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Abstract. Multi-criteria group decision-making has gained considerable attention due to its abil-
ity to aggregate diverse expert opinions and establish a preference order among alternatives. While
probabilistic hesitant fuzzy (PHF) sets offer increased flexibility and generality for representing
criteria values compared to traditional fuzzy and hesitant fuzzy set theories, existing aggregation
techniques often fail to enhance consensus among biased expert judgments. Motivated by the need
for more effective consensus-based decision-making, this paper proposes a new framework that in-
tegrates PHF set theory with Aczel-Alsina weighted averaging and geometric aggregation operators.
These operators, known for their flexibility and the inclusion of an adjustable parameter, are partic-
ularly well-suited for addressing real-world decision-making challenges. The framework employs a
cross-entropy based model to determine criteria weights and multi-objective optimization by ratio
analysis plus the full multiplicative form (MULTIMOORA) method to establish priority orders of
alternatives. The proposed framework is demonstrated through a case study on manufacturing out-
sourcing vendor selection. The results show that Bertrandt is the most suitable vendor, with a score
of 0.2390, and resources consumption is identified as the most critical criterion, with a weight of
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0.20. To validate the robustness of the proposed framework, sensitivity and comparison analyses
have also been conducted.
Key words: probabilistic hesitant fuzzy set, Aczel-Alsina aggregation, consensus-based
MULTIMOORA, fuzzy optimization, group decision-making.

1. Introduction

Advancements in science and technology have highlighted the necessity of managing un-
certainty in decision-making processes, a challenge that has become increasingly critical
in today’s complex and data-driven world. As the volume and complexity of data continue
to grow, so does the need for tools and methodologies that can effectively handle ambi-
guity and incomplete information. Traditional binary logic, which operates on clear-cut
true or false values, often falls short in dealing with the nuances of real-world scenar-
ios where data is seldom straightforward. The introduction of fuzzy sets (FSs) by Zadeh
(1965) has played a crucial role in addressing data ambiguity. Alongside FSs, hesitant FSs
(HF) (Torra, 2010) have emerged, allowing for more flexible membership degrees (MDs)
to consider various potential inputs, as perceived in the work of Rodriguez et al. (2014).
This development not only reduces subjective randomness but also aids in expressing
expert preferences and accommodating occurrence probabilities. Building on this foun-
dation, Xu and Zhou (2016) introduced the probabilistic HFSs (PHFSs), which assign
occurrence probabilities to elements based on systematic reviews. Integrating PHF into
decision-making frameworks, as demonstrated by Li and Wang (2017), has led to the
establishment of novel decision models such as those incorporating preference ranking
organization method for enrichment evaluation (PROMETHEE) and (qualitative flexible
multiple criteria method (QUALIFLEX). Further advancements include distance mea-
sures of PHFSs by Ding et al. (2017), and development of a density function for investor
assessments by Li et al. (2019). Reference ideal-based algorithms by He and Xu (2019)
provide a means to evaluate projects, linking ideal values with PHF information (PHFI).
Additionally, Liu et al. (2020) combined PHFI with regret theory and entropy measures for
venture capital evaluations. Li et al. (2020) introduced an approach based on Organization
Rangement EtSynthese De Donnes Relationnelles (ORESTE) employing PHFI. Lin et al.
(2020a) used a PHFI algorithm for consistency testing in investment projects. Jin et al.
(2020) suggested a preference relation-based measure under PHFI, and applied to logis-
tical selection. To address rational CO2 storage location selection, Guo et al. (2020) pro-
posed Tomada de Decisão Interativa Multicritério (TODIM) method incorporating Cho-
quet Integrals under PHFI. Lin et al. (2020b) proposed PHF-Multi-Objective Optimization
by Ratio Analysis plus Full Multiplicative Form (MULTIMOORA) method, while Liu et
al. (2021) defined cross-efficiency model of Data Envelopment Analysis (DEA) using
PHF preference relations. Krishankumar et al. (2022) developed PHF-Complex Propor-
tional Assessment (COPRAS) method, while Liao et al. (2022a) addressed a supplier se-
lection problem based on PHF-CODAS (Combinative Distance based Assessment) model.
Liao et al. (2022b) employed prospect theory based TODIM method under PHF setting,
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and Qi (2023) used PHF-Technique for Order of Preference by Similarity to Ideal Solu-
tion (PHF-TOPSIS) for quality assessment of public charging services. Jaisankar et al.
(2023) used a hybrid PHF decision-making approach for assessment of plastic disposal
technologies, while Liu et al. (2023) developed a modified Measurement of Alternatives
and Ranking according to Compromise Solution (MARCOS) method incorporating PHFI.

1.1. Research Gaps and Motivations

MCDM is an important sub-set of decision theory, focusing on selecting the optimal al-
ternative from a diverse set. The dynamic and ever-evolving socio-economic environment
has significantly increased the complexity of real-world decision-making problems. This
complexity arises from the need to consider various, often conflicting, criteria that impact
the outcomes of decisions. Over recent decades, various methods have been developed to
address the complexities of MCDM problems. These methods aim to enhance both the
accuracy and efficiency of MCDM processes, each with distinct advantages and limita-
tions. Some methods offer computational efficiency and ease of implementation, making
them suitable for applications with limited resources; however, they may be less effective
in managing uncertainty or imprecise data. On the other hand, certain methods are well-
suited for handling uncertainty and providing stable solutions under variable conditions,
though they often require increased computational resources and complexity.

The significance of each criterion in any decision-making process can vary based
on the context, the specific decision to be made, and the stakeholders involved. Crite-
ria weights represent the relative importance of each criterion in the decision-making
process. Hence, determining the criteria weights must be done logically and systemati-
cally. The pertinent existing methods (Lin et al., 2020b; Krishankumar et al., 2022; Liao
et al., 2022a; Qi, 2023; Liu et al., 2023a), often fail to derive these weights systemati-
cally, leading to subjectivity and inaccuracies. The difficulty in accurately weighting cri-
teria arises from the complex nature of decision-making environments and varied per-
spectives of stakeholders. Thus, developing a comprehensive framework for determin-
ing criteria weights remains a challenging problem. Multi-criteria group decision-making
(MCGDM) addresses this problem by integrating diverse expert perspectives and effec-
tively managing trade-offs among conflicting criteria. By involving experts from various
fields, MCGDM ensures that decisions are informed and balanced, enabling proper pri-
oritization of the criteria. MCGDM models systematically evaluate trade-offs, providing
clarity on compromises and optimizing outcomes. The process promotes transparency,
consistency, and accountability, incorporating both objective data and subjective opin-
ions. MCGDM also enhances decision quality by considering all relevant criteria, foster-
ing collaboration, and increasing stakeholder trust. It helps decision-makers to understand
the compromises involved in choosing between alternatives, ensuring that the final deci-
sion aligns with the overarching objectives. Furthermore, considering all relevant criteria
ensures that no important aspects are overlooked, thereby improving the overall quality of
the decision. However, due to their varied experiences and backgrounds, decision-makers
often exhibit significant differences in evaluation, making consensus challenging. Exist-
ing methods like PHF-COPRAS (Krishankumar et al., 2022), PHF-TODIM (Liao et al.,
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Table 1
Existing works on Aczel-Alsina AOs.

