external factors and are interrelated, necessitating a careful bal-
ance. To tackle these challenges, a robust control strategy is imperative. Moreover, with
aquaponics poised for larger-scale adoption, selecting the optimal control approach is cru-
cial, given its promising future prospects. Therefore, the primary objective of this study
is to determine the most effective control strategy tailored specifically for industrial-scale
aquaponic systems. The overarching goal is to optimize production, enhance system stabil-
ity, and maximize profitability within these large-scale operations. By identifying the most
effective control strategy tailored to the unique requirements of industrial-scale aquaponic
systems, this study aims to drive advancements in aquaponic technology and contribute
to the sustainable development of agriculture. Ultimately, the findings of this research
have the potential to significantly impact the future of food production by enabling the
scalable and profitable implementation of aquaponic systems on a large scale. Advanc-
ing aquaponic systems through effective control measures holds immense promise in ad-
dressing the looming challenges of global food demands and hunger. It can significantly
contribute to enhancing food security worldwide by providing a sustainable and efficient
method of agricultural production. Thus, the elaboration of this study underscores its po-
tential to revolutionize food production practices and address critical global challenges.

This study aims to introduce a novel hybrid Multiple Criteria Decision Making
(MCDM) model tailored to identify the most effective control approach for large-scale
aquaponic systems. The proposed approach, named OPA-IF-Neutrosophic-TOPSIS un-
der SVNS Environment, integrates various decision-making techniques into a cohesive
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framework—a concept not yet explored in existing literature. In this hybrid model, criteria
weights are determined using the Intuitionistic Fuzzy ordinal priority Approach (OPA-IF).
Subsequently, the ranking of alternatives is refined through the use of TOPSIS within a
Neutrosophic fuzzy environment. This comprehensive methodology provides a fresh per-
spective on optimizing decision-making processes in aquaponic systems by synergistically
leveraging diverse analytical tools.

In 2020, Ataei et al. introduced the MCDM method known as OPA (Ordinal Prior-
ity Approach), representing a departure from traditional pairwise comparisons. Building
upon this, Mahmoudi et al. (2022) developed OPA-F (Fuzzy ordinal priority Approach)
in 2022. This approach eliminates the need for pairwise comparisons, automatically esti-
mates attribute weights, and integrates observations without averaging them. However,
traditional fuzzy sets face challenges in precisely determining membership mappings,
particularly under specific circumstances (Chiao, 2016). To address this limitation, in-
tuitionistic fuzzy sets (IFSs) were introduced. IFSs specify both membership and non-
membership degrees of elements within a fuzzy set, thereby accommodating ambiguity
levels (Jin et al., 2016; Wan et al., 2016). In 2024, Majumder and Salomon introduced the
Intuitionistic Fuzzy Ordinal Priority Approach (OPA-IF) to better handle uncertainty in
decision-making. This method extends the traditional OPA and OPA-F by using triangu-
lar intuitionistic fuzzy sets (TIFS) instead of standard fuzzy sets, addressing challenges in
determining exact membership values. Unlike OPA-F, OPA-IF relies on ranks rather than
weights for criteria, offering a more flexible approach. The study combines OPA-IF with
the OPA-F method to improve Multi-Criteria Decision-Making (MCDM) in aquaponic
systems, effectively managing ambiguity and optimizing decision outcomes.

In this study, the TOPSIS (Technique for Order of Preference by Similarity to Ideal
Solution) method, as delineated in the primary reference (Hwang et al., 1981), is utilized
to ascertain the optimal option. The process of assigning criteria weights is guided by
TrF-FOCUM (Majumder, 2023), facilitating this determination. The rationale for opting
for Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) stems
from its user-friendly interface and its adaptability to meet both qualitative and quan-
titative requirements. By evaluating each option based on its best and worst outcomes,
TOPSIS contributes to a more robust ranking outcome. Furthermore, it can incorporate
cost-benefit considerations, rendering it suitable for scenarios where the interaction be-
tween performance and cost is significant. While previous research has extensively delved
into fuzzy and intuitionistic fuzzy Multiple Criteria Decision Making (MCDM) prob-
lems, the growing recognition of ambiguity’s role in MCDM complexities highlights the
need to incorporate Neutrosophic sets. Neutrosophic sets are adept at addressing environ-
ments characterized by uncertainty, indeterminacy, and inconsistency within the MCDM
methodology. Despite the attention dedicated to challenges posed by fuzzy and intuition-
istic fuzzy MCDM, integrating indeterminacy into the realm of MCDM complexities is
deemed crucial. In 2023, Neutrosophic-TOPSIS was developed by Pramanik et al. (2023)
to determine alternative rankings, marking a significant advancement in tackling the in-
tricacies of decision-making under uncertainty.



OPA-IF-Neutrosophic-TOPSIS Strategy under SVNS Environment Approach 9

1.4. Advantage and Novelty

The hybrid approach that integrates the Neutrosophic-TOPSIS strategy for assessing alter-
native levels within a Single Valued Neutrosophic (SVN) framework with the Intuitionistic
Fuzzy-Ordinary priority approach (OPA-IF) for evaluating criteria levels offers numerous
advantages:

I. This method adeptly manages uncertainty within SVN contexts by leveraging both
OPA-IF and Neutrosophic logic. Neutrosophic logic addresses uncertainty at the al-
ternative level, while OPA-IF tackles uncertainty at the criteria level, ensuring com-
prehensive treatment of ambiguity throughout decision-making.

II. By eliminating the need for pairwise comparisons among attributes, this paradigm
streamlines the decision-making process, making it more straightforward and effi-
cient.

III. The Neutrosophic-TOPSIS technique boosts the decision-making process’s re-
silience to ambiguity by explicitly considering degrees of truth, indeterminacy, and
falsehood at the alternative level. This ensures the reliability of decision outcomes,
even amidst unclear or ambiguous information.

IV. Adopting a multi-criteria approach enhances the generation of logical and depend-
able conclusions, especially in scenarios with unclear or inconsistent input parame-
ters.

