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Abstract. This paper focuses on the aggregation or scoring methods to evaluate the alternatives in
Multiple Attribute Decision Making problems (MADM), e.g. Weighted Sum Model (WSM) and
Weighted Product Model (WPM). The paper deals with the incorporation of the two concepts into
the scoring methods, which has not been studied yet. These concepts are decision maker’s Indif-
ference Thresholds (IT) and Yearning Thresholds (YT) on the decision making criteria. Reviewing
the related literature reveals that the existent scoring methods do not have a suitable structure to
involve the IT, and there is no scoring method which addresses a way to take the YT into account.
The paper shows that there is an important drawback to the famous Aspiration Level (AL) concept.
Hence, the YT idea is given to resolve the AL limitation. Based on the IT and YT concepts, two
new scoring methods are developed: Extended WPM (EWPM) and Extended WSM (EWSM). The
EWPM and EWSM are compared with the other scoring methods using a set of simulation analysis.
A real-world case extracted from Exploration and Production (E&P) companies in oil industry is
examined.
Key words: multiple attribute decision making, EWPM, EWSM, IT, YT, oil exploration and
production.

1. Introduction

A Multiple Attribute Decision Making problem (MADM) is a procedure to find the best
alternative that has the highest degree of satisfaction from a finite set of alternatives char-
acterized with multiple criteria (Biswas et al., 2019). MADM problems have been es-
tablished as an effective methodology for solving a wide variety of decision making is-
sues. As shown in equation (1), a MADM matrix is generally displayed by m alternatives
A1, . . . , Am, and n criteria C1, . . . , Cn, such that entry xij indicates the performance mea-
sure of alternative Ai for criterion Cj . The weight attached to criterion Cj is represented
by wj in a way that 0 � wj � 1 and

∑n
j=1 wj = 1.
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⎛
⎜⎜⎜⎝

C1 C2 . . . Cn

A1 x11 x12 · · · x1n

A2 x21 x22 · · · x2n
...

...
...

. . .
...

Am xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠. (1)

A criterion is either quantitative or qualitative. Quantitative criteria are stated in numeri-
cal performance measures, but qualitative criteria are expressed in ordinal qualitative data.
There are many instructions for conversion of qualitative data into numerical values. Any-
way, from now on, we assume that all of performance measures xij are numerical. More-
over, a criterion is either benefit type or cost type. The former receives high performance
measures for preferable alternatives, and the latter receives low performance measures for
desirable alternatives. Let’s, xmax

j = maxi=1,...,m xij and xmin
j = mini=1,...,m xij , thus for

a benefit criterion the former is the ideal performance measure, and the latter shows the
anti-ideal performance measure. Absolutely, these terms are vice versa for a cost criterion.

In the literature, there are several methods to evaluate the alternatives in a MADM
problem. These methods can be broadly classified into two major types: compensatory and
non-compensatory (Hwang and Yoon, 1981). The former assumes compensation among
the criteria, while the latter rejects this assumption. The compensatory methods are clas-
sified as scoring (or weighting or aggregating), compromising (or ideal point) and concor-
dance (or outranking) (Hwang and Yoon, 1981). The concentration point of the current
paper is the scoring methods. In the scoring methods, an aggregate score for each alterna-
tive is calculated (from now on, for short, we call it score), indicating total performance of
that alternative. Generally, an alternative that has the largest score is selected. In Section 2,
the existent scoring methods are reviewed. Let’s explain two motivations of the current
research, as follows:

• The first and major reason why the current study is conducted is relevant to the concept
of Indifference Threshold (IT) (this concept is explained in Section 4). Notably, a few
MADM tools involve the IT, i.e. Lexicographic semi-order (Tversky, 1969), Elimina-
tion and Choice Expressing the Reality III (ELECTRE III) (Roy, 1978), Indifference
Threshold-based Attribute Ratio Analysis (ITARA) (Hatefi, 2019), and Block-wise Rat-
ing the Attribute Weights (BRAW) (Hatefi, 2021). None of the existent scoring methods
apply the IT concept to their procedures. Thus a question arises: How can we build a
scoring method containing the IT concept?

• The second motivation, but not less important, concerns the incorporation of the DM’s
Yearning Thresholds (YT) into the scoring methods (this concept is explained in Sec-
tion 3). Hence, the current study is also to answer the question of how to develop a
scoring method that involves the YT concept. Reviewing the respective literature shows
that there is no scoring method which addresses a well-defined way to incorporate the
YT concept.

The aim of the current paper is to extend scoring methods to evaluate the alternatives
in an MADM problem, by taking the two above notions into consideration. The paper is
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organized as follows. Section 2 reviews the existent scoring methods in the related litera-
ture. Section 3 defines the YT concept, and justifies why any MADM evaluation method
has to take this concept into account. Section 4 explicates the IT concept, and enhances it
by giving a new definition. In sections 5 and 6, two proposed extended scoring methods
are explained. Section 7 is to present the procedure and results of a simulation study car-
ried out to compare the ranking structures of the alternatives by different scoring methods.
Section 8 illustrates a real-world study case performed in the oil industry. Finally, discus-
sion and conclusion are pointed out in the last section.

2. Overview of the Scoring Methods

The seminal and traditional scoring method is Weighted Sum Model (WSM) (Churchman
and Ackoff, 1954). In this method, after normalization of the performance measures by
the linear normalization (equations (2) and (3) respectively for benefit and cost criteria),
the score for alternative Ai is calculated by equation (4).

rij = xij

xmax
j

, i = 1, . . . , m, j = 1, . . . , n, (2)

rij = xmin
j

xij

, i = 1, . . . , m, j = 1, . . . , n, (3)

SWSM
i =

n∑
j=1

wjrij , i = 1, . . . , m. (4)

The WSM formula is defined in additive form. The multiplicative pair for the WSM is
called Weighted Product Model (WPM) (Miller and Starr, 1969). Equation (5) shows the
WPM function to calculate the scores. The normalization technique of the WPM is just
like the WSM.

SWPM
i =

n∏
j=1

(rij )
wj , i = 1, . . . , m. (5)

In Additive Ratio Assessment (ARAS) (Zavadskas and Turskis, 2010a), firstly, a hypothet-
ical alternative, namely, and ideal alternative including the ideal performance measures is
added to the MADM matrix at row zero (i = 0). Then, the method benefits from the linear
normalization sum-based, as follows from equations (6) and (7) respectively for benefit
and cost criteria. Next, equation (8) is used to work the primary scores of the alternatives
out. As it can be seen from this equation, the ARAS score calculation is like the WSM. At
the end, final scores are determined by comparison of the primary scores with the primary
score of the ideal alternative, as follows from equation (9).

rij = xij∑m
k=0 xkj

, i = 0, . . . , m, j = 1, . . . , n, (6)
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rij = 1/xij∑m
k=0(1/xkj )

, i = 0, . . . , m, j = 1, . . . , n, (7)

Si =
n∑

j=1

wjrij , i = 0, . . . , m, (8)

SARAS
i = Si/S0, i = 1, . . . , m. (9)

Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS)
was recently introduced by Stevic et al. (2020). This method is a generalized version of the
ARAS. The MARCOS starts with adding two hypothetical alternatives1 to the MADM
matrix: ideal (denoted by AI) and anti-ideal (denoted by AAI). The ideal alternative con-
tains the ideal performance measures, and vice versa. The MARCOS scores represent the
position of the alternatives with regard to ideal and anti-ideal alternatives. This method
employs the WSM formula (equation (4)), to calculate its scores, as follows from equa-
tion (10).