Reference AO Application

Senapati et al. (2022a) Interval-valued Pythagorean
fuzzy Aczel-Alsina AOs

Selection of an emerging IT software company

Mahmood et al. (2022) Complex intuitionistic fuzzy
Aczel-Alsina AOs

Selection of an advertising administrator

Ali and Naeem (2022) Complex q-rung orthopair fuzzy
Aczel-Alsina AOs

Selection of the most impactful sector effecting
the Stock Exchange

Li et al. (2023) Neutrosophic multi-valued
Aczel-Alsina AOs

Selection of service robots

Wang et al. (2023) T-spherical fuzzy Aczel-Alsina
Hamy Mean AOs

Assessment of investment company plans

Chen et al. (2023) Complex Fermatean fuzzy
Aczel-Alsina AOs

Assessment of different bands for solar panel
system

Athar Farid and Riaz (2023) q-rung orthopair fuzzy
Aczel-Alsina AOs

Green supplier selection

Liu et al. (2023) Complex intuitionistic fuzzy
Aczel-Alsina prioritized AOs

Assessment of business alternatives

Senapati (2024) Single valued neutrosophic
Aczel-Alsina AOs

Assessment of investment opportunities

Gula et al. (2024) Aczel-Alsina linear Diophantine
fuzzy AOs

Selection of weather forecasting techniques

2022b), PHF-MARCOS (Liu et al., 2023a), and PHF-TOPSIS (Qi, 2023), may fail to fully
capture the ambiguity in expert judgments, especially when biases are present. Therefore,
it becomes necessary to implement consensus-building strategies to increase agreement
among decision-makers, a factor that previous studies with PHFI have not adequately ad-
dressed.

One critical aspect of improving consensus and enhancing decision quality is the ef-
fective aggregation of diverse expert inputs. Combining various input data into a uni-
fied entity often requires aggregation operators (AOs), which have proven highly effective
in data processing, decision-making, pattern recognition, data analytics, and neural net-
works. While AOs like Archimedean AOs, Hamacher AOs, Einstein AOs, and Dombi AOs
have been employed for aggregating PHFI, the potential of Aczel-Alsina AOs has been in-
creasingly recognized in this context (Senapati et al., 2022a, 2023a, 2023b). These studies
suggested that Aczel-Alsina AOs offer a promising approach to address these aggregation
challenges, providing significantly accurate results in MCGDM environment, thus mak-
ing Aczel-Alsina AOs a valuable tool for improving both consensus-building process and
overall decision-making framework. The existing works on Aczel-Alsina AOs are sum-
marized in Table 1.

The continuous improvement and adaptation of MCDM methods reflect ongoing ef-
forts to bridge theoretical progress with practical application. Efforts to make these meth-
ods more responsive to emerging needs, including large-scale data processing and adapt-
able decision-making in dynamic environments, are steadily advancing. Balancing the-
oretical rigor with practical usefulness highlights the essential role of MCDM frame-
works in modern applications, where solutions must combine accuracy with adaptabil-
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ity to meet the complexities of real-world problems. Brauers and Zavadskas (2006) pro-
posed MOORA model, a well-known and effective MCDM method that combines refer-
ence point (RP) and ratio system (RS) models. MULTIMOORA (Brauers and Zavadskas,
2010), an extension of MOORA, was developed based on RS, RP and full multiplica-
tive form (FMF) models. In recent years, under various fuzzy contexts MULTIMOORA
method have been utilized for purchasing rental space (Stanujkic et al., 2019), selection of
technology for food waste treatment (Rani et al., 2021), charging station selection for elec-
tric vehicles (Rani and Mishra, 2021), CNC machine tool selection (Sahin and Aydemir,
2022), solid waste disposal method selection (Mishra et al., 2023), failure mode and ef-
fects analysis (Yu et al., 2023), green supplier selection (Gai et al., 2023), welding process
selection (Saluja and Singh, 2023), offshore wind power station site selection (Zhou et al.,
2024), crop disease detection (Zhang et al., 2024), sustainable supplier selection (Vaezi
et al., 2024), car selection through online reviews (Liu et al., 2024), business strategies
evaluation (Ghaemi-Zadeh and Eghbali-Zarch, 2024), sustainability of urban mobility
evaluation (Yucesan et al., 2024). Consensus-reaching mechanisms for structured group
decision-making have not yet been incorporated into MULTIMOORA method. With in-
creasing environmental concerns and regulatory pressures, the importance of sustainable
practices in operations and supply chains is being widely acknowledged. Lean, agile, re-
silient, green, and sustainable approaches are being integrated throughout supply chain
and manufacturing processes to address uncertainties and support competitiveness. The
selection of manufacturing outsourcing vendors (MOVs) significantly impacts operational
efficiency, environmental performance, and resilience to disruptions. Although promising,
the PHF-based MULTIMOORA method has not been applied to MOV selection, marking
an area with potential for further development.

1.2. Contributions

Nowadays, decision makers are increasingly seeking systematic approaches to determine
optimal actions. Despite the wealth of literature on PHFSs, there is a notable dearth of
research leveraging the complete potential of PHFI, Aczel-Alsina AOs, the consensus-
building process, and MULTIMOORA method to address decision-making complexities.
This study fills critical gaps in the literature by making significant contributions in these
areas.

a) The research introduces two novel PHF Aczel-Alsina Aggregation Operators (PHFAAWA
and PHFAAWG) designed specifically to tackle the intricate challenges of group
decision-making utilizing PHFI. These adaptable weighted operators provide decision-
makers with a resilient tool to efficiently amalgamate varied perspectives within a
group context.

b) A comprehensive consensus-based MULTIMOORA model is presented in this re-
search, specifically designed to assess MOVs. This model incorporates an advanced
optimization process to calculate criteria weights, ensuring the objectivity and robust-
ness of the assessment process. By utilizing this model, decision-makers are equipped
to make well-informed decisions when selecting manufacturing outsourcing vendors.
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1.3. Structural Overview of the Paper

This paper follows a structured framework: Section 2 provides a comprehensive overview
of essential concepts necessary for understanding the subsequent discussions. Section 3
examines the details of Aczel-Alsina operations between PHF elements, explaining the
definitions and characteristics while introducing PHFAAWA and PHFAAWG AOs. Build-
ing upon this foundation, Section 4 elucidates the consensus-based PHF decision support
paradigm. The practical application of these methodologies is exemplified in Section 5,
which presents a detailed case study and the corresponding solution. Section 6 provides
comprehensive discussions on sensitivity analysis, and comparative study. Finally, Sec-
tion 7 encapsulates the research outcomes, offering insightful recommendations for future
investigations in the field.