V. Beyond providing a novel approach for multi-criteria evaluation, the MCDM tool
fosters sound and productive decision-making by promoting logical and evidence-
based reasoning.

VI. Addressing expert bias poses a significant challenge in decision-making, particularly
in subjective scenarios or when experts lack sufficient knowledge or experience. In
such cases, traditional pairwise comparison methods may yield unreliable or incon-
sistent results, undermining the process’s credibility and reliability.

VII. The MCDM technique evaluates and ranks control approaches in a Neutrosophic
manner. It is noteworthy that employing various fuzzy set extensions, such as hesi-
tant, spherical, and picture, may introduce specific additional constraints or limita-
tions.

2. Initial Preparations

The Preliminary section comprises two segments: the first delves into Intuitionistic Fuzzy
Sets (IFS), while the second explores Single Valued Neutrosophic Sets (SVNS), outlined
in Sections 2.1 and 2.2, respectively.

2.1. Preliminary of IFS

Fuzzy Sets (FS), as introduced by Zadeh (1965), along with Intuitionistic Fuzzy Sets (IFS),
pioneered by Atanassov and Stoeva (1986), or their extensions, are commonly employed
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to manage information characterized by incompleteness and imprecision. Mardani et al.
(2015) offer an outline of various fuzzy Multiple Criteria Decision Making (MCDM)
methodologies. Within this framework, several fundamental notions are utilized in con-
structing OPA-IF.

Definition 1. Assuming Z ≠ { } is a set, the intuitionistic fuzzy set in Z has the property
Y given by, Ỹ = {︁⟨︁

y, αȲ (y), βȲ (y)
⟩︁; y ∈ Y

}︁
as long as, αȲ : Z → {0, 1} ∪ (0, 1) and

βȲ : Z → {0, 1} ∪ (0, 1) meet the condition αȲ (y) + βȲ (y) ∈ {0, 1} ∪ (0, 1).

Definition 2. Within the realm of Triangular Intuitionistic Fuzzy Numbers (TIFN), the
membership function and non-membership mapping below elucidate the intuitionistic
fuzzy subset Ỹ in the set of real numbers R.

αȲ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y − wv

wu − wv
, for wv ⩽ y ⩽ wu,

wt − y

wt − wu
, for wu ⩽ y ⩽ wt,

0, otherwise;
and

βȲ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wu − x

wu − w′ v , for w′ v ⩽ y ⩽ wu,

x − wu

w′ t − wu
, for wu ⩽ y ⩽ w′ t ,

1, otherwise,

where w′ v ⩽ wv ⩽ wu ⩽ wt ⩽ w′ t and αȲ (y) + βȲ (y) ∈ {0, 1} ∪ (0, 1) an Ỹ =
(wv,wu,wt ; w′ v, wu,w′ t ) represents TIFN.

Definition 3. If Ỹ1 = (wv
1 , wu

1 , wt
1; w′ v

1 , wu
1 , w′ t

1 ) and Ỹ2 = (wv
2 , wu

2 , wt
2; w′ v

2 , wu
2 , w′ t

2 )

be two TIFNs, then

(i) Ỹ1 + Ỹ2 = (︁
wv

1 + wv
2 , wu

1 + wu
2 , wt

1 + wt
2; w′ v

1 + w′ v
2 , wu

1 + wu
2 , w′ t

1 + w′ t
2

)︁;
(ii) Ỹ1Ỹ2 = (︁

wv
1wv

2 , wu
1wu

2 , wt
1w

t
2; w′ v

1 w′ v
2 , wu

1wu
2 , w′ t

1 w′ t
2

)︁;
(iii) Ỹ1/Ỹ2 = (︁

wv
1/wt

2, w
u
1/wu

2 , wt
1/w

v
2; w′ v

1 /w′ t
2 , wu

1/wu
2 , w′ t

1 /w′ v
2

)︁;
(iv) Ỹ1 − Ỹ = (︁

wv
1 − wt

2, w
u
1 − wu

2 , wt
1 − wv

2; w′ v
1 − w′ t

2 , wu
1 − wu

2 , w′ t
1 − w′ v

2

)︁;
(v) p × Ỹ1 = (︁

p × wv
1 , p × wu

1 , p × wt
1; p × w′ v

1 , p × wu
1 , p × w′ t

1

)︁
, p ∈ R+.

2.2. Preliminary of Single Valued Neutrosophic Set (SVNS)

Smarandache (1998) laid the foundation for Neutrosophic Sets in 1998, which was later
built upon by Wang et al. (2010) with the introduction of Single-Valued Neutrosophic Sets
(SVNS). This concept aimed to address situations marked by uncertainty and incomplete
data.
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The following definition outlines an SVNS Θ defined over a specified set G:

Θ = {︁(︁
n, Pm(n),Qm(n), Sm(n)

)︁ : n ∈ G
}︁
,

where Pm : R → {0, 1} ∪ (0, 1), Qm : R → {0, 1} ∪ (0, 1), Sm : R → {0, 1} ∪ (0, 1) and
so 0 ⩽ Pm(n) + Qm(n) + Sm(n) ⩽ 3. If an SVNS Θ over a given set G, we refer to the
triplet (Pm(n),Qm(n), Sm(n)) as a Single-Valued Neutrosophic Number (SVNN).

Mandal and Basu (2019) proposed a new scoring function designed to tackle Multi-
ple Attribute Decision Making (MADM) challenges within the SVNS framework. The
scoring process involves the following steps:

(i) Consider a three-dimensional space with the origin represented as Γ. Within this
space, let denote a specific point Π = (iθ , jθ , kθ ), referred to as an SVNN. Perform
a translation of this point into Π to arrive at Δ = (iϖ , jϖ , kϖ ). Here iϖ = iθ +
ζ, jϖ = jθ +ζ, kϖ = kθ +ζ, where ζ > 0, each representing kϖ , a real number that
remains distinct and unchanging throughout the specific problem, play a crucial role.
Now, let’s consider another point, Δ/ = (iϖ ,−jϖ ,−kϖ ), resulting from reflecting
Λ = (iϖ , jϖ , kϖ ) across the x-axis, acting as a mirror.