SMARCOS
i =

(
SWSM

i /SWSM
AI

) + (
SWSM

i /SWSM
AAI

)
1 + (SWSM

i /SWSM
AI )

(SWSM
i /SWSM

AAI )
+ (SWSM

i /SWSM
AAI )

(SWSM
i /SWSM

AI )

, i = 1, . . . , m. (10)

In the methods WSM, WPM, ARAS, and MARCOS, the relevant procedures to com-
pute the scores do not distinguish between benefit criteria and cost criteria, and therefore,
during the normalization step, cost criteria must be converted into benefit criteria. On
the contrary, in the procedure of some other methods, benefit criteria are differentiated
from cost criteria. The seminal method by such a procedure is Complex Proportional
Assessment (COPRAS), proposed by Zavadskas and Kaklauskas (1996). Equation (14)
depicts the COPRAS primary formula, where S+

i and S−
i are determined by equations

(12) and (13). Both these equations use only equation (11) to get the weighted normalized
performance measures. Lastly, the COPRAS score is calculated by equation (15).

rij = wjxij∑m
k=1 xkj

, i = 1, . . . , m, j = 1, . . . , n, (11)

S+
i =

n∑
j=1

rij | j is a benefit criterion, i = 1, . . . , m, (12)

S−
i =

n∑
j=1

rij | j is a cost criterion, i = 1, . . . , m, (13)

Si = S+
i + minl=1,...,m S−

l

∑m
k=1 S−

k

S−
i

∑m
k=1

minl=1,...,m S−
l

S−
k

, i = 1, . . . , m, (14)

SCOPRAS
i = Si

maxk=1,...,m Sk

, i = 1, . . . , m. (15)

1Stevic et al. (2020), in their paper, used the terms ‘ideal solution’ and ‘anti-ideal solution’. We know that
the term ‘solution’ indicates a feasible point which can be chosen to apply. But the above points are actually
artificial and cannot be selected. Hence, we prefer to use the term ‘hypothetical alternative’ instead of ‘solution’.



New Aggregation Multiple Attribute Methods 5

Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) was intro-
duced by Brauers and Zavadskas (2006). In the ratio system part of this method, it makes
use of equation (16), called vector normalization, to normalize all the MADM matrix
entries. Then, equations (17) and (18) are applied to calculate the MOORA score as equa-
tion (19). A minor variant of the MOORA is called Multi-Objective Optimization on the
basis of Simple Ratio Analysis (MOOSRA) (Das et al., 2012) in which equation (20) is
used instead of equation (19).

rij = xij√∑m
k=1(xkj )2

, i = 1, . . . , m, j = 1, . . . , n, (16)

S+
i =

n∑
j=1

wjrij | j is a benefit criterion, i = 1, . . . , m, (17)

S−
i =

n∑
j=1

wjrij | j is a cost criterion, i = 1, . . . , m, (18)

SMOORA
i = S+

i − S−
i , i = 1, . . . , m, (19)

SMOOSRA
i = S+

i /S−
i , i = 1, . . . , m. (20)

Brauers and Zavadskas (2010) suggested the multiplicative form of the MOORA (called
MULTIMOORA or MMOORA). The normalization step is similar to the MOORA. Then,
S+

i and S+
i are determined by equations (21) and (22). As it can be seen, these elemen-

tary functions act in a similar way to the WPM method. Finally, equation (23) shows the
MMOORA function to reach the scores.

S+
i =

n∏
j=1

(rij )
wj | j is a benefit criterion, i = 1, . . . , m, (21)

S−
i =

n∏
j=1

(rij )
wj | j is a cost criterion, i = 1, . . . , m, (22)

SMMOORA
i = S+

i /S−
i , i = 1, . . . , m. (23)

There are some methods which take a strategy to mix additive and multiplicative forms
(often the WSM and the WPM). A convex linear combination of the WSM and WPM
formulas is Weighted Aggregated Sum Product Assessment (WASPAS) proposed by Za-
vadskas et al. (2012). In the WASPAS function (equation (24)) μ is an adjusting parameter
between 0 and 1. Usually μ = 0.5 is chosen by the Decision Maker (DM).

SWASPAS
i = μSWSM

i + (1 − μ)SWPM
i , i = 1, . . . , m. (24)

Combined Compromise Solution (COCOSO) (Yazdani et al., 2018) includes an idea to
mix additive and multiplicative forms of the scores. Firstly, the COCOSO uses the linear
max-min normalization (equations (25) and (26) respectively for benefit and cost criteria)
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to convert the performance measures into dimensionless values. Secondly, three appraisal
formulas as equation (27) to equation (29) are used to get the mixtures. Equation (29)
contains a parameter μ that similarly to the WASPAS is an adjusting parameter on interval
[0, 1], with default value of 0.5. Finally, equation (30) is the proposed COCOSO model
to determine the scores.

rij = xij − xmin
j

xmax
j − xmin

j

, i = 1, . . . , m, j = 1, . . . , n, (25)

rij = xmax
j − xij

xmax
j − xmin

j

, i = 1, . . . , m, j = 1, . . . , n, (26)

kia =
∑n

j=1 wjrij + ∏n
j=1(rij )

wj∑m
k=1(

∑n
j=1 wjrkj + ∏n

j=1(rkj )
wj )

, i = 1, . . . , m, (27)

kib =
∑n

j=1 wjrij

mink=1,...,m

∑n
j=1 wjrkj

+
∏n

j=1(rij )
wj

mink=1,...,m

∏n
j=1(rkj )

wj
, i = 1, . . . , m,

(28)

kic = μ
∑n

j=1 wjrij + (1 − μ)
∏n

j=1(rij )
wj

μ maxk=1,...,m

∑n
j=1 wjrkj + (1 − μ) maxk=1,...,m

∏n
j=1(rkj )

wj
,

i = 1, . . . , m, (29)

SCOCOSO
i = (kiakibkic)

1/3 + 1

3
(kia + kib + kic), i = 1, . . . , m. (30)

Equation (31) was used by Keshavarz Ghorabaee et al. (2021) to determine the alterna-
tive scores. This formula was employed in a criteria weighting model called Method based
on the Removal Effects of Criteria (MEREC), in which rij are dimensionless values of
the performance measures obtained by linear normalization, i.e. equations (2) and (3).
It seems equation (31) originates in the famous Entropy method (Hwang and Yoon, 1981)
and a logarithmic normalization formula suggested by Zavadskas and Turskis (2008).
Since the MEREC disregards the criteria weights, it may be inapplicable in many situa-
tions.

SMEREC
i = Ln

(
1 +

(
1

n

n∑
j=1

∣∣Ln(rij )
∣∣))

, i = 1, . . . , m. (31)

Reviewing the scoring methods displays that different methods employ various tech-
niques to remove the difference in scale of each criterion. For review of different kinds
of normalization techniques, see Brauers and Zavadskas (2006), Zavadskas and Turskis
(2008), and Jahan and Edwards (2015).

3. New Yearning Threshold (YT) Concept

The Aspiration Level (AL) idea was introduced by Lotfi et al. (1992). For a given criterion,
the AL is a value that represents the minimum satisfactory outcomes for the DM. Lotfi et
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al. (1992) have stated that the AL for a criterion should not exceed the ideal performance
measure of that criterion, and should be less than the anti-ideal performance measure of
that criterion. For example, in a house selection MADM problem with three alternatives,
if areas are 60, 40, and 80 square meters, the DM’s AL for house area should be a number
between 40 to 80. A drawback to such assumption is that the DM’s willingness actually
may be beyond this range, e.g. 200 square meters. In fact, confining the DM’s desire to
performance measure range is not reasonable. To overcome the AL limitation, this paper
proposes the Yearning Threshold (YT) concept as follows.