2. Preliminaries

Definition 1 (Xu and Zhou, 2016). A PHF set ℵ on a set U is defined as: ℵ =
{〈α,�(α)〉 : α ∈ U} where �(α) = ⋃

t {δ(t)
α (p(t))}, and 0 �

∑
t p(t) � 1 (P (q) be-

ing the probability of δ
(t)
α ∈ [0, 1]). If U is singleton, then ℵ reduces to a PHF element

(PHFE) and we write ℵ = ⋃
t {δ(t)(p(t))} and s(ℵ) = ∑

t (δ
(t) × p(t)) to denote it’s a

score value. For two PHFEs ℵ and �, s(ℵ) > s(�) ⇒ ℵ 	 �.

Definition 2 (Senapati et al., 2022b). The Aczel-Alsina (AA) t-norm is described as:

AAN(x, y) = exp
[−(

(− ln x)θ + (− ln y)θ
) 1

θ
]
, (0 < θ < ∞). (1)

The Aczel-Alsina (AA) t-conorm (s-norm) is described as:

AACN(x, y) = 1−exp
[−((− ln(1−x)

)θ +(− ln(1−y)
)θ ) 1

θ
]
, (0 < θ < ∞). (2)

3. Aczel-Alsina-Operations Between PHFEs and Associated Weighted Operators

Let ℵn = 〈⋃t {δ(t)
n (p

(t)
n )}〉 (n = 1, 2, . . . , ℓ) be a collection of PHFEs.

Definition 3. For σ > 0, we define:

(i) ℵ1 ⊕ ℵ2 =
〈⋃

t

{
1 − exp

[
−

( 2∑
n=1

(− ln
(
1 − δ(t)

n

))θ
) 1

θ
]}(

p
(t)
1 p

(t)
2

)〉
, (3)

(ii) ℵ1 ⊗ ℵ2 =
〈⋃

t

{
exp

[
−

( 2∑
n=1

(− ln
(
δ(t)
n

))θ
) 1

θ
]}(

p
(t)
1 p

(t)
2

)〉
, (4)

(iii) σℵ1 =
〈⋃

t

{
1 − exp

[−(
σ
(− ln

(
1 − δ

(t)
1

))θ ) 1
θ
]}(

p
(t)
1

)〉
, (5)
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(iv) ℵσ
1 =

〈⋃
q

{
exp

[−(
σ
(− ln

(
δ
(t)
1

))θ ) 1
θ
]}(

p
(t)
1

)〉
. (6)

Theorem 1. Let ℵn = 〈⋃t {δ(t)
n (p

(t)
n )}〉 (n = 1, 2) be a collection of PHFEs. Then

(i) ℵ1 ⊕ ℵ2 = ℵ2 ⊕ ℵ1,

(ii) ℵ1 ⊗ ℵ2 = ℵ2 ⊗ ℵ1,

(iii) σ1(ℵ1 ⊕ ℵ2) = (σ1ℵ1) ⊕ (σ2ℵ2),

(iv) (ℵ1 ⊗ ℵ2)
σ1 = (ℵσ1

1

) ⊕ (ℵσ1
2

)
,

(v) (σ1 + σ2)ℵ1 = (σ1ℵ1) ⊕ (σ2ℵ2),

(vi) ℵσ1+σ2
1 = (ℵσ1

1

) ⊗ (ℵσ2
2

)
.

Proof. Follows from Definition 3.

Definition 4. Suppose Wn denotes the weight of ℵn such that 0 � Wn � 1 and∑ℓ
n=1 Wn = 1. Then the PHF-AA weighted averaging (PHFAAWA) operator is presented

as:

PHFAAWA(ℵn,ℵn, . . . ,ℵn) =
ℓ⊕

n=1

(Wnℵn). (7)

Theorem 2. PHFAAWA(ℵ1,ℵ2, . . . ,ℵℓ) can be expressed as a PHFE and

PHFAAWA(ℵ1,ℵ2, . . . ,ℵℓ)

=
〈⋃

t

{
1 − exp

[
−

( ℓ∑
n=1

Wn

(− ln
(
1 − δ(t)

n

))θ
) 1

θ
]}( ℓ∏

n=1

p
(t)
n

)〉
. (8)

Proof. Follows from Definition 3 and Theorem 1.

Several properties of the PHFAAWA operator are presented below.

Theorem 3. If ℵ0 (= ℵn for any n) is a PHFE, then PHFAAWA(ℵ0 ⊕ ℵ1,ℵ0 ⊕
ℵ2, . . . ,ℵ0 ⊕ ℵℓ) = ℵ0 ⊕ PHFAAWA(ℵ1,ℵ2, . . . ,ℵℓ).

Theorem 4. If ℵ0 (= ℵn for any n) is a PHFE, then PHFAAWA(ℵ1,ℵ2, . . . ,ℵℓ) = ℵ0.

Theorem 5. If (ℵn)
− = 〈⋃

t {minn δ
(t)
n (p

(t)
n )}〉 and (ℵn)

+ = 〈⋃t {maxn δ
(t)
n (p

(t)
n )}〉, then

(ℵn)
− ≺ PHFAAWA(ℵ1,ℵ2, . . . ,ℵℓ) ≺ (ℵn)

+.

Theorem 6. If �n = 〈⋃
t {δ′ (t)

n (p
(t)
n )}〉 (n = 1, 2, . . . , ℓ) be another collection of PHFEs

with δ
(t)
n � δ

′ (t)
n ∀n, then PHFAAWA(ℵ1,ℵ2, . . . ,ℵℓ) ≺ PHFAAWA(�1,�2, . . . ,�ℓ).
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Definition 5. Suppose Wn denotes the weight of ℵn such that 0 � Wn � 1 and∑ℓ
n=1 Wn = 1. Then the PHF-AA weighted geometric (PHFAAWG) operator is presented

as:

PHFAAWG(ℵn,ℵn, . . . ,ℵn) =
ℓ⊗

n=1

(ℵWn
n

)
. (9)

Theorem 7. PHFAAWG(ℵ1,ℵ2, . . . ,ℵℓ) can be expressed as a PHFE and

PHFAAWG(ℵ1,ℵ2, . . . ,ℵℓ)

=
〈⋃

t

{
exp

[
−

( ℓ∑
n=1

Wn

(− ln
(
δ(t)
n

))θ
) 1

θ
]}( ℓ∏

n=1

p
(t)
n

)〉
. (10)

Proof. Follows from Definition 5 and Theorem 1.