(ii) Locate the score function L1(Δ) = cos λ, with λ representing the angle between
OΔ and OΔ/, and O denoting the origin.

(iii) If the score values for two distinct SVNNs, Δ1 = (iϖ1 , jϖ1 , kϖ1) and Δ2 =
(iϖ2 , jϖ2, kϖ2), denoted as L1(Δ1) and L1(Δ2), respectively, are equal, determine
Δ∗∗

1 = (iϖ1 ,−jϖ1,−
√︁

kϖ1) and Δ∗∗
2 = (iϖ2 ,−jϖ2,−

√︁
kϖ2), respectively, for the

corresponding translated points Δ∗
1 = (iϖ ∗

1
, jϖ ∗

1
, kϖ ∗

1
) and Δ∗

2 = (iϖ ∗
2
, jϖ ∗

2
, kϖ ∗

2
)

where, iϖ ∗
1

= iϖ1 + ζ , jϖ ∗
1

= jϖ1 + ζ , kϖ ∗
1

= kϖ1 + ζ and iϖ ∗
2

= iϖ2 + ζ ,
jϖ ∗

2
= jϖ2 + ζ , kϖ ∗

2
= kϖ2 + ζ .

(iv) Determine cos ϕ and cos γ , where ϕ represents the angle between OΔ∗
1 and OΔ∗∗

1 ,
and γ signifies the angle between OΔ∗

2 and OΔ∗∗
2 , with Γ denoting the origin.

(v) The score mapping L2(Δ1) = cos ϕ, as well as L2(Δ2) = cos γ .

3. OPA-IF- Neutrosophic-TOPSIS Strategy under SVNS Environment Approach

The OPA-IF-Neutrosophic-TOPSIS Strategy within the SVNS Environment involves two
primary phases. Initially, the OPA-IF technique is utilized to ascertain the weight or pri-
ority value (PV) of criteria. Subsequently, in the second phase, the Neutrosophic-TOPSIS
Strategy under the SVNS Environment is applied to determine the ranking of alternatives.
Figure 2 illustrates the computational steps involved in this approach.

3.1. Phase-I: Intuitionistic Fuzzy Ordinal Priority Approach (OPA-IF)

The process of obtaining attribute weights in the OPA-IF model involves solving the linear
optimization model (1) (refer to equation (1)) for attributes in the following way:

Step 1: Let E = {λe : e = 1(1)f } be the set of experts and C = {φa : a = 1(1)b} be
the set of Attributes. The profit function is denoted by ζ̃ , also the decision variable δ̃r

ea
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Table 1
Fuzzy ranks for attributes.

Linguistic variable Intuitionistic triangular fuzzy set Defuzzification

Bottom rank (6, 7, 8; 5, 7, 9) 7
Bottom-to-middle rank (5, 6, 7; 4, 6, 8) 6
Bottom-to-middle middle rank (4, 5, 6; 3, 5, 7) 5
Middle rank (3, 4, 5; 2, 4, 6) 4
Middle-to-top middle rank (2, 3, 4; 1, 3, 5) 3
Middle-to-top rank (1, 2, 3; 1, 2, 4) 2.25
Top rank (1, 1, 1; 1, 1, 1) 1

denote fuzzy weight of ath. Attributes by eth expert at rth rank. ℜ̃r
ea denote the linguistic-

based measures of significance of ath Attributes by eth expert at rth rank from the Table 1.
Equation (1) presents the mathematical model in a linear form.

Maxζ̃

Subject to ℜ̃r
ea(δ̃

r
ea − δ̃r+1

ea ) ⩾ ζ, ∀e, a, γ

ℜ̃r
eaδ̃

ρ
ea ⩾ ξ̃ , ∀e, a

f∑︂
e=1

ρ∑︂
a=1

δ̃ea = (1, 1, 1; 1, 1, 1),

δ
/v
ea ⩽ δv

ea ⩽ δu
ea = δ

/u
ea ⩽ δt

ea ⩽ δ
/t
ea, ∀e, a

δ
/v
ea ⩾ 0, ∀e, a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Step 2: Once the optimization problem outlined in equation (1) has been addressed, the
ranking can be computed using an appropriate defuzzification formula as described in
equation (2):

Wa =
[︃
(δv

a + 2δu
a + δt

a) + (δ
/v
a + 2δ

/u
a + δ

/t
a )

8

]︃
, ∀a, (2)

where (δv
a , δu

a , δt
a; δ

/v
a , δ

/u
a , δ

/t
a ) represents the optimal fuzzy weight of ath Attributes.

3.2. Phase-II: Neutrosophic-Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) Strategy under SVNS Environment

Consider the set of alternative B = {εd : d = 1(1)λ}, d ⩾ 1 and C = {φa : a = 1(1)b},
a ⩾ 2 be the set of attributes with weights w(α∗

a), a = 1(1)b, respectively.
Decision-makers assign ratings to the εd , d = 1(1)λ alternatives based on the at-

tributes φa, a = 1(1)b, which are represented using an SVNN. Let’s assume the rating for
the ath attribute concerning the dth alternative is presented as follows:

ε∗
d = (︁

κa,Oεκ (φa),Qεκ (φa), Sεκ (φa)
)︁
, d = 1(1)λ,
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where 0 ⩽ Oεκ (Zϕ) + Qεκ (Zφ) + Sεκ (Zϕ) ⩽ 3. Here, (Oda,Qda, Sda) is denoted as an
SVNN. ε∗

da , (d = 1(1)λ and a = 1(1)b), where a represents the number of attributes and
d represents the number of alternatives. The decision matrix is determined based on the
ratings as, Φ∗ = [ε∗

da]λ×δ .

The TOPSIS method is encapsulated in the following manner:

Step 1: The score-matrix Φ = [εda]λ×δ , (d = 1(1)λ and a = 1(1)b)is acquired from the
decision matrix Φ∗ = [ε∗

da]λ×δ utilizing the following described in preliminary section:
i.e. εda = L1([ε∗

da]λ×δ).