Definition 1 (Yearning Threshold or YT). In MADM matrix, Yearning Threshold of cri-
terion Cj is denoted by YTj . The YT indicates a desired threshold for the performance
measures of a criterion. In order to be meaningful, we suppose the YT can be any value
regardless of the performance measures. Note that the YT is not a target level, but it is a
lower/upper bound of the DM’s desire for a benefit/cost criterion. For example, if a DM’s
YT for house area is 200 square meters, we interpret that the DM wishes to have a house
with 200 square meters or more.

Now, having the above YT definition, let us discuss this fact that incorporation of the
YT concept into the MADM evaluation models is not an option, but rather a requirement
to ensure the accuracy of the decisions. Again, consider the example of house selection
problem by the following MADM matrix. The criteria are (C1:) area and (C2:) the ratio
of the area of windows to the house area. The YT is 200 for C1, and 0.4 for C2.

⎛
⎜⎜⎝

C1 C2

A1 60 0.2

A2 40 0.4

A3 80 0.3

⎞
⎟⎟⎠.

Without loss of generality, we assume that the criteria have identical weights, and we use
the linear normalization and the WSM to calculate the scores as follows:

⎛
⎜⎜⎝

C1 C2

A1 0.75 0.5

A2 0.5 1

A3 1 0.75

⎞
⎟⎟⎠, ScoreA1 = 0.75 + 0.5

2
= 0.625,

ScoreA2 = 0.5 + 1

2
= 0.750, ScoreA3 = 1 + 0.75

2
= 0.875.

The suggested solution is A3. Is this decision accurate? Regarding C1, all performance
measures (60, 40, and 80) are very far from the DM’s YT (200 square meters), and thus
all the alternatives are rather undesirable for the DM. Regarding C2, A2 exactly meets
the DM’s YT. After applying any dimensionless rule, a reasonable expectation is that
all “1” in the matrix must indicate the best preferred value for the DM, i.e. entries r31
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and r22 in the above matrix. Entry r22 = 1 is valid, because A2 with 0.4 is completely
welcome for the DM. Conversely, A3 with 80 square meters is far from the minimum
desired level of the DM, consequently, entry r31 must adjust a lot less than 1. In order to
resolve this issue, we suggest normalizing the MADM matrix by using the YTs in spite
of the ideal performance measures (e.g. in the following matrix, at column C1 we would
have 60/200 = 0.3, 40/200 = 0.2 and 80/200 = 0.4):

⎛
⎜⎜⎝

C1 C2

A1 0.3 0.5

A2 0.2 1

A3 0.4 0.75

⎞
⎟⎟⎠, ScoreA1 = 0.3 + 0.5

2
= 0.4,

ScoreA2 = 0.2 + 1

2
= 0.6, ScoreA3 = 0.4 + 0.75

2
= 0.575.

In the above matrix, we see that the normalized performance measures are scaled down
in proportion to the relevant YTs, and the proper solution is A2. We conclude that using the
YTs to normalize the MADM matrix in any alternative evaluation method is a necessary
condition to guarantee a proper decision. The YT is “null” when YTj � xmax

j for benefit
criteria, and when YTj � xmin

j for cost criteria. Moreover, if the DM has no idea about
the YT, it can be considered as YTj = xmax

j for benefit criteria, and YTj = xmin
j for cost

criteria.

4. Enhancement of the Indifference Threshold (IT) Concept

We know that in mathematics, |Y | shows the absolute value of Y , such that |Y | =
max{Y,−Y }. In fact, a number and its opposite have the same absolute value. This op-
erator is defined in additive form of numbers. Now, let’s generalize it into multiplicative
form, by the following definition.

Definition 2 (Minor value). We define 〈Y 〉 and call it minor value of Y , in a way that
〈Y 〉 = min{Y, Y−1}. Thus, a number and its reciprocal have the same minor value. For
example, 〈0〉 = 0, 〈1〉 = 1, 〈2〉 = 0.5, 〈0.5〉 = 0.5, and 〈100〉 = 0.01.

In what follows, two definitions are introduced. The former depicts the preliminary
and traditional statement of the IT concept, and the latter is a novel statement for the IT
concept that is firstly introduced in the current study.

Definition 3 (Distance-based Indifference Threshold or DIT). In MADM matrix, for a
given criterion Cj , two performance measures xij and xkj are indifferent if and only if
|xij − xkj | � DITj , where DITj denotes Distance-based Indifference Threshold of crite-
rion Cj . Using an example of a house selection problem, if DITj is 5 square meters area,
we infer that two houses with 5 square meters difference or lesser in area are indifferent in
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view of the DM. Note that DITj is a non-negative value and homogeneous with dimen-
sional unit of criterion Cj . A value of DITj = 0 (i.e. the additive identity) is called null
DIT.

Definition 4 (Ratio-based Indifference Threshold or RIT). In MADM matrix, for a
given criterion Cj , two performance measures xij and xkj are indifferent if and only if〈 xij

xkj

〉
� RITj , where RITj (∈ [0, 1]) denotes Ratio-based Indifference Threshold of cri-

terion Cj . Opposed to the DIT, the RIT is dimensionless. Using an example of a house
area, if RITj = 0.9, the DM believes that if the area of cheaper house divided by that of
a more expensive house be 0.9 or more, he/she is indifferent about the house area. In fact,
the DM is indifferent on this criterion, if ratio between areas be 90% to 100%. A null RIT
refers RITj = 1 (i.e. the multiplicative identity).

Notably, the DIT values are not homogeneous (because dimensional unit of DITj is
the same as dimensional unit of criterion Cj ); on the contrary, all the RIT values range
from 0 to 1, thus the RIT has an advantage over the DIT from this point of view.

4.1. The DIT and the RIT Relationship

This section is to answer the questions of how to obtain the RIT value from the DIT value
and how to obtain the DIT value from the RIT value. To the first question, let’s draw up
a guideline: Any distances between two given performance measures to which the DM
is/isn’t indifference, must be reflected in a RIT which causes the fact that the DM is/isn’t
indifferent to the relevant ratios. Based on this guideline, equations (32) and (33) can be
formulated.

RITj � min
i,k=1,...,m

{〈
xij

xkj

〉 ∣∣∣ |xij − xkj | � DITj

}
, j = 1, . . . , n, (32)

RITj > max
i,k=1,...,m

{〈
xij

xkj

〉 ∣∣∣ |xij − xkj | > DITj

}
, j = 1, . . . , n. (33)

It should be noted that equations (32) and (33) relate to the concept of distance from the
reference point (McCrimmon, 1968). Any RIT value that satisfies both the above equations
is acceptable. Let’s provide an example. For a given criterion, the performance measures
are 2, 4, 6, and 15, and the DIT is 3. On one hand, the DM is indifferent to distances |2−4|
and |4 − 6|. The ratios related to these distances are 2/4 and 4/6, respectively. Logically,
a RIT less than or equal to 2/4 or 0.5 must be selected, because such a RIT causes the DM
to become indifferent to both 2/4 and 4/6. On the other hand, the DM is not indifferent to
four distances |2 − 6|, |2 − 15|, |4 − 15|, and |6 − 15|. The relevant ratios are 2/6, 2/15,
4/15, and 6/15, respectively. Clearly, the DM is not indifferent to all these four ratios, if
a RIT greater than 6/15 or 0.4 is chosen. Finally, a RIT from (0.4, 0.5] can be selected.

It should be noted that there might be situations in which there is no intersection be-
tween equations (32) and (33). In such situations, there is no RIT value exactly compatible
with a DIT, and vice versa. For example, such a situation happens for a criterion with the
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performance measures 2, 6, 8, and 20, and a DIT = 10. In this example, equation (32)
results in RIT � 0.25, and equation (33) results in RIT > 0.4.