Some properties of PHFAAWG operator are presented as follows:

Theorem 8. If ℵ0 (= ℵn for any n) is a PHFE, then PHFAAWG(ℵ0 ⊗ ℵ1,ℵ0 ⊗
ℵ2, . . . ,ℵ0 ⊗ ℵℓ) = ℵ0 ⊗ PHFAAWG(ℵ1,ℵ2, . . . ,ℵℓ).

Theorem 9. If ℵ0 (= ℵn for any n) is a PHFE, then PHFAAWG(ℵ1,ℵ2, . . . ,ℵℓ) = ℵ0.

Theorem 10. If (ℵn)
− = 〈⋃

t {minn δ
(t)
n (p

(t)
n )}〉 and (ℵn)

+ = 〈⋃
t {maxn δ

(t)
n (p

(t)
n )}〉, then

(ℵn)
− ≺ PHFAAWG(ℵ1,ℵ2, . . . ,ℵℓ) ≺ (ℵn)

+.

Theorem 11. If �n = 〈⋃
t {δ′ (t)

n (p
(t)
n )}〉 (n = 1, 2, . . . , ℓ) be another collection of PHFEs

with δ
(t)
n � δ

′ (t)
n ∀n, then PHFAAWG(ℵ1,ℵ2, . . . ,ℵℓ) ≺ PHFAAWG(�1,�2, . . . ,�ℓ).

4. Group Decision-Making Methodology

Let’s consider that the alternatives N1, N2, . . . , Nn and factors (criteria) F1, F2, . . . , Fq

are linked to a group assessment scenario, where each alternative is evaluated by the ex-
perts (specialists) E1, E2, . . . , El under the PHF framework. The initial results, analysed
by the experts, are depicted as the PHF decision matrices, as given below:

Um = [ℵrs
m

]
n×q

=
[〈⋃

b

{
δ(b)
rsm

(
p(b)

rsm

)}〉]
n×q

(m = 1, 2, . . . , l). (11)

The proposed framework includes the following steps.

Step 1: Use PHFAAWA or PHFAAWG operator to get the aggregated PHF matrix
(A-PHF-M).
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A-PHF-M is [ℵrs]n×q = [〈⋃
b{δ(b)

rs (p
(b)
rs )}〉]

n×q
where:

ℵrs = PHFAAWA
(ℵrs

1 ,ℵrs
2 , . . . ,ℵrs

l

) =
l⊕

m=1

(
�mℵrs

m

)
(12)

OR

ℵrs = PHFAAWG
(ℵrs

1 ,ℵrs
2 , . . . ,ℵrs

l

) =
l⊗

m=1

(ℵrs
m

)�m (13)

(�m being the weight of Em).

Step 2: Calculate the “degree of consensus” (DC) for each expert.
Let us consider the following fuzzy matrices.

Fm = [
�rs

m

]
n×q

=
[∑

b

(
δ(b)
rsm × p(b)

rsm

)]
n×q

, (14)

F = [
�rs

]
n×q

=
[∑

b

(
δ(b)
rs × p(b)

rs

)]
n×q

. (15)

The correlation measure (CM) 	
(m)
s for Em under Hs can be defined as:

	(m)
s =

∑p

r=1

[(
D

(m)
rs

D
(m)
s

− 1
p

∑p

r=1
D

(m)
ij

D
(m)
s

) × (
Drs

Ds
− 1

p

∑p

r=1
Drs

Ds

)]
√∑p

r=1

(D
(m)
ij

D
(m)
s

− 1
p

∑p

r=1
D

(m)
rs

D
(m)
s

)2 ×
√∑p

r=1

(
Drs

Ds
− 1

p

∑p

r=1
Drs

Ds

)2
, (16)

where

ζ̄ (rs)
m =

〈
max

r
�rs

m

〉
, ζ (rs)

m
=

〈
min

r
�rs

m

〉
, ζ̄ (rs) =

〈
max

r
�rs

〉
, ζ (rs) =

〈
min

r
�rs

〉
,

D(m)
rs = Distance

(
ζ (rs)
m , ζ̄ (rs)

m

) = ∣∣ζ (rs)
m − ζ̄ (rs)

m

∣∣,
D(m)

s = Distance
(
ζ̄ (rs)
m , ζ (rs)

m

) = ∣∣ζ̄ (rs)
m − ζ (rs)

m

∣∣,
Drs = Distance

(
ζ̄ (rs), ζ (rs)

) = ∣∣ζ̄ (rs) − ζ (rs)
∣∣,

Dists = Distance
(
ζ̄ (rs), ζ (rs)

) = ∣∣ζ̄ (rs) − ζ (rs)
∣∣.

Next, CD ϑ(m) of Em can be defined as:

ϑ(m) = 1

q

q∑
s=1

	(m)
s (m = 1, 2, . . . , l). (17)
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Obviously ϑ(m) ∈ [0, 1]. If ϑ denotes the predefined DC for each expert, then ϑ(m) �
ϑ must be fulfilled. For ϑ(m) < ϑ , then we have to consider other values of θ till ϑ(m) � ϑ

is achieved for all Em.

Step 3: Calculation of criteria weights.
The divergence measure, as given in Eq. (18), exhibits the difference between rth al-

ternative and other alternatives under sth criterion.

DIVrs = 1

n − 1

n∑
z=1

C
(
�rs,�zs

)
. (18)

where C(�rs,�zs) which corresponds the cross-entropy measure between �rs and �zs

is defined as:

C
(
�rs,�zs

) = �rs × ln

(
2�rs

�rs + �zs

)
+ �zs × ln

(
2�zs

�rs + �zs

)

+ (
1 − �rs

) × ln

(
1 − �rs

1 − 1
2 (�rs + �zs)

)

+ (
1 − �zs

) × ln

(
1 − �zs

1 − 1
2 (�rs + �zs)

)
. (19)

The overall divergence corresponding to sth criterion is calculated as:

DIVs = 1

n − 1

n∑
r=1

n∑
z=1

C
(
�rs,�zs

)
. (20)

Hence, upon solving the optimization model, criteria weights can be determined.

Maxχ =
q∑

s=1

βs

1

n − 1

n∑
r=1

n∑
z=1

C
(
�rs,�zs

)
,

Subject to: βs ∈ �,

q∑
s=1

βs = 1, βs � 0∀s,

(21)

where βs represents the weight of sth criterion and � represents the set of partial infor-
mation regarding criteria weights.