Step 2: Determination of normalized decision matrix F = [τda]λ×δ , where,

τda = εda√︂∑︁b
a=1 εda

, d = 1(1)λ. (3)

Step 3: Calculation of the weighted normalized decision matrix Ψ = [υda]λ×δ , where,
υda = w(α̃∗

a)λda , d = 1(1)λ and a = 1(1)b.

Step 4: Determination of the Neutrosophic Positive Ideal Solution (NPIS) and Neutro-
sophic Negative Ideal Solution (NNIS), denoted by μ+ and μ−, respectively,

μ+ = {︁
υ+

1 , υ+
2 , . . . , υ+

n

}︁
, where υ+

θ = max
θ

υdθ , θ = 1(1)n,

μ− = {︁
υ−

1 , υ−
2 , . . . , υ−

n

}︁
, where υ−

θ = max
θ

υdθ , θ = 1(1)n.

Step 5: Computation of the distance of each alternative from both the NPIS and NNIS
using the equations (4) and (5) provided below:

∂+
d =

⌜⃓⃓
⎷ δ∑︂

θ=1

(︁
υdθ − μ+)︁2, d = 1(1)λ, (4)

∂−
d =

⌜⃓⃓
⎷ δ∑︂

θ=1

(︁
υdθ − μ−)︁2, d = 1(1)λ. (5)

Step 6: Evaluation of the performance score for each alternative using the equation (6):

℘d = ∂−
d

/︁(︁
∂+
d + ħ

−
d

)︁
, d = 1(1)λ. (6)

Step 7: Arrangement of the alternatives based on their performance scores, with the al-
ternative having the highest score receiving the top ranking, and the one with the lowest
score being allocated the lowest ranking.
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Fig. 2. Schematic diagram of methodology.

4. Detailed Methodology

This study aims to identify the key indicators necessary for conducting an efficiency anal-
ysis using a new fuzzy-based Multiple Criteria Decision Making (MCDM) approach. The
methodology consists of two main stages: the execution of MCDM and the validation of
the model. The outlined procedure is visually depicted in Fig. 2.

4.1. Implementation of MCDM

The objective of the upcoming section is to assess the priority values (PV) of both criteria
and alternatives. This phase entails three key components: identifying factors, employing
OPA-IF, and utilizing the Neutrosophic-TOPSIS strategy within the SVNS environment.
The decision hierarchy for the matter is illustrated in Fig. 3.

Step 1: Selection of Factors:
A comprehensive examination of pertinent literature is conducted to select criteria

and alternatives, followed by assembling a panel comprising specialists and stakeholders.
Table 2 and 3 presents all the identified criteria and alternatives being investigated.
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Fig. 3. Hierarchical structure of the decision-making problem.

Table 2
The selected criteria for the consideration of this study.

Name of the criteria Description of criteria

Capability to handle
large-scale systems (φ1)

The large-scale adoption of aquaponic systems signifies a substantial progression in
sustainable agriculture, catering to commercial and industrial-scale production
demands. This transition offers myriad advantages over conventional farming
methods, presenting a promising solution to global issues such as food security,
environmental sustainability, and economic development (Sethupathi et al., 2019).

Capability to handle
complexity (φ2)

There are several factors that contribute to the complexity associated to the
aquaponic system, such as interconnected system dynamics, multivariate nature,
nonlinear relationships, uncertainty and variability, and many more (Keesman et
al., 2019).

Capability to handle
multi-input multi-output
(MIMO) system (φ3)

Aquaponic systems involve multiple variables and parameters that influence system
performance, including water quality, temperature, pH, nutrient levels, stocking
density, and plant growth. Managing and optimizing these variables simultaneously
requires a sophisticated control approach capable of handling multivariate
interactions (Keesman et al., 2019).

Capability to handle
Non-linear system (φ4)

The relationships between input variables and system outputs in aquaponic systems
are often nonlinear and may exhibit complex behaviours. Traditional linear control
methods may be inadequate for capturing these nonlinear dynamics, necessitating
the use of advanced control techniques (Keesman et al., 2019).
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Table 3
The selected alternatives for the consideration of this study.

Name of the alternative Description of alternative

Open-loop control
strategy (ε1)

Open-loop control is a method where the control action is predetermined based on a
set of inputs without considering the system’s actual output. This approach doesn’t
involve feedback or adjustments based on the system’s response. Instead, it relies
solely on the initial input commands. While simple and easy to implement,
open-loop control doesn’t account for external disturbances or changes in the
system, making it less adaptable and potentially less accurate than closed-loop
control methods (Bequette, 2003).

Programmable logic
control (PLC) (ε2)

Programmable Logic Control (PLC) is a specialized form of control system widely
used in industrial automation applications. PLCs are designed to control machinery
and processes by executing a sequence of logic-based commands, known as ladder
logic, based on input signals from sensors and user-defined programming. PLCs are
versatile and powerful control systems widely used in various industries, including
manufacturing, automotive, energy, and process control, to automate and optimize
industrial processes (Wei, 2010).

Rule-based control
strategy (ε3)

A rule-based control strategy, also known as heuristic or knowledge-based control
or fuzzy logic control, relies on a set of predefined rules or decision-making criteria
to determine the control actions. These rules are typically established by experts or
based on empirical knowledge of the system behaviour. In a rule-based control
system, the controller evaluates the current state of the system and applies the rules
to determine the appropriate control action (Moudgal et al., 1994).

On-Off control strategy
(ε4)

On-off control, also known as binary control, is a simple form of control system
where the control action is either fully on or fully off based on a predefined setpoint
or threshold. In this method, the controller activates the control device (such as a
pump or heater) when the system variable crosses a predetermined threshold or
setpoint, and deactivates it when the variable returns within a specified range.
On-off control is commonly used in applications where precise control is not
necessary, and where the system response is relatively slow or non-critical. While
straightforward and cost-effective, on-off control can lead to oscillations around the
setpoint and may not provide optimal control in systems with significant external
disturbances or nonlinear dynamics (Haber et al., 2012).