Logic like the above can be applied for the second question, i.e. how to get a DIT
value using the RIT value. The guideline for this question is the contrary of that for the
first question. The respective functions are shown in equations (34) and (35):

DITj � max
i,k=1,...,m

{
|xij − xkj |

∣∣∣ 〈 xij

xkj

〉
� RITj

}
, j = 1, . . . , n, (34)

DITj < min
i,k=1,...,m

{
|xij − xkj |

∣∣∣ 〈 xij

xkj

〉
< RITj

}
, j = 1, . . . , n. (35)

The above equations should hold true for any acceptable DIT. Again, consider the same
above example, in which there are four performance measures 2, 4, 6, and 15, with a RIT
of 0.45. On one hand, the DM is indifferent to the ratios 2/4 and 4/6, because 2/4 > 0.45
and 4/6 > 0.45. The relevant distances are |2 − 4| = 2 and |4 − 6| = 2, respectively.
We need the DM to become indifferent to distance 2; consequently, a DIT greater than or
equal to 2 must be chosen. On the other hand, the DM is not indifferent to ratios 2/6, 2/15,
4/15, and 6/15. The relevant distances are |2 − 6| = 4, |2 − 15| = 13, |4 − 15| = 11,
and |6 − 15| = 9, respectively. In conclusion, a DIT less than 4 must be chosen, because
by such a DIT the DM would not be indifferent to all the four distances. Finally, the DIT
value from interval [2, 4) should be selected.

5. The Extended WPM Method (EWPM)

The underlying idea of the proposed EWPM stands on the relative relations between the
alternatives. This idea leads us to a pairwise comparison matrix whose rows and columns
are the alternatives. Let’s portray the notion using a simple numerical example as follows,
including 3 alternatives A1 A2, and A3, and two criteria C1 (benefit type) and C2 (cost
type) weighted as 0.7 and 0.3, respectively.

⎛
⎜⎜⎝

C1 C2

A1 6 8

A2 2 3

A3 4 5

⎞
⎟⎟⎠

If the analyst wishes to compare two alternatives A1 and A2 from the point of view
of criterion C1, then the fraction 6/2 can be taken. This fraction is called individual im-
portance of A1 relative to A2. Similarly, the individual relative importance of A1 to A2

in view of C2 is ( 1
8 )/( 1

3 ) or 3/8 (Note that C2 is a cost criterion). Now, we need to com-
bine 6/2 and 3/8. These two numbers are ratios; therefore, to combine them the WPM
form can be employed. Thus, the combined relative importance of A1 to A2 would be
(6/2)0.7 × (3/8)0.3. This calculation is sometimes called dimensionless analysis because
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its mathematical structure removes any units of measure (Triantaphyllou, 2000). By per-
forming similar calculations for the other pairs of the alternatives, the result is the follow-
ing matrix called Objective Multiplicative Pairwise Comparison (OMPC):

⎛
⎜⎜⎝

A1 A2 A3

A1 (6/6)0.7 × (8/8)0.3 (6/2)0.7 × (3/8)0.3 (6/4)0.7 × (5/8)0.3

A2 (2/6)0.7 × (8/3)0.3 (2/2)0.7 × (3/3)0.3 (2/4)0.7 × (5/3)0.3

A3 (4/6)0.7 × (8/5)0.3 (4/2)0.7 × (3/5)0.3 (4/4)0.7 × (5/5)0.3

⎞
⎟⎟⎠.

The OMPC matrix is actually in a multiplicative preference relation format, but in spite
of preference judgment by the DM, the objective relative importance is replaced. Thus,
each entry aik (i, k = 1, . . . , m) of the OMPC matrix represents the objective importance
of alternative Ai relative to alternative Ak in terms of a multiplicative reasoning. Equa-
tion (36) shows a general formula to determine the entries of the OMPC matrix. In this
function, tj is determined by equation (37):

aik =
n∏

j=1

(
x

tj
ij

x
tj
kj

)wj

, i, k = 1, . . . , m, (36)

tj =
{ +1, if Cj is a benefit criterion,

−1, if Cj is a cost criterion,
j = 1, . . . , n. (37)

According to the following Proposition 1, the OMPC matrix is multiplicative inverse
(i.e. reciprocity rule aik ×aki = 1) and full consistent (i.e. transitivity rule aik ×akl = ail)
for all entries of the matrix.

Proposition 1. The OMPC matrix is multiplicative inverse and full consistent.

Proof. There are straightforward ways to sketch the proofs:

aik × aki =
n∏

j=1

(
x

tj
ij

x
tj
kj

)wj

×
n∏

j=1

(
x

tj
kj

x
tj
ij

)wj

= 1,

aik × akl =
n∏

j=1

(
x

tj
ij

x
tj
kj

)wj

×
n∏

j=1

(
x

tj
kj

x
tj
lj

)wj

=
n∏

j=1

(
x

tj
ij

x
tj
lj

)wj

= ail .

Thus, the proofs are easily established.

Now we deal with the famous problem of deriving the scores from a pairwise com-
parison matrix. To extract the alternative scores from the OMPC matrix, with regard to
the multiplicative form the entries, the Simple Geometric Mean (SGM) (Crawford and
Williams, 1985) is utilized here. In the current situation, this method has been recom-
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mended by many researchers (Zhang et al., 2004; Hovanov et al., 2008). Therefore, equa-
tion (38) represents the formula for calculating the score of alternative Ai .

Si = m

√√√√√ m∏
k=1

n∏
j=1

(
x

tj
ij

x
tj
kj

)wj

, i,= 1, . . . , m. (38)

The scores in the above example are 1.2286, 0.7642, and 1.0651, respectively.

5.1. Inclusion of the YT

In order to incorporate the YT into the model, we use equation (39) instead of equa-
tion (38).

Si = m

√√√√√ m∏
k=1

n∏
j=1

(
x

tj
ij

x
tj
kj

)γj wj

, i,= 1, . . . , m, (39)

where γj is named “YT-based weight reduction coefficient”, and is calculated by equa-
tion (40).

γj =

⎧⎪⎨
⎪⎩

xmax
j

max{YTj ,xmax
j } , if Cj is a benefit criterion,

min{YTj ,xmin
j }

xmin
j

, if Cj is a cost criterion,

j = 1, . . . , n. (40)

In fact, for a benefit criterion, if the YT is less than or equal to the ideal performance
measure, as a result, γ coefficient would be neutral (= 1), but if the YT is greater than
the ideal performance measure, a fraction coefficient xmax

j /YTj (i.e. less than 1) has a
decreasing impact on weight wj . For a cost criterion this decreasing impact acts while the
YT is less than the ideal performance measure.

5.2. Inclusion of the RIT

Another aspect of the proposed method needs to be applied now, i.e. the IT concept. To
incorporate this concept into the proposed method, firstly the Definition 4 helps us to
define equation (41).

αikj =

⎧⎪⎨
⎪⎩

1,
〈
xij

xkj

〉
� RITj ,

x
tj
ij

x
tj
kj

,
〈
xij

xkj

〉
< RITj ,

i, k = 1, . . . , m, j = 1, . . . , n. (41)
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Now, we can write the final formula of the new method called Extended Weighted Product
Model (EWPM) as equation (42).

SEWPM
i = m

√√√√ m∏
k=1

n∏
j=1

(αikj )
γj wj , i = 1, . . . , m. (42)

It should be declared that normalization action is skipped in the EWPM. Equation (38) is
a simplified version of equation (42), if all RITs are null (i.e. RITj = 1) and all YTs are
null (i.e. YTj � xmax

j for benefit criteria, and YTj � xmin
j for cost criteria). Thus, we call

equation (38) null EWPM formula.