Step 4: Derive priority order of the alternatives using MULTIMOORA.

Step 4.1: Determine the significance values (SVs) of alternatives by “ratio system” (RS)
technique.

Suppose ζ+
r and ζ−

r denote the level of significance of Nr in relation to benefit and
cost attributes respectively. They can be calculated by:

ζ+
r =

⊕
s∈Benefit

(
βs�

rs
)
, ζ−

r =
⊕

s∈Cost

(
βs�

rs
)
. (22)
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Determine the SV for Nr utilizing Eq. (23):

ζr = ζ+
r − ζ−

r (r = 1, 2, . . . , n). (23)

Step 4.2: Calculate the overall SVs (OSVs) of alternatives by “ratio point” (RP) model.
The OSVs (ϑs) of RP model for the sth criterion (Fs) are obtained using Eq. (24).

ϑs =
{

maxr �rs, for s ∈ Benefit,
minr �rs, for s ∈ Cost. (24)

Use Eq. (25) to calculate the weighted distances (WDs) for all alternatives.

	rs = βs × ∣∣�rs − ϑs

∣∣. (25)

Determine the maximum WD based on Eq. (26).

ηr = max
s

	rs (r = 1, 2, . . . , p). (26)

Step 4.3: Calculate SVs of the alternatives by FMF model.
Suppose α+

r and α+
r denote the level of significance of Nr related to benefit and cost

attributes respectively. We calculate them as:

α+
r =

⊗
s∈Benefit

(
�rs

)βs , α−
r =

⊗
s∈Cost

(
�rs

)βs . (27)

Determine the SV of Nr using Eq. (28).

τr = α+
r

α−
r

(r = 1, 2, . . . , n). (28)

Step 4.4: Calculate the final priority values (FPVs) of alternatives.
The FPV of Nr by improved Borda Rule, is calculated as follows:

B(Nr) = 2

n(n + 1)

[
ζ̃r × (

n − rank(ζ̃r ) + 1
) − η̃r × rank(η̃r )

+ τ̃r × (
n − rank(τ̃r ) + 1

)]
(r = 1, 2, . . . , n). (29)

Here, ζ̃r , η̃r , τ̃r are the scores (normalized) of Br by RS, RP and FMF models, respectively.
Alternatives are ranked based on their FPVs.

5. Case Study

5.1. Problem Description

One of the main forces for macroeconomic expansion and technological improvement in
India is the automobile sector. By 2026, volume-wise, India is predicted to become the
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third-largest vehicle market in the world (Miglani, 2019). Approximately 22.70 million
vehicles, including passenger, commercial, three- and four-wheeler vehicles, were pro-
duced in India during the 2020–2021 fiscal year (Luthra et al., 2016). By 2026, the Indian
automobile sector is projected to generate $300 billion in revenue (Mathivathanan et al.,
2018). The automobile sector in India generates around 37 million direct and indirect jobs,
accounts for 49% of all manufacturing output, and contributes 7.1% of the country’s GDP
(Borkhade et al., 2022).

In this paper, a well-known Indian producer of commercial vehicles (referred to as
Company Z), which has a robust domestic and global market and has been in operation
for the previous forty years, is examined. The business holds an ISO 9001 accreditation. As
one of the leading car manufacturers in India, Company Z is well-known for its excellent
performance in terms of mileage, payload, strength and durability, luxury and comfort,
convenience of warranty and servicing, and so on. The corporation has been working to
achieve sustainability and agility in their operations. The case company has therefore put
outsourcing rules into place and is searching for a trustworthy outsourcing vendor.

To identify and assess agile and sustainability criteria, a committee comprising three
experts was formed. The committee chose six agile criteria, namely production flexibility
and capability (F1), service level and lead time (F2), multi-skilled and flexible work-
force (F3), collaboration with partners (F4), customer driven innovation (F5), delivery
and sourcing flexibility (F6), and six sustainability criteria, namely: product price (F7),
resource consumption (F8), green product (F9), green manufacturing process (F10),
workers’ occupational health and safety (F11), social welfare and community develop-
ment (F12). A brief description about the criteria is presented in Table 2.

The initial evaluations provided by the three experts for the outsourcing vendors Altras
(N1), Bertrandt (N2), Tata technology (N3) and EDAG (N4) are presented in Tables 3, 4,
and 5 respectively.

5.2. Problem Solution

PHFAAWA operator, as shown in Eq. (13), is employed to derive the aggregated PHF
matrix for θ = 2, with expert weights of 0.35, 0.40, and 0.25. The initial PHF assessment
matrices are converted to fuzzy matrices based on Eq. (14). The converted aggregated
matrix (for θ = 2) is formed employing Eq. (15), as shown in Table 6. Suppose the
minimum DC is ϑ = 0.80. DC value for each expert are calculated using Eqs. (16) and
(17) for different values of Aczel-Alsina parameter θ have been given in Fig. 1. Since
ϑ(3) = 0.7930 for θ = 3, ϑ(3) = 0.7857 for θ = 4, and ϑ(3) = 0.7815 for θ = 5, so
these values of θ cannot be considered. We can choose either θ = 1 or θ = 2. Let us
take θ = 2. Then the DC are: ϑ(1) = 0.9118, ϑ(2) = 0.8186, and ϑ(3) = 0.8056. Since
minm ϑ(m) = 0.8056, we are done with the consensus reaching among experts.

Next, based on the Eqs. (18)–(21), we have the following optimization model in linear
form:

Max Z = 0.1314β1 + 0.3583β2 + 0.3702β3 + 0.1167β4 + 0.1139β5 + 0.2844β6

+ 0.1858β7 + 0.3089β8 + 0.1050β9 + 0.5059β10 + 0.2100β11 + 0.3157β12
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Table 2
Significance of the considered MOV selection criteria.

Category Criteria Significance

Agile Production flexibility
and capability (F1)

Ability of the vendor to adapt their production process to meet
changing demands, enabling faster product variations or customized
orders.

Service level and lead
time (F2)

The time it takes to fulfil an order and deliver the product, crucial for
meeting customer expectations and maintaining competitiveness in
dynamic markets.

Multi-skilled and
flexible workforce
(F3)

The versatility of the workforce in handling various tasks, ensuring
smooth transitions in production processes without delays or quality
compromise.

Collaboration with
partners (F4)

The extent of cooperation with supply chain partners to improve
efficiency, transparency, and responsiveness.

Customer-driven
innovation (F5)

Innovation driven by customer needs, which helps in creating
customized or advanced products that meet market demands.