MPC strategy (ε5) Model Predictive Control (MPC) is an advanced control strategy used in a wide
range of industrial processes and systems to optimize system performance while
considering constraints and predictive models of the process dynamics. Unlike
traditional control methods that rely on a fixed control law, MPC utilizes a dynamic
optimization approach to predict future system behaviour and compute optimal
control actions over a finite time horizon. MPC finds applications in diverse
industries, including chemical process control, power systems, automotive systems,
robotics, and building HVAC (Heating, Ventilation, and Air Conditioning) systems,
where precise control, optimization, and constraint handling are critical for efficient
operation (Balaji and Maheswari, 2012).

PID control strategy (ε6) PID control, short for Proportional-Integral-Derivative control, is a widely used
feedback control strategy employed in various industrial processes and systems to
achieve desired performance objectives. It operates based on the error signal, which
represents the difference between the desired setpoint and the measured process
variable. PID control finds widespread application in various industrial processes,
including temperature control, pressure regulation, speed control, level control, and
flow control, due to its simplicity, effectiveness, and versatility (Sung et al., 2009).
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Step 2: Application of OPA-IF (Model-I):
In the present study, opinions from three experts were taken. Based on these expert

opinions, Capability to Handle MIMO Systems (φ3) and Capability to Handle Complex-
ity (φ2) were identified as being more highly and moderately highly responsible for effi-
ciency, profitability, and sustainability of aquaponic systems, respectively; while Capa-
bility to Handle Large-Scale Systems (φ1) and Capability to Handle Non-Linear Sys-
tems (φ4) were categorized as having high and medium responsibility, respectively. It
was clearly indicated by the experts that for Capability to Handle MIMO Systems and
all other criteria, higher values are preferable. The fuzzy priority value of criteria can
be determined using OPA-IF. Fuzzy weights for attributes can be estimated using equa-
tion (7).

Maxζ̃

Subject to (6, 7, 8; 5, 7, 9)(δ̃3 − δ̃1) ⩾ ξ̃

(4, 5, 6; 3, 5, 7)(δ̃1 − δ̃4) ⩾ ξ̃

(2, 3, 4; 1, 3, 5)(δ̃4 − δ̃2) ⩾ ξ̃

(1, 1, 1; 1, 1, 1)δ̃2 ⩾ ξ̃

δ̃1 + δ̃2 + δ̃3 + δ̃4 = (1, 1, 1; 1, 1, 1)

δ
/v
i ⩽ δv

i ⩽ δu
i = δ

/u
i ⩽ δt

i ⩽ δ
/t
i , ∀i = 1(1)4

δ
/v
i ⩾ 0, ∀i = 1(1)4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Step 3: Neutrosophic-TOPSIS Strategy under SVNS Environment (Model II): The
decision maker utilizes SVNNs to assess alternatives according to their attributes, leading
to the generation of Decision Matrix as Matrix-1.

Matrix-1: Decision Matrix:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 (0.9, 0.7, 0.5) (0.7, 0.5, 0.4) (0.7, 0.5, 0.4) (1, 0.5, 0.6)

ε2 (0.5, 0.3, 0.4) (0.8, 0.6, 0.4) (0.7, 0.4, 0.2) (1, 0.4, 0.2)

ε3 (0.8, 0.5, 0.6) (1, 0.5, 0.4) (0.9, 0.8, 0.6) (0.9, 0.4, 0.2)

ε4 (0.6, 0.5, 0.2) (1, 0.4, 0.3) (0.8, 0.7, 0.4) (0.5, 0.2, 0.1)

ε5 (0.7, 0.4, 0.3) (0.8, 0.7, 0.6) (0.9, 0.5, 0.2) (0.7, 0.5, 0.2)

ε6 (0.8, 0.6, 0.4) (0.9, 0.5, 0.3) (0.8, 0.6, 0.1) (0.9, 0.4, 0.3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix Φ is derived by shifting the values of each entry. Each entry in Matrix Φ is
incremented by 0.01 across all components, thereby producing Matrix-2.
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Matrix-2: Translation of Φ:

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 (0.91, 0.71, 0.51) (0.71, 0.51, 0.41) (0.71, 0.51, 0.41) (1.01, 0.51, 0.61)

ε2 (0.51, 0.31, 0.41) (0.81, 0.61, 0.41) (0.71, 0.41, 0.21) (1.01, 0.41, 0.21)

ε3 (0.81, 0.51, 0.61) (1.01, 0.51, 0.41) (0.91, 0.81, 0.61) (0.91, 0.41, 0.21)

ε4 (0.61, 0.51, 0.21) (1.01, 0.41, 0.31) (0.81, 0.71, 0.41) (0.51, 0.21, 0.11)

ε5 (0.71, 0.41, 0.31) (0.81, 0.71, 0.61) (0.91, 0.51, 0.21) (0.71, 0.51, 0.21)

ε6 (0.81, 0.61, 0.41) (0.91, 0.51, 0.31) (0.81, 0.61, 0.11) (0.91, 0.41, 0.31)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The next step involves generating the score matrix using the score function. Matrix-3
represents the score matrix denoted as Φ∗. The score value is given by,

L1(0.91, 0.71, 0.51) = 0.91 × 0.91 + 0.71 × (−0.71) + 0.51 × (−0.51)√
0.912 + 0.712 + 0.512

√︁
0.912 + (−0.71)2 + (−0.51)2

= 0.04013.

Matrix-3: Score Matrix:

Φ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 0.04013 0.081411 0.081411 0.234763
ε2 −0.007819 0.096882 0.40751 0.655603
ε3 0.018551 0.408686 −0.107795 0.59204
ε4 0.100399 0.588569 −0.01212 0.644641
ε5 0.312247 −0.14364 0.462686 0.247309
ε6 0.096882 0.398463 0.261366 0.51625

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The Normalized Decision Matrix is determined by using equation (4) on matrix Φ∗. As
shown in Matrix-4, the Normalized Decision Matrix is denoted by F .