5.3. Characteristics of the EWPM Scores

The EWPM, as an interpretation, gauges how much an alternative dominates the other
alternatives. Interestingly, this method separates the alternatives into three classes, because
the obtained scores may be less than 1 (weak), equal to 1 (moderate), or greater than 1
(strong). The analyst can define a constant π called “score clearance”, in such a way that
a score less than 1 − π refers a weak alternative, in interval [1 − π, 1 + π] indicates a
moderate decision, and greater than 1+π stands for a strong option. The default value for
score clearance is 0.05. A strong alternative has a high total dominance over the others.
On the contrary, a weak alternative is dominated by the others in most situations. As a
consequence, when selecting the best alternative or prioritizing the alternatives, the DM
should drop out the weak candidates.

It is worth mentioning that the product of all the alternative scores (i.e.
∏m

i=1 SEWPM
i )

is equal to 1 (see Proposition 2). In point of fact, the EWPM multiplicatively distributes
a value of 1 among all the alternatives, depending on their relative importance.

Proposition 2. In the EWPM, product of all the scores is equal to 1.

Proof. Clearly, the product of the radicands in equation (38) equals the product of all the
entries of the OMPC matrix. We know that in this matrix, for each entry there is a unique
corresponding reciprocal entry. Furthermore, main diagonal of this matrix is 1. Thus, the
result of multiplying the entries of the OMPC matrix is equal to 1, and we deduce that
product of the scores equals 1.

The following Proposition 3 proves that the alternative scores range between 0 and
infinity.

Proposition 3. In the EWPM, the scores may be any positive real number.

Proof. The proof is trivial. Look at equation (38). There might exist values xij = 0 and
xkj > 0 in the MADM matrix, and also there might exist values xij > 0 and xkj = 0.
Thus, we have SEWPM

i = 0 for the former, and SEWPM
i → +∞ for the latter.
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Proposition 4. Ratio of an alternative score to another alternative score in the null
EWPM is equal to the same ratio in the WPM.

Proof. Without loss of generality, assume that all the criteria are benefit type, thus we
simply establish the proof as follows:

SEWPM
i

SEWPM
l

=
m

√∏m
k=1

∏n
j=1

( xij

xkj

)wj

m

√∏m
k=1

∏n
j=1

( xlj

xkj

)wj
=

m

√
(
∏n

j=1 xij )
mwj∏m

k=1
∏n

j=1 xkj

m

√
(
∏n

j=1 xlj )
mwj∏m

k=1
∏n

j=1 xkj

=
∏n

j=1(xij )
wj∏n

j=1(xlj )
wj

.

Accordingly:

∏n
j=1(xij )

wj∏n
j=1(xlj )

wj
=

∏n
j=1

( xij

x∗
j

)wj

∏n
j=1

( xlj

x∗
j

)wj
=

∏n
j=1(rij )

wj∏n
j=1(rlj )

wj
= SWPM

i

SWPM
l

.

Corollary 1. This corollary is a major result of the Proposition 4, and says the overall
rank of the alternatives by the null EWPM and by the WPM is the same.

6. The Extended WSM Method (EWSM)

In the previous section, we saw that the EWPM is founded on a multiplicative structure.
There is a pair for the EWPM, founded on the additive structure. Suppose the same nu-
merical example of previous section:

⎛
⎝

C1 C2

A1 6 8
A2 2 3
A34 5

⎞
⎠.

In the additive form, we can say that in view of C1, the importance of A1 compared with
A2 is 6 − 2 = 4. Indeed, regarding C1, the distance between the importance of A1 and A2

is 4. In the same way, the relative importance of A1 to A2 from the point of view of C2 is
(1/8) − (1/3) = −5/24 (Note that C2 is a cost criterion). The two numbers 4 and −5/24
are distances, thus the WSM rule directs the current method to additively combine the
relative importance. Because the distances may differ in dimensional unit, distance 6 − 2
is transformed to (6 − 2)/6 in which denominator 6 is the ideal performance measure of
C1. In the same way, distance (1/8)−(1/3) is transformed to ((1/8)−(1/3))/(1/3) where
denominator 1/3 is the reciprocal of the ideal performance measure of C2. The combined
relative importance of A1 and A2 is written as 0.7 × ( 6−2

6 ) + 0.3 × (
(1/8)−(1/3)

(1/3)
). By

running the same calculations for the other pairs of the alternatives, the following matrix
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is obtained. We name it Objective Additive Pairwise Comparison matrix (OAPC):

⎛
⎜⎜⎜⎜⎝

A1 A2 A3

A1 0.7 ×
(

6−6
6

)
+ 0.3 ×

(
(1/8)−(1/8)

(1/3)

)
0.7 ×

(
6−2

6

)
+ 0.3 ×

(
(1/8)−(1/3)

(1/3)

)
0.7 × ( 6−4

6 ) + 0.3 ×
(

(1/8)−(1/5)
(1/3)

)
A2 0.7 ×

(
2−6

6

)
+ 0.3 ×

(
(1/3)−(1/8)

(1/3)

)
00.7 ×

(
2−2

6

)
+ 0.3 ×

(
(1/3)−(1/3)

(1/3)

)
0.7 ×

(
2−4

6

)
+ 0.3 ×

(
(1/3)−(1/5)

(1/3)

)
A3 0.7 ×

(
4−6

6

)
+ 0.3 ×

(
(1/5)−(1/8)

(1/3)

)
0.7 ×

(
4−2

6

)
+ 0.3 ×

(
(1/5)−(1/3)

(1/3)

)
0.7 ×

(
4−4

6

)
+ 0.3 ×

(
(1/5)−(1/5)

(1/3)

)

⎞
⎟⎟⎟⎟⎠.

The OAPC matrix is in additive preference relation format. In this matrix, each entry bik

(i, k = 1, . . . , m) is interpreted as the objective importance degree of alternative Ai over
alternative Ak in terms of an additive reasoning. Equation (43) displays a general formula
to obtain the entries of the OAPC matrix, in which tj is determined like the EWPM (i.e.
tj is +1 for benefit criteria, and is −1 for cost criteria). In equation (43), x∗

j refers xmax
j

for benefit criteria, and xmin
j for cost criteria.

bik =
n∑

j=1

wj

(
x

tj
ij − x

tj
kj

x
∗tj
j

)
, i, k = 1, . . . , m. (43)

It can be simply demonstrated that the OAPC matrix is additive inverse (opposition rule),
i.e. bik + bki = 0, and full consistent (transitivity rule), i.e. usually bik + bkl = bil .

Proposition 5. The OAPC matrix is additive inverse and full consistent.

We omit the proof here, since the proof is straightforward and similar to that in Propo-
sition 1 (In this point, the reader is advised to see Appendix A).

Because the entries of the OAPC matrix are in the additive form, the Simple Column
Sum (SCS) method (Saaty, 1980) is a proper way to derive the scores. Equation (44) shows
the relevant formula.

Si =
∑m

k=1
∑n

j=1 wj

( x
tj
ij −x

tj
kj

x
∗tj
j

)
m

, i = 1, . . . , m. (44)

The scores for alternatives A1, A2, and A3 in the above example are 0.1483, −0.1308, and
−0.0175, respectively, such that their sum is equal to 0.

6.1. Inclusion of the YT

For the sake of incorporating the YT values into the model, equation (44) is enhanced to
equation (45), where δj is a YT-based weight reduction coefficient in the current method,
and is calculated by equation (46).

Si =
∑m

k=1
∑n

j=1 δjwj (x
tj
ij − x

tj
kj )

m
, i = 1, . . . , m, (45)

δj =
{

max{YTj , x
max
j }−1, ifCj is a benefit criterion,

min{YTj , x
min
j }, if Cj is a cost criterion,

j = 1, . . . , n. (46)
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Note that in equation (45) the multiplier δj plays two roles simultaneously, normalization
and inclusion of the YT. As a straightforward interpretation, for benefit/cost criterion, if
the YT is greater/less than the ideal performance measure, then the ideal performance
measure is replaced by the YT to normalize the performance measures.