Delivery and sourcing
flexibility (F6)

Ability to adjust delivery schedules and sourcing strategies according
to demand fluctuations, reducing risks and delays in the supply chain.

Sustainability Product price (F7) The cost at which the product is sold, influencing both affordability and
the vendor’s ability to maintain competitive pricing in the market.

Resource
consumption (F8)

The efficiency with which the vendor uses resources, such as energy
and raw materials, to minimize waste and environmental impact.

Green product (F9) A product designed with environmental considerations, using
sustainable materials and processes to minimize environmental impact.

Green manufacturing
process (F10)

The adoption of eco-friendly manufacturing processes that reduce
environmental harm, such as energy consumption and emissions.

Workers’
occupational health
and safety (F11)

Focus on the health, safety, and well-being of workers in the production
environment, ensuring a safe working atmosphere and compliance with
regulations.

Social welfare and
community
development (F12)

Contributions to societal well-being, including community
engagement, promoting social equity, and supporting local
development.

Table 3
Primary assessments by the 1st expert.

MOV F 1 F 2 F 3 F 4

N1 〈0.6(0.5), 0.8(0.5)〉 〈0.8(0.5), 0.9(0.5)〉 〈0.4(0.6), 0.5(0.4)〉 〈0.6(0.5), 0.8(0.5)〉
N2 〈0.8(1)〉 〈0.7(1)〉 〈0.6(1)〉 〈0.8(1)〉
N3 〈0.5(1)〉 〈0.6(1)〉 〈0.3(1)〉 〈0.4(1)〉
N4 〈0.1(0.5), 0.3(0.5)〉 〈0.5(0.5), 0.6(0.5)〉 〈0.1(0.5), 0.2(0.5)〉 〈0.2(0.5), 0.3(0.5)〉

F 5 F 6 F 7 F 8

N1 〈0.3(0.5), 0.5(0.5)〉 〈0.5(0.5), 0.7(0.5)〉 〈0.6(0.5), 0.8(0.5)〉 〈0.5(0.5), 0.6(0.5)〉
N2 〈0.6(1)〉 〈0.7(1)〉 〈0.9(1)〉 〈0.8(1)〉
N3 〈0.3(1)〉 〈0.5(1)〉 〈0.7(1)〉 〈0.5(1)〉
N4 〈0.3(0.5), 0.5(0.5)〉 〈0.2(0.6), 0.4(0.4)〉 〈0.5(0.5), 0.6(0.5)〉 〈0.3(0.4), 0.4(0.6)〉

F 9 F 10 F 11 F 12

N1 〈0.3(0.4), 0.6(0.6)〉 〈0.5(0.5), 0.7(0.5)〉 〈0.6(0.5), 0.9(0.5)〉 〈0.5(0.5), 0.6(0.5)〉
N2 〈0.6(1)〉 〈0.9(1)〉 〈0.9(1)〉 〈0.7(1)〉
N3 〈0.1(1)〉 〈0.3(1)〉 〈0.5(1)〉 〈0.3(1)〉
N4 〈0.2(0.5), 0.4(0.5)〉 〈0.3(0.5), 0.5(0.5)〉 〈0.3(0.5), 0.5(0.5)〉 〈0.2(0.5), 0.3(0.5)〉
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Table 4
Primary assessments by the 2nd expert.

MOV F 1 F 2 F 3 F 4

N1 〈0.6(0.5), 0.8(0.5)〉 〈0.6(0.5), 0.8(0.5)〉 〈0.5(0.6), 0.8(0.4)〉 〈0.6(0.5), 0.7(0.5)〉
N2 〈0.7(1)〉 〈0.9(1)〉 〈0.9(1)〉 〈0.8(1)〉
N3 〈0.7(1)〉 〈0.5(1)〉 〈0.2(1)〉 〈0.6(1)〉
N4 〈0.5(0.5), 0.6(0.5)〉 〈0.1(0.5), 0.3(0.5)〉 〈0.3(0.5), 0.5(0.5)〉 〈0.5(0.5), 0.6(0.5)〉

F 5 F 6 F 7 F 8

N1 〈0.3(0.5), 0.5(0.5)〉 〈0.5(0.5), 0.8(0.5)〉 〈0.4(0.5), 0.6(0.5)〉 〈0.5(0.5), 0.7(0.5)〉
N2 〈0.5(1)〉 〈0.6(1)〉 〈0.8(1)〉 〈0.7(1)〉
N3 〈0.3(1)〉 〈0.2(1)〉 〈0.6(1)〉 〈0.5(1)〉
N4 〈0.4(0.5), 0.5(0.5)〉 〈0.1(0.6), 0.3(0.4)〉 〈0.4(0.5), 0.6(0.5)〉 〈0.2(0.4), 0.3(0.6)〉

F 9 F 10 F 11 F 12

N1 〈0.5(0.4), 0.6(0.6)〉 〈0.8(0.5), 0.9(0.5)〉 〈0.6(0.5), 0.8(0.5)〉 〈0.6(0.5), 0.7(0.5)〉
N2 〈0.5(1)〉 〈0.6(1)〉 〈0.4(1)〉 〈0.6(1)〉
N3 〈0.5(1)〉 〈0.3(1)〉 〈0.7(1)〉 〈0.4(1)〉
N4 〈0.6(0.5), 0.9(0.5)〉 〈0.3(0.5), 0.5(0.5)〉 〈0.4(0.5), 0.7(0.5)〉 〈0.3(0.5), 0.4(0.5)〉

Table 5
Primary assessments by the 3rd expert.

MOV F 1 F 2 F 3 F 4

N1 〈0.7(0.5), 0.8(0.5)〉 〈0.5(0.5), 0.6(0.5)〉 〈0.3(0.6), 0.6(0.4)〉 〈0.6(0.5), 0.8(0.5)〉
N2 〈0.6(1)〉 〈0.9(1)〉 〈0.8(1)〉 〈0.5(1)〉
N3 〈0.2(1)〉 〈0.5(1)〉 〈0.5(1)〉 〈0.7(1)〉
N4 〈0.3(0.5), 0.4(0.5)〉 〈0.3(0.5), 0.5(0.5)〉 〈0.5(0.5), 0.7(0.5)〉 〈0.4(0.5), 0.6(0.5)〉

F 5 F 6 F 7 F 8

N1 〈0.3(0.5), 0.5(0.5)〉 〈0.5(0.5), 0.6(0.5)〉 〈0.6(0.5), 0.8(0.5)〉 〈0.6(0.5), 0.8(0.5)〉
N2 〈0.6(1)〉 〈0.8(1)〉 〈0.9(1)〉 〈0.7(1)〉
N3 〈0.2(1)〉 〈0.5(1)〉 〈0.6(1)〉 〈0.3(1)〉
N4 〈0.1(0.5), 0.2(0.5)〉 〈0.3(0.6), 0.5(0.4)〉 〈0.5(0.5), 0.7(0.5)〉 〈0.1(0.4), 0.3(0.6)〉