τ11 = 0.04013√︁
0.040132 + (−0.007819)2 + 0.0185512 + 0.1003992 + 0.3122472 + 0.0968822

= 0.116342.

Matrix-4: Decision Matrix with Normalization:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 0.116342 0.096695 0.11915 0.186845
ε2 −0.02267 0.11507 0.596416 0.521787
ε3 0.053782 0.485411 −0.157764 0.471199
ε4 0.291066 0.699066 −0.017739 0.513063
ε5 0.905234 −0.170606 0.677169 0.19683
ε6 0.280869 0.473269 0.382526 0.410878

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Once the criteria crisp weights are determined by solving the equation (7), the weighted
normalized decision matrix is computed. This process entails multiplying each criteria
weight by the corresponding element in its respective row of Matrix. Denoted as matrix Ψ,
it is illustrated by Matrix-5.

Matrix-5: Weighted Normalized Decision Matrix:

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 0.116342 × 0.27972 0.096695 × 0.195804 0.11915 × 0.286713 0.186845 × 0.237762
ε2 −0.02267 × 0.27972 0.11507 × 0.195804 0.596416 × 0.286713 0.521787 × 0.237762
ε3 0.053782 × 0.27972 0.485411 × 0.195804 −0.157764 × 0.286713 0.471199 × 0.237762
ε4 0.291066 × 0.27972 0.699066 × 0.195804 −0.017739 × 0.286713 0.513063 × 0.237762
ε5 0.905234 × 0.27972 −0.170606 × 0.195804 0.677169 × 0.286713 0.19683 × 0.237762
ε6 0.280869 × 0.27972 0.473269 × 0.195804 0.382526 × 0.286713 0.410878 × 0.237762

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 0.032543316 0.018933394 0.034162112 0.044424922

ε2 −0.006341469 0.022531272 0.171000649 0.12406148

ε3 0.015044118 0.095045638 −0.045233224 0.112033371

ε4 0.081417212 0.136880078 −0.00508614 0.121987079

ε5 0.253212567 −0.03340555 0.194153626 0.04679894

ε6 0.078565011 0.092668179 0.109675399 0.097691315

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Subsequently, ascertain NPIS and NNIS using the formulas υ+
θ = maxθ υdθ , θ = 1(1)6

and υ−
θ = minθ υdθ , θ = 1(1)6 values, respectively.

υ−
1 = min{0.032543316,−0.006341469, 0.015044118, 0.081417212,

0.253212567, 0.078565011}
= −0.006341469.

So,

μ+ = {υ+
1 , υ+

2 , υ+
3 , υ+

4 } = {0.253212567, 0.136880078, 0.194153626, 0.12406148},
μ− = {︁

υ−
1 , υ−

2 , υ−
3 , υ−

4

}︁ = {−0.006341469,−0.03340555,−0.045233224,

0.044424922},
τ+

1 = max{0.032543316,−0.006341469, 0.015044118, 0.081417212,

0.253212567, 0.078565011}
= 0.253212567.

Next, the distances between each alternative using the NPIS and NNIS are computed using
the equations (4) and (5), respectively. Table 4 displays the distances between alternatives
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Table 4
NPIS and NNIS distances from each alternative.

Value Value

∂+
1 0.30748269 ∂−

1 0.102737582
∂+

2 0.284569864 ∂−
2 0.237124433

∂+
3 0.340477708 ∂−

3 0.146724072
∂+

4 0.263086358 ∂−
4 0.210538495

∂+
5 0.186993837 ∂−

5 0.353100548
∂+

6 0.200719748 ∂−
6 0.223467415

Table 5
Performance scores of alternative.

Alternatives Performance scores Rank

ε1 ℘1 = 0.250445 6
ε2 ℘2 = 0.454528 3
ε3 ℘3 = 0.301157 5
ε4 ℘4 = 0.444526 4
ε5 ℘5 = 0.653776 1
ε6 ℘6 = 0.526813 2

calculated using NPIS and NNIS.

∂+
1 =

√︂
(υ11 − μ+

1 )2 + (υ12 − μ+
2 )2 + (υ13 − μ+

3 )2 + (υ14 − μ+
4 )2

=
√︁

(0.032543316 − 0.253212567)2 + (0.018933394 − 0.136880078)2

+
√︁

(0.034162112 − 0.194153626)2 + (0.044424922 − 0.12406148)2

= 0.30748269,

∂−
1 =

√︂
(υ11 − μ−

1 )2 + (υ12 − μ−
2 )2 + (υ13 − μ−

3 )2 + (υ14 − μ−
4 )2

=
√︁

(0.032543316 − (−0.006341469))2 + (0.018933394 − (−0.03340555))2

+
√︁

(0.034162112 − (−0.045233224))2 + (0.044424922 − 0.044424922)2

= 0.102737582.

The performance score of each alternative is computed using equation (6). Table 5
presents the performance scores for all alternatives. Arrange the alternatives in ascending
order according to their performance scores and assign ranks accordingly.

℘1 = ∂−
1

/︁(︁
∂+

1 + ∂−
1

)︁ = 0.102737582/(0.30748269 + 0.102737582) = 0.250445.

4.2. Result from Comparative Study

Experts have been consulted to identify the vectors appropriate for utilization in the BWM-
Neutrosophic-TOPSIS Strategy under SVNS Environment, along with determining the
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Table 6
Comparison of best criteria with other criteria.

φ1 φ2 φ3 φ4

φ3 (best criteria) 2 4 1 3

Table 7
To the worst criteria, there are other criteria.

φ2 (worst criteria)

φ1 3
φ2 1
φ3 4
φ4 2

most and least significant aspects. Through expert consensus, it has been established that
φ3 holds the highest significance, while φ2 is deemed to be the least significant criterion.
The best-to-others vector is presented in Table 6, and the worst-to-others vector is outlined
in Table 7.