6.2. Inclusion of the DIT

To incorporate the IT concept into equation (45), the Definition 3 is our major guideline.
Firstly, based on this definition we can write equation (47). Note that βikj is homogeneous
with normalized distances.

βikj =
{

0, |xij − xkj | � DITj ,

x
tj
ij − x

tj
kj , |xij − xkj | > DITj ,

i, k = 1, . . . , m, j = 1, . . . , n. (47)

Therefore, equation (45) is reformulated as equation (48). The term EWSM refers to Ex-
tended Weighted Sum Model (EWSM).

SEWSM
i =

∑m
k=1

∑n
j=1 γjwjβikj

m
, i = 1, . . . , m. (48)

Obviously, equation (48) is simplified as equation (44), provided that all the criteria have
null DIT (i.e. zero) and null YT. In such a way, equation (44) is called null EWSM formula.

6.3. Characteristics of the EWSM Scores

Let’s put an interpretation on the EWSM scores. Like the EWPM, the EWSM assigns a
rate to each alternative to make measurement of the alternative dominance over the other
alternatives. The EWSM segregates the alternatives into three classes: weak, moderate,
and strong. Like the EWPM, by defining a score clearance π (default value: 0.05), an
alternative by a score less than −π , between or equal to −π and +π , or greater than +π ,
is considered as a weak, moderate, or strong decision, respectively. In such a way, the weak
alternatives should be removed from the selection list. It is also striking that the sum of
all the EWSM scores is equal to 0. Proposition 6 is to prove this claim. We conclude that
the proposed method assigns the positive or negative scores to the alternatives depending
on their relative importance, in such a way that the sum of the scores be equal to additive
identity.

Proposition 6. Sum of the EWSM scores is equal to 0.

Proof. Obviously, the sum of the numerators in equation (44) equals the sum of all the
entries of the OAPC matrix. Each entry of this matrix has an opposite entry (additive
inverse) in the matrix. By the way, main diagonal of the OAPC matrix consists of zeros.
In such a way, the result of summation of the entries equals zero, and thus, the sum of the
EWSM scores would be zero.



New Aggregation Multiple Attribute Methods 17

The following Proposition 7 is to prove that the EWSM scores range from −1 to +1.

Proposition 7. The EWSM score ranges from −1 to +1.

Proof. Look at equation (44). Without loss of generality, assume that all the criteria are
of benefit type. There are two extreme cases. At the worst case, for all the pairs of the
performance measures, xij /x

max
j equals zero and xkj /x

max
j equals one. Consequently, Si

would be equal to −1. The best case is counter of the worst case, i.e. xij /x
max
j = 1 and

xkj /x
max
j = 0, thus Si would be equal to +1.

Proposition 8. Subtraction of an alternative score from another alternative score in the
null EWSM equals the same subtraction in the WSM.

Proof. The proof is similar to that in Proposition 4. Without loss of generality, let us
assume that all the criteria are benefit criteria, thus we follow the relations to get the
result:

SEWSM
i − SEWSM

l =
∑m

k=1
∑n

j=1 wj

( xij −xkj

xmax
j

)
m

−
∑m

k=1
∑n

j=1 wj

( xlj −xkj

xmax
j

)
m

=
m

∑n
j=1 wj

( xij

xmax
j

) + ∑m
k=1

∑n
j=1 wj

(−xkj

xmax
j

)
m

−
m

∑n
j=1 wj

( xlj

xmax
j

) + ∑m
k=1

∑n
j=1 wj

(−xkj

xmax
j

)
m

=
m

∑n
j=1 wj

( xij

xmax
j

) − m
∑n

j=1 wj(
xlj

xmax
j

)

m

=
n∑

j=1

wjrij −
n∑

j=1

wjrlj = SWSM
i − SWSM

l .

Corollary 2. As a result of the Proposition 8, we deduce that the null EWSM and the
WSM produce the same overall rank of the alternatives.

6.4. A Numerical Example

This section provides a numerical example which is extracted from Fan et al. (2002).
Through this example, we have an aim to compare the EWSM with the WSM. A DM
wishes to buy one of four houses A1 to A4. His/her criteria are C1: house price (in thousand
dollars, cost criterion), C2: house area (in square meters, benefit criterion), C3: distance
from house to work location (in kilometers, cost criterion), and environmental charac-
teristics (in ordinal numbers, benefit criterion). The criteria have identical weights. The
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MADM matrix for this problem is:
⎛
⎜⎜⎝

30 100 10 7
25 80 8 5
18 50 20 11
22 70 12 9

⎞
⎟⎟⎠ .

Let’s add new data to this example. The DM would prefer to give ITs of the criteria in the
DIT format as 1 thousand dollars for C1, 10 square meters for C2, 10 kilometers for C3,
and 4 for C4. Additionally, the DM’s YT is 5 thousand dollars for C1, and 80 square meters
for C2. The DM has no idea about the YT for C3 and C4, thus we adjust YT3 = xmin

3 = 8
and YT4 = xmax

4 = 11. The ranking result of solving the current problem by the WSM is
A1 > A3 > A4 > A2, while the result for the EWSM is A1 > A2 > A4 > A3. These
rankings show that the ranking structure of the alternatives by the EWSM is different from
that of conventional methods such as the WSM. The reason is clear. While the EWSM is
sensitive to the DIT and YT values, the others neglect these concepts. When we adjust the
DITs and YTs to null values, the results by the null EWSM become similar to that by the
WSM.

7. Simulation Analysis

This section is to answer two questions. Whether a given scoring method selects the same
best alternative as another given scoring method? And, how much is similarity between
the overall rank structures of the alternatives obtained by two given scoring methods? To
these, we examine a kind of simulation process that is a broadly accepted framework to
compare the performance of the methods (Ahn, 2017; Sarabando and Dias, 2010; Ahn
and Park, 2008; Barron and Barrett, 1996). The idea is to repeatedly (N times, namely
simulation run number) generate a random MADM matrix and random criteria weights,
and investigate how well the result of a given method matches another one, in terms of an
efficacy measure. To answer the above first question, a measure called Hit Rate (HR) is
used as equation (49).

HR = B

N
, (49)

where N is a simulation run number, and B is the number of runs in which a method selects
the same best alternative as another method does. The HR value ranges from 0 to 1, such
that 1 indicates two methods select identical best alternative through all simulation runs.
To answer the second question, Rank order Correlation (RC) is employed here. The RC
shows the similarity of the overall rank structures of the alternatives constructed by two
given methods. The RC is calculated using Kendall’s formula (Winkler and Hays, 1985)
as equation (50).

RC = 1 − 2 × V

A
, (50)
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where A is the sum of alternative numbers through all simulation runs, and V indicates
the number of pairwise preference violations in all simulation runs. The RC value ranges
from −1 to +1, where +1 means perfect correspondence between the two rank orders in
all simulation runs.

The simulation is designed with two levels of the alternatives: Low (3 � m � 6)

and High (9 � m � 12), and two levels of the criteria: Low (3 � n � 6) and High
(9 � n � 12). For each combination of the levels (i.e. combination 1: low level of the
alternatives and low level of the criteria, combination 2: low level of the alternatives and
high level of the criteria, combination 3: high level of the alternatives and low level of the
criteria, and combination 4: high level of the alternatives and high level of the criteria),
the following 10-step procedure is performed.

Step 1: Set N = 10000 (N shows simulation run number), k = 0, and c = 1 (c indicates
combination type, i.e. c could be 1, 2, 3, or 4).

Step 2: Set k = k + 1, A = 0, Bpq = 0 and Vpq = 0 (p, q = 1, . . . , 12). Where
“12” is the number of the methods to be compared (the WSM, WPM, ARAS, MARCOS,
COPRAS, MOORA, MOOSRA, MMOORA, WASPAS, COCOSO, null EWPM, and null
EWSM). Thus, p = 1 indicates the WSM, p = 2 indicates the WPM method, and so on.