F 9 F 10 F 11 F 12

N1 〈0.3(0.4), 0.5(0.6)〉 〈0.6(0.5), 0.8(0.5)〉 〈0.8(0.5), 0.9(0.5)〉 〈0.4(0.5), 0.5(0.5)〉
N2 〈0.6(1)〉 〈0.9(1)〉 〈0.7(1)〉 〈0.8(1)〉
N3 〈0.1(1)〉 〈0.5(1)〉 〈0.5(1)〉 〈0.4(1)〉
N4 〈0.2(0.5), 0.4(0.5)〉 〈0.4(0.5), 0.5(0.5)〉 〈0.2(0.5), 0.3(0.5)〉 〈0.1(0.5), 0.3(0.5)〉

Subject to: β1 + β2 + · · · + β12 = 1 and β1, β2, . . . , β12 � 0.
Suppose that the partial weights information for the criteria are:

� = {0.03 � β1 � 0.07, 0.05 � β2 � 0.07, 0.15 � β3 � 0.25, 0.05 � β4 � 0.08,

0.05 � β5 � 0.08, 0.08 � β6 � 0.15, 0.10 � β7 � 0.15, 0.20 � β8 � 0.25,

0.08 � β9 � 0.15, 0.15 � β10 � 0.25, 0.03 � β11 � 0.08, 0.02 � β12 � 0.08}.

This leads to the following solution:
β1 = 0.03, β2 = 0.05, β3 = 0.15, β4 = 0.05, β5 = 0.05, β6 = 0.08, β7 = 0.10,
β8 = 0.20, β9 = 0.09, β10 = 0.15, β11 = 0.03, β12 = 0.02 with MaxZ = 94.7805.
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Table 6
Converted fuzzy matrix (for θ = 2).

MOV F 1 F 2 F 3 F 4 F 5 F 6

N1 0.7423 0.7677 0.5530 0.697 0.4158 0.6348
N2 0.7281 0.8631 0.8262 0.7622 0.5658 0.7051
N3 0.5865 0.5409 0.3492 0.5888 0.2799 0.4260
N4 0.4809 0.4354 0.4469 0.4998 0.3956 0.3001

F 7 F 8 F 9 F 10 F 11 F 12

N1 0.6624 0.6322 0.5200 0.7763 0.7962 0.5841
N2 0.8717 0.7433 0.5658 0.8467 0.7822 0.7051
N3 0.6416 0.4654 0.3598 0.3714 0.6061 0.3705
N4 0.5590 0.3014 0.6269 0.4260 0.4735 0.2748

Fig. 1. Consensus degrees of experts for various values of θ .

Table 7
SVs of MOVs by RS approach.

MOV ζ+
r ζ−

r ζr

N1 0.448841 0.192678 0.256163
N2 0.527224 0.235825 0.291398
N3 0.288221 0.157240 0.130980
N4 0.312025 0.116175 0.195850

SVs of the alternatives are calculated using RS approach, as described in Eqs. (22) and
(23), and are presented in Table 7.

RPs ϑs (s = 1, 2, . . . , 12) are then computed using Eq. (24), as follows:
ϑ1 = 0.742344787, ϑ2 = 0.863080243, ϑ3 = 0.826210559, ϑ4 = 0.762183501,
ϑ5 = 0.565789937, ϑ6 = 0.705054017, ϑ7 = 0.558990445, ϑ8 = 0.301380812,
ϑ9 = 0.626947861, ϑ10 = 0.846700199, ϑ11 = 0.796187962, ϑ12 = 0.705054017.

Next, the weighted distances are estimated using Eq. (25) and presented in Table 8.
Finally, using Eq. (26) of RP model, the maximum distances of the alternatives are

calculated, as given below:

η1 = 0.06616, η2 = 0.08837, η3 = 0.07154, η4 = 0.06310.
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Table 8
Distance from each alternative to the RPs.

Criteria N1 N2 N3 N4

F 1 0 0.000426 0.004675 0.007843
F 2 0.004768 0 0.016107 0.021383
F 3 0.040975 0 0.071546 0.056903
F 4 0.003258 0 0.008671 0.013119
F 5 0.007500 0 0.014292 0.008509
F 6 0.005623 0 0.022323 0.032399
F 7 0.010341 0.0312736 0.008264 0
F 8 0.066161 0.088376 0.032801 0
F 9 0.009625 0.005504 0.024046 0
F 10 0.010562 0 0.071296 0.063105
F 11 0 0.000421 0.005701 0.009680
F 12 0.002419 0 0.006692 0.008605

Table 9
Outcomes by FMF model.

MOV α+
r α−

r τr

N1 0.723450 0.875551 0.826279
N2 0.813743 0.929537 0.875428
N3 0.528133 0.820902 0.643356
N4 0.559902 0.742272 0.754308

Table 10
Final priority values of the MOV alternatives.

RS model RP model FMF model B(Nr )

MOV ζ̃r Rank η̃r Rank τ̃r Rank

N1 0.5643 2 0.4534 2 0.5298 2 0.2376
N2 0.642 1 0.6057 4 0.5614 1 0.2390
N3 0.2886 4 0.4904 3 0.4125 4 −0.077
N4 0.4315 3 0.4325 1 0.4837 3 0.1398

Next, Eqs. (27)–(28) of FMF model are used to compute the SVs of alternatives, as given
in Table 9.

The final priority values of the alternatives are derived using Eq. (29), as presented in
Table 10.

Hence, the priority order of the vendors is: N2 	 N1 	 N4 	 N3 where the sign “	”
signifies “superior to”. Therefore, the most suitable vendor is N2 (Bertrandt).

6. Discussions

The entire discussion is classified into two parts: (A) sensitivity analysis of criteria
weights, (B) comparison of the proposed approach with the extant methods, and (C) man-
agerial implications.
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Fig. 2. Various criteria weight sets.

Fig. 3. Priority values of alternatives for various sets of criteria weights.

6.1. Sensitivity Analysis of Criteria Weights

In this section, sensitivity analysis is conducted to understand the effect of criteria weights
on the ranking order. This is achieved using 24 different weight sets (CWS1, CWS2,
CWS3, . . . , CWS24), as depicted in Fig. 2, formed by considering twenty-four arbitrary
combinations of the criteria weights. Especially, this is valuable in achieving a broader
scope of criteria weights for taking a look at the performance of the created model. The
final priority scores of alternatives are shown in Fig. 3. The positioning places of alterna-
tives along with the Spearman’s rank correlation coefficient (SRCC) values (Saha et al.,
2023) have been calculated for those 24 weight sets and depicted in Fig. 4. The average
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Fig. 4. Ranking positions and SRCC values.