The nonlinear mathematical model (8) (refer to equation (8)) can also be used to de-
termine the weight of each criterion.

min ħ

s.t.
⃓⃓⃓
⃓D3

D1
− 2

⃓⃓⃓
⃓< ħ,⃓⃓⃓

⃓D3

D2
− 4

⃓⃓⃓
⃓ < ħ,⃓⃓⃓

⃓D3

D4
− 3

⃓⃓⃓
⃓ < ħ,⃓⃓⃓

⃓D1

D2
− 4

⃓⃓⃓
⃓ < ħ, (8)⃓⃓⃓

⃓D1

D2
− 3

⃓⃓⃓
⃓ < ħ,⃓⃓⃓

⃓D3

D2
− 4

⃓⃓⃓
⃓ < ħ,⃓⃓⃓

⃓D4

D2
− 2

⃓⃓⃓
⃓ < ħ,

4∑︂
j=1

Dj = 1,

Dj ⩾ 0, for all j = 1(1)4.

Utilizing the equation (3) on matrix Φ∗, the Normalized Decision Matrix can be deter-
mined. As shown in Matrix-6, the Normalized Decision Matrix decision matrix is denoted
by F .
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Matrix-6: Normalized Decision Matrix:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 0.116342355 0.096695548 0.119150779 0.186845995
ε2 −0.02267075 0.115070426 0.596416897 0.521787988
ε3 0.053782722 0.485411653 −0.157764658 0.471199176
ε4 0.291066534 0.699066115 −0.017739464 0.513063301
ε5 0.905234929 −0.170606915 0.677169964 0.196830834
ε6 0.280869914 0.47326963 0.382526392 0.41087818

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Once the criteria weights are determined by the equation (8), the subsequent step in-
volves computing the weighted normalized decision matrix. This matrix is generated by
multiplying each criterion weight by the corresponding element in the respective row of
the associated matrix F . The resultant weighted normalized decision matrix (Matrix-7) is
represented by matrix Ψ.

Matrix-7: Weighted Normalized Decision Matrix:

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 φ3 φ4

ε1 0.03008854 0.010002988 0.055466742 0.032214827
ε2 −0.005863125 0.011903837 0.277642349 0.089963446
ε3 0.013909325 0.050214999 −0.073442168 0.081241237
ε4 0.075275828 0.072317184 −0.008258026 0.08845919
ε5 0.234112482 −0.017648991 0.315234293 0.033936351
ε6 0.072638771 0.048958927 0.178072631 0.070841065

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Next step is to identify NPIS and NNIS using the formulas υ+
θ = maxθ υdθ , θ = 1(1)6

and υ−
θ = minθ υdθ , θ = 1(1)6 values, respectively.

So,

μ+ = {υ+
1 , υ+

2 , υ+
3 , υ+

4 } = {0.234112482, 0.072317184, 0.315234293, 0.89963446},
μ− = {︁

υ−
1 , υ−

2 , υ−
3 , υ−

4

}︁
= {−0.005863125,−0.017648991,−0.073442168, 0.032214827}.

The distance of each alternative from both NPIS and NNIS is calculated using equa-
tions (4) and (5), respectively. Table 8 presents the distances for each alternative’s weights
from NPIS and NNIS.

The evaluation score for each option is calculated utilizing equation (6). Fig. 4 displays
the performance scores for each alternative according to both the proposed method and
the current method.

4.3. Statistical Analysis

The rankings produced by the two methods can be compared using the Spearman cor-
relation coefficient, which measures the linear relationship between two variables. This
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Table 8
Distances of each alternative between NPIS as well as NNIS.

Value Value

∂+
1 0.341061448 ∂−

1 0.136655264
∂+

2 0.250302254 ∂−
2 0.357027465

∂+
3 0.447351546 ∂−

3 0.0860236
∂+

4 0.360386773 ∂−
4 0.148626522

∂+
5 0.105985604 ∂−

5 0.456793878
∂+

6 0.214005501 ∂−
6 0.27450108

Fig. 4. Comparative study.

coefficient ranges from −1 to 1: −1 indicates no linear correlation, 0 signifies no linear
correlation, and 1 indicates a perfect linear correlation. To evaluate the association be-
tween variables on interval scales, Pearson’s correlation coefficient (Sedgwick, 2012) can
be employed, as demonstrated in equation (9):

χ(ϖ, ι) = cov(ϖ, ι)

ηϖ ηι

. (9)

σ , as well as ξ , is a covariant of cov(σ, ξ). SD is represented by σ , as well as ξ , in both
ησ , as well as ηξ .

The Pearson correlation coefficient is important for assessing the absence of a per-
fect correlation between two variables when it deviates from a value of 1, as given in
equation (10):

{︄
F0: −∞ < χ ⩽ 0,

F1: 0 < χ < ∞.
(10)
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Table 9
t-Test: Paired two sample for means.

Proposed method
(Variable 1)

Existing method
(Variable 2)

Mean 0.438541 0.450131
Variance 0.021733 0.059509
Observations (ρ) 6 6
Pearson correlation 0.886954
Hypothesized mean difference (α) 0
Df 5
t Stat −0.21494
P (T <= t) one-tail 0.419153
t Critical one-tail 2.015048
P (T <= t) two-tail 0.838306
t Critical two-tail 2.570582

Pearson correlation coefficient alongside Student’s t-distribution with degrees of free-
dom λ– − 1, is presented by equation (11).

t = χ

(︃
λ– − 2

1 − χ2

)︃ 1
2

. (11)

The null hypothesis should be rejected if t (equation (11)) suppresses tα(λ– − 2). The
Pearson correlation coefficient χ falls within the range of λ–.

Both methods generate rankings, which are then assessed using the Spearman corre-
lation coefficient. If the rankings are identical, resulting in a Spearman correlation co-
efficient of 1, further hypothesis testing is unnecessary. However, if the rankings differ,
a hypothesis test can be conducted to validate the Spearman correlation coefficients, as
described in equation (9). To compare the proposed approach with the BWM-TOPSIS
strategy under the SVNS environment weights, the analysis will employ the Pearson cor-
relation coefficient, as specified in Table 9. It’s worth noting that there is a noticeable
correlation between the proposed PV models and the currently established PV models,
as corroborated by Ataei et al. (2020). The analysis findings suggest that t = χ( λ–−2

1−χ2 )
1
2

should outperform t0.05(λ– − 2). A hypothesis test is carried out to confirm a positive cor-
relation between the attributes of the existing and proposed methods.