Step 3: Based on the combination type, generate a random integer number for the num-
ber of alternatives (m), and an independent random integer number for the number of
criteria (n). Set A = A + m.

Step 4: Generate a random MADM matrix from the independent uniform distribution on
(0, 1].
Step 5: Transform the MADM matrix to different normalized forms, depending on differ-
ent methods mentioned in Step 2.

Step 6: Generate a random weight vector from the independent uniform distribution on
(0, 1]. Then normalize the weights to add up to 1.

Step 7: Determine the ranking structure of the alternatives by employing each of the 12
methods.

Step 8: Make HR pairwise comparison between each two methods. For two given methods
p and q, if method p selects the same best alternative as method q, then set Bpq = Bpq+1.

Step 9: Draw RC pairwise comparison between each two methods. For two given methods
p and q, and for each alternative, if the methods p and q do not assign a similar rank to
that alternative, then set Vpq = Vpq + 1.

Step 10: If k = c ∗ N/4 then calculate the average HR for each two given methods p

and q by HRc
pq = Bpq/N , calculate the average RC for these two methods by RCc

pq =
1 − (2Vpq/A), set c = c + 1, and set k = 0. In this point, if k = N , calculate the overall
HR and overall RC by HRpq = ∑4

c=1 HRc
pq/4 and RCpq = ∑4

c=1 RCc
pq/4, and stop the

process, otherwise go to Step 2.
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Table 1
Simulation results of the average HR, for different number of the alternatives and criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.7754 0.8105 1.0000 0.4361 0.7165 0.6356 0.7754 0.8737 0.5748 0.7754 1.0000
WPM 0.8009 0.7754 0.3707 0.6957 0.6546 1.0000 0.8935 0.5808 1.0000 0.7754
ARAS 0.8105 0.3498 0.6226 0.6097 0.8009 0.8335 0.4951 0.8009 0.8105
MARCOS 0.4361 0.7165 0.6356 0.7754 0.8737 0.5748 0.7754 1.0000
COPRAS 0.4985 0.3715 0.3707 0.4039 0.4214 0.3707 0.4361
MOORA 0.7266 0.6957 0.7220 0.7175 0.6957 0.7165
MOOSRA 0.6546 0.6568 0.6023 0.6546 0.6356
MMOORA 0.8935 0.5808 1.0000 0.7754
WASPAS 0.5879 0.8935 0.8737
COCOSO 0.5808 0.5748
Null EWPM 0.7754

Table 2
Simulation results of the average RC, for different number of the alternatives and criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null-EWPM Null-EWSM

WSM −0.0701 0.2829 1.0000 −0.3616 −0.0927 −0.2210 −0.0701 0.3534 −0.3476 −0.0701 1.0000
WPM −0.0191 −0.0701 −0.4504 −0.0362 −0.1644 1.0000 0.2340 −0.2830 1.0000 −0.0701
ARAS 0.2829 −0.4494 −0.1292 −0.2365 −0.0191 0.2756 −0.3876 −0.0191 0.2829
MARCOS −0.3616 −0.0927 −0.2210 −0.0701 0.3534 −0.3476 −0.0701 1.0000
COPRAS −0.4022 −0.4149 −0.4504 −0.3904 −0.4996 −0.4504 −0.3616
MOORA 0.0753 −0.0362 −0.0386 −0.1401 −0.0362 −0.0927
MOOSRA −0.1644 −0.1639 −0.2869 −0.1644 −0.2210
MMOORA 0.2340 −0.2830 1.0000 −0.0701
WASPAS −0.3050 0.2340 0.3534
COCOSO −0.2830 −0.3476
Null EWPM −0.0701

The above simulation experiment is conducted using the Visual Basic for application
in the Excel’s programming language on a personal computer. The simulation runs are
made in 5 rounds. Finally, the mean of 5 rounds are considered to compare the results.
The individual results of 4 combinations are presented in Appendix B and Appendix C.
In a broader sense, 5 values (for the HR and RC and for each combination) are obtained
from 5 rounds. Each of these 5 values is the mean of 10.000 values resulted from 10.000
simulation runs. The averages of the presented values in Appendix B and Appendix C are
shown in Table 1 and Table 2.

Looking at the above tables, some considerable facts are found out. The null EWSM
and the MARCOS generate ranking structures of the alternatives similar to the WSM.
Moreover, ranking structures of the alternatives by the null EWPM and the MMOORA are
similar to that by the WPM. We name these kinds of correlations full HR (i.e. HR = 1) and
full RC (i.e. RC = 1). By assuming high HR values as 1 > HR � 0.85, the following pairs
fall into this category: the WASPAS and WSM, the WASPAS and WPM, the WASPAS
and MARCOS, the WASPAS and MMOORA, the null EWPM and COCOSO, and the null
EWSM and WASPAS. Similarly, by assuming high RC by 1 > RC � 0.35, the following
pairs fall into this category: the WASPAS and WSM, the WASPAS and MARCOS, and
the WASPAS and null EWSM. Taking together, we conclude that the WASPAS results are
the most apt to be similar to the other methods.

By reviewing Tables 7–14 in Appendix B and Appendix C, an important fact is also
clarified. As a remarkable outcome, for most pair of the methods, as the number of alter-
natives/criteria increases, both the HR and RC values decrease. In this regard, the impact
of the number of alternatives is more than that of the number of criteria. As an example,
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for pair of the WSM and null EWPM, for low level of the alternatives and criteria, the
HR equals 0.8589, for low level of the alternatives and high level of the criteria, the HR
becomes 0.7953, for high level of the alternatives and low level of the criteria, the HR
decreases to 0.7649, and for high low level of the alternatives and criteria, the HR de-
creases to 0.6825. Such a downward trend is obviously visible in most analogous cells in
sequence Tables 7 > Table 8 > Table 9 > Table 10 and, in most cells, in sequence Table 11
> Table 12 > Table 13 > Table 14, except the cells indicating full HR or full RC.

8. A Real-World Study Case

One of the most fundamental challenges in oil industries is the need of Exploration and
Production (E&P) companies for selecting and performing portfolios which have enough
capacity from the view of technical, financial, and economic aspects. A portfolio is a
collection of projects, programmes, and operations handled as a pack to achieve strategic
objectives. In a real-world problem, the EWPM was used to select the best portfolio under
Iranian financial regimes. In this case, a Delphi analysis was done to identify key criteria,
with participation of sixteen experts. The participants for this analysis were chosen among
a variety of project managers and subject matter experts of E&P companies, with more
than 12 years of working experience on average. Fifteen criteria were identified through
Delphi method:

(C1) Size of reservoir: The larger the reservoir, the higher potential for oil recovery, thus
this is a benefit criterion.

(C2) Average distance from resources/infrastructures: Oil field that is close to pipelines,
export systems, storage capacities, refineries, power stations, processing facilities, water
resources, and so on, is preferred as it needs less investment to dispose of its oil and gas.

(C3) Net return on investment: This economic indicator is a function of development cost
analysis and benchmarking international oil prices. Obviously, the higher this criterion
results in, the better the development portfolio.

(C4) Security and political stability: A politically stable and safe region and country of
investment is more favourable in the oil field.

(C5) Quality of upstream oil field development plan: Clearly, a development plan that
accurately addresses key issues is considered as a favourable plan. The key items refer to a
variety of things, including, but not limited to, project management guidelines, production
challenges, separation systems, logistics, fiscal policy, budget constraints, water supplies,
gas capturing and the number of wells to be drilled.

(C6) Cooperation opportunities: It indicates capabilities for making benefits from local
communities, local businesses and subcontractors.