Fig. 5. Comparative analysis.

SRCC value is calculated as ‘0.8916’, indicating a strong correlation (Saha et al., 2023)
between the ranking positions. Therefore, the priority order of the alternatives obtained
using the proposed framework is reliable.

6.2. Comparative Study

This section aims to compare the proposed model with existing ones, specifically PHF-
COPRAS (Krishankumar et al., 2022), PHF-MARCOS (Liu et al., 2023b), and PHF-
TOPSIS (Qi, 2023). These tools have been applied to the case study considered by us.
Outcomes are presented in Fig. 5. According to Fig. 5, the priority order derived by each
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technique is N2 	 N1 	 N4 	 N3 which matches perfectly the results from our suggested
strategy.

The main benefits of the proposed framework are:

1. Existing methods, especially those relying on t-norm and t-conorm operators, often fail
to handle bias or disagreement among experts effectively. Aczel-Alsina AOs integrated
in the proposed framework include an adjustable parameter, allowing them to better
account for expert biases and preferences, which leads to a more robust consensus
among the group. This makes the proposed method more effective in situations where
expert opinions are uncertain or divergent.

2. The existing methodologies (Krishankumar et al., 2022; Liu et al., 2023b; Qi, 2023)
might result in information loss when determining criteria weights due to the absence
of optimization models. Consequently, the accuracy of the inputs cannot be thoroughly
evaluated by current methods (Krishankumar et al., 2022; Liu et al., 2023b; Qi, 2023).
In contrast, the proposed framework uses a cross-entropy based model to determine the
criteria weights, which enhances the accuracy and relevance of the weights assigned
to each criterion. This model helps to reduce uncertainty in the weight assignment
process, which is often a challenge in other methods that rely on fixed or subjective
weight distributions.

3. The proposed framework integrates a consensus-building procedure for decision-
makers, whereas existing PHFS methods such as PHF-COPRAS (Krishankumar et
al., 2022), PHF-MARCOS (Liu et al., 2023a), and PHF-TOPSIS (Qi, 2023) lack the
capability to adjust the consensus level among experts.

4. PHF-MULTIMOORA is more efficient compared to PHF-COPRAS (Krishankumar
et al., 2022), PHF-MARCOS (Liu et al., 2023b), and PHF-TOPSIS (Qi, 2023) as
“ratio system”, “reference point” and “full multiplicative form” are included in that.
Moreover, PHF-MULTIMOORA approach is simple, highly robust, and has less com-
putation time in comparison to PHF-COPRAS (Krishankumar et al., 2022), PHF-
MARCOS Liu et al. (2023b), and PHF-TOPSIS (Qi, 2023).

6.3. Adaptability and Versatility of Proposed Framework Across Industries

The integration of PHF sets allows the framework to handle uncertainty and vagueness
in expert opinions, making it suitable for a variety of decision-making contexts across
industries. PHF sets enable the incorporation of multiple conflicting and uncertain evalu-
ations, which is crucial in sectors like healthcare, where decisions often rely on subjective
judgments about treatments, resource allocation, and medical technologies. Aczel-Alsina
aggregation operations, with their adjustable parameters, provide the flexibility to modify
the aggregation process based on the specific requirements of different industries, allowing
for fine-tuning of the consensus mechanism to match the decision-making environment.
For example, in the context of sustainable supplier selection, the framework can be em-
ployed to aggregate diverse criteria such as environmental impact, cost-effectiveness, and
compliance with sustainability standards. By adjusting the parameters of the aggregation
operations, different weightings can be applied to these criteria depending on the sus-
tainability goals of the industry. Similarly, in financial risk assessment, MULTIMOORA
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method, in combination with PHF aggregation, can be used to rank investment portfolios
based on criteria like return potential, risk exposure, and liquidity, offering a comprehen-
sive evaluation framework under uncertainty. The adopted cross-entropy-based criteria
weighting model ensures that the weight distribution reflects the relative importance of
each criterion, which is particularly useful in industries like transportation, where fuel
efficiency, safety, and cost criteria may vary in significance based on the region or op-
erational conditions. The versatility of the framework is further enhanced by its multi-
objective optimization approach, which can be applied to a wide range of problems like
urban infrastructure development or public policy formulation. These technical aspects
make the framework highly adaptable, capable of addressing the specific needs of different
industries while maintaining its reliability and accuracy in aggregating expert judgments.

7. Conclusions

The shortfalls in existing methods for managing uncertainty in decision-making are ad-
dressed using PHF sets to systematically handle uncertainty. Traditional aggregation oper-
ations for PHF sets often lack adaptability, which has been improved by introducing PHF
Aczel-Alsina weighted averaging and geometric operations, providing greater flexibility
in aggregating uncertain information. A consensus-building approach is proposed to iden-
tify the best alternative within a PHF environment, effectively mitigating the influence of
biased expert perspectives. The proposed framework also incorporates a cross-entropy
based model to determine criteria weights, ensuring that the weighting process accurately
reflects the real-world importance of each criterion. MULTIMOORA method is then ap-
plied to establish the priority orders of alternatives, offering a comprehensive approach to
decision-making. This combination of techniques improves both the reliability and objec-
tivity of the decision process. A detailed case study on MOV selection demonstrates the
practical applicability of the framework, showing how it can be used to make informed and
balanced decisions in real-world scenarios. Sensitivity analysis and comparative studies
further validate the effectiveness of the proposed framework in managing the uncertainties
in PHF-based decision-making. These analyses confirm that the framework performs well
in adjusting to different levels of uncertainty, thus ensuring robust and consistent results.

The framework may be extended in future research by incorporating additional criteria.
New factors can be added or existing ones modified depending on specific industry or busi-
ness requirements to better reflect the evolving needs of decision-making environments.
The integration of dynamic or time-varying uncertainty models within PHF sets can also
be explored to handle uncertainties that evolve over time. The proposed framework can
be further extended to other MCGDM problems across various sectors like supply chain
management, energy planning, or healthcare, where uncertainty and hesitation play sig-
nificant roles in decision outcomes. The adaptability of PHF Aczel-Alsina operations in
these diverse contexts should be investigated in future studies. The framework can also be
expanded to include machine learning or artificial intelligence-based techniques for dy-
namic consensus-building, enabling the system to learn from previous decision outcomes
and improve the aggregation and consensus processes over time, refining the decision-
making process in environments with large amounts of data and complex decision criteria.
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