4.4. Sensitivity Analysis

The objective is to understand how changing the weight coefficients impacts various sce-
narios, each defined by a unique set of parameters. To achieve this, sensitivity analysis is
utilized. This analytical method allows us to evaluate the primary criterion, as defined by
equation (12), and to assess how sensitive the criterion PVs (N(K̃ℜ)) are to changes in
these coefficients. Furthermore, we delve into the progression of the leading criterion to
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Fig. 5. Results of the sensitivity analysis for ∂+
d

.

gain insights into how it evolves over time or under different conditions.

K̃′ℜ = K̃ℜ
(︃

1 − rK̃ε

1 − K̃ε

)︃
, ℜ = 1(1)4. (12)

When K′ℜ represents the initial value of the criterion, denoted K̃ℜ (ℜ = 1(1)Ξ); K̃ε, it
signifies the criterion’s starting point. rℜ ∈ (0, 1) ∪ {0, 1}, on the other hand, represents
the adjusted value.

For this study, 25 unique scenarios are generated using equation (12). In these sce-
narios, the variable r is capable of assuming random values between 0 and 1. Figures 5
and 6 depict the results of sensitivity analyses conducted separately for each alternative
of ∂+

d and ∂−
d . Figure 7 presents an overview of the sensitivity analysis results. Notably,

according to Fig. 7, the “Model Predictive Control (MPC) strategy” emerges as the most
sensitive parameter across all cases.

5. Conclusion

This research introduces a novel Multi-Criteria Decision-Making (MCDM) approach,
termed the OPA-IF-Neutrosophic-TOPSIS hybrid technique under the SVNS Environ-
ment. Within this approach, the OPA-IF component evaluates the Priority Value (PV) of
different attributes, while the Neutrosophic-TOPSIS strategy establishes rankings among
alternative choices. The PV, determined by OPA-IF, plays a crucial role in calculating the
Utility Functional Value of alternatives within the Neutrosophic-TOPSIS framework. This
hybrid MCDM method aims to aid in selecting the most appropriate control approach for
aquaponics systems. Notably, findings from the OPA-IF analysis underscore the impor-
tance of the ‘Capability to Handle MIMO Systems’ criterion, leading to the conclusion by
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Fig. 6. Results of the sensitivity analysis for ∂−
d

.

Fig. 7. The overview of the sensitivity analysis.

the Neutrosophic-TOPSIS strategy that ‘Model Predictive Control (MPC)’ is the optimal
choice for large-scale aquaponic systems.

To verify the effectiveness of this proposed MCDM technique, its results are compared
with the BWM-Neutrosophic-TOPSIS Strategy under the SVNS Environment. This com-
parison confirms the alignment of outcomes between the proposed model and existing
methods, as demonstrated by a strong positive correlation determined through Pearson
correlation analysis. Furthermore, a sensitivity analysis indicates that the MPC strategy is
the most sensitive parameter within the proposed method.

Overall, this study makes a significant contribution to the scientific understanding of
control strategies in aquaponics by providing a deeper insight into the various methodolo-
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gies that can be applied to optimize system performance. Beyond advancing theoretical
knowledge, it also offers valuable, actionable guidance for farmers, aquaponics practition-
ers, and stakeholders in the field. By identifying the most effective control approaches and
highlighting their practical benefits, the research empowers practitioners to make more
informed decisions when managing their aquaponic systems. Through these efforts, the
study aims to contribute to the broader goal of promoting sustainable, efficient, and scal-
able food production systems for the future.

However, despite the numerous advantages of the proposed method, it is essential to
recognize its inherent limitations. One of the primary challenges in implementing this
technique lies in the substantial amount of data and expertise required to effectively ap-
ply the approach. The complexity of integrating various fuzzy logic and decision-making
elements demands a high level of technical knowledge, which could pose difficulties for
practitioners without specialized training or experience. Furthermore, while the study suc-
cessfully addresses ranking within the context of a Neutrosophic environment, the method
may face constraints when dealing with other extensions of fuzzy set theory, such as hesi-
tant fuzzy sets or spherical fuzzy sets. These alternative frameworks introduce additional
layers of complexity and may not be as easily accommodated within the current model,
potentially limiting its applicability in certain scenarios. Another limitation stems from
the reliance on expert assessments and opinions to establish rankings within the model.
While expert judgment is a valuable tool, it is inherently subjective, which means that
different experts may interpret the same data in varied ways. This subjectivity can lead
to inconsistencies in the rankings and conclusions drawn from the model, as each expert
may have differing perspectives or biases, introducing an element of uncertainty into the
decision-making process.

Moving forward, this study will expand its scope in several key directions. First, a thor-
ough investigation into the critical decision-making processes that guide the selection of
the most appropriate control strategies for large-scale aquaponic systems will be under-
taken. Second, the study will leverage a broader range of MCDM methodologies to assess
and prioritize various control techniques. These methodologies will be applied to eval-
uate the performance and suitability of different control strategies based on their ability
to manage Multiple Input Multiple Output (MIMO) systems, their capacity to address
system non-linearities, and their effectiveness in large-scale, dynamic settings. Third, the
research will be enriched by incorporating extensive data collection, analysis, and mod-
elling efforts. This will not only deepen the understanding of aquaponic system dynamics
but also result in practical, actionable recommendations for practitioners in the field. By
bridging gaps in the existing body of knowledge, the study aims to contribute to improv-
ing the efficiency and sustainability of aquaponic food production, providing valuable
insights that can be directly applied to real-world settings. Finally, the study will exam-
ine the sensitivity and robustness of the MCDM models used in the evaluation process.
This will involve testing how well the selected models perform under varying conditions
and uncertainties, ensuring their reliability and applicability in real-world aquaponic sys-
tems.
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