(C7) Reservoir characteristics: It refers properties such as oil/water level, oil movement
behaviour, reservoir pressure, etc. The relevant data includes a variety of data acquired by
logging, coring, and testing for each well drilled.
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(C8) Plateau production rate: This is the major field output, and refers to the level of
production rate at the plateau phase of oil production.

(C9) Plateau production period: This criterion depicts the fact that longer duration of
plateau production justifies employment of installed capacities, decreases capital cost per
unit of production, and causes minimal spare capacity maintenance cost.

(C10) Subsurface complexity: This criterion stands for several rock properties such as
porosity, permeability, hydrocarbon layer continuity, and water saturation. A less sub-
surface complexity means optimal rock properties.

(C11) Human resources: Some zones have qualified human resources in abundance, while
they are scarce in others. Oilfields that are located in areas where qualified human re-
sources are available could be considered preferably.

(C12) Safe location: The safer the oilfield is during natural disasters, such as flooding and
quakes or from damages to existing protective structures such as dams and bunds, the
better.

(C13) Type of contract: The common types of current E&P agreements include Service
Contract (SC) and Production Sharing Agreement (PSA). Preferred type would be based
on whether the cash flow will ensure highest returns for the investor.

(C14) Environmental protection: A project with potential for optimal reduction of footprint
is preferred. Footprint reduction indicators include (1) protecting surface and subsurface
sources of fresh water, (2) minimizing effluents, (3) treating and re-injecting produced
water, and (4) using land that is already degraded rather than agricultural land.

(C15) Management capacity: An upstream development program with existing capacity to
efficiently and effectively supervise implementation, track commitments and avoid delays
and penalties could be considered more favourably.

Later, the criteria were assigned numerical weights using Improved Rank Order Cen-
troid or IROC method (Hatefi, 2023). For employing the IROC method, firstly, each ex-
pert was asked to individually rank the n = 15 criteria. The ranks are integer number
ranges from 1 to 15. Then, the Kendall’s coefficient of concordance (Kendall and Gib-
bons, 1990) was used in order to measure the degree of agreement among the expert’
judgments. Equation (51) represents this coefficient, i.e. a ratio between 0 (no agreement)
and 1 (full agreement), where E = 16 shows the number of experts, and Rj displays the
sum of given ranks by the experts for criterion Cj .

T = 12

∑n
j=1(Rj − E(n + 1)/2)2

E2(n3 − n)
. (51)

An interpretation of T is that the consensus is very week, weak, fair, strong, very strong,
and complete, if it is in intervals [0.0, 0.1), [0.1, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 0.9), and
[0.9, 1.0], respectively. If T indicates a strong or higher consensus (i.e. not less than 0.5),
then we can accept the ranks as valid data. In the study case, T = 0.607 was obtained,
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Table 3
The criteria ranks and weights.

Criterion: C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Rank 3 4 1 5 7 9 6 8 2 15 13 11 14 12 10
Weight 0.1265 0.1043 0.2057 0.0866 0.0599 0.0401 0.0722 0.0493 0.1573 0.0044 0.0133 0.0249 0.0048 0.0188 0.0319

indicating a strong agreement. After that, we prioritized the criteria, such that the bigger
value of Rj indicates the lower concordant rank of criterion Cj . After ranking, the IROC
formula (equation (52)) was used to estimate the criteria weights. In this formula ϕyn are
constant parameters of the IROC model, reported in Hatefi (2023). These constants for
n = 15 are 0.04916, 0.06070, 0.06690, 0.07044, 0.07264, 0.07378, 0.07352, 0.07305,
0.07161, 0.06962, 0.06781, 0.06597, 0.06366, 0.06155, and 0.05959. Table 3 represents
the obtained ranks and weights for the 15 criteria.

wj =
n∑

y=j

(ϕyn/y). (52)

Checking the 15 weights, the most crucial criterion weight is 0.2057, while the
least important equals 0.0040. This means that criteria with weights less than 0.1028
(∼= 0.2057/2) are not important, thus we eliminate them from the model. As a matter
of fact, the fast and frugal concept (Katsikopoulos and Fasolo, 2006) leads us to concen-
trate on just the important criteria. Consequently, only four criteria are essential, i.e. C3:
Net return on investment (in percents), C9: Plateau production period (in years), C1: Size
of reservoir (in billion barrels), and C2: Average distance from resources/infrastructures
(in kilometers).

Table 4 presents the MADM matrix and some additional data for the study case. All
the performance measures (xij ) for all the criteria (C1, C2, C3 and C9) are received from
the relevant technical documents and reports. As mentioned above, the criteria weights
are determined using the IROC method. In Table 4, the IROC weights for the four criteria
(0.1265, 0.1043, 0.2057, and 0.1573) are normalized to add up to one. Moreover, the RIT
and YT values are given by the E&P company’ owners.

The EWPM scores are obtained as 0.8553, 1.0992, 0.9700, 1.0391, 0.9711, and 1.0866
for A1 to A6, respectively. Correspondingly, by setting π = 0.05, the portfolios A2 and
A6 are identified as strong alternatives; among them, A2 is proposed as the best portfolio
to be taken.

8.1. A Comparison

In this subsection, the result of solving the study case by the proposed method is com-
pared to those of the various MADM scoring methods. The MADM matrix, presented in
Table 4, was solved by the EWPM, WPM, Null EWPM, WSM, ARAS, MARCOS, CO-
PRAS, MOORA, MOOSRA, MMOORA, WASPAS, COCOSO, and MEREC. The final
results are exhibited in Table 5.

Notably, the IT and YT data were considered only in the procedure of the EWPM. As
mentioned before, the other methods internally do not consider the IT and YT concepts.
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Table 4
The MADM matrix in the study case.

Criteria Code: C1 C2 C3 C9
Title: Size of reservoir Average distance from

resources/infrastructures
Net return on
investment

Plateau production
period

Type: Benefit Cost Benefit Benefit
Dimension: billion barrels Kilometers Percents Years
Weight: 0.2130 0.1756 0.3465 0.2649
RIT: 0.8 0.2 0.9 0.85
YT: 50 20 80 60

Alternatives A1 37.5 47 22.5 25
A2 32.4 45 48.5 40
A3 25.5 19 37.5 35
A4 43.1 65 43.0 35
A5 33.7 80 33.7 45
A6 15.5 10 53.1 40

Table 5
The ranks of the alternatives by various MADM methods.

Row Method Scores of alternatives A1 to A6 respectively The obtained ranking of the 6 alternatives
1 EWPM 0.8553 1.0992 0.9700 1.0391 0.9711 1.0866 A2 > A6 > A4 > A5 > A3 > A1
2 WPM 0.4702 0.6787 0.6626 0.6260 0.5626 0.7795 A6 > A2 > A3 > A4 > A5 > A1
3 Null EWPM 0.7556 1.0907 1.0648 1.0060 0.9042 1.2528 A6 > A2 > A3 > A4 > A5 > A1
4 WSM 0.5167 0.7511 0.6692 0.7266 0.6733 0.8341 A6 > A2 > A4 > A5 > A3 > A1
5 ARAS 0.4843 0.6907 0.6513 0.6642 0.6083 0.8492 A6 > A2 > A4 > A3 > A5 > A1
6 MARCOS 0.4652 0.6762 0.6025 0.6542 0.6062 0.7510 A6 > A2 > A4 > A5 > A3 > A1
7 COPRAS 0.5514 0.7809 0.7538 0.7483 0.6832 1.0000 A6 > A2 > A3 > A4 > A5 > A1
8 MOORA 0.0035 0.0035 0.0033 0.0030 0.0028 0.0023 A2 > A6 > A4 > A3 > A5 > A1
9 MOOSRA 31.6113 14.9838 7.8187 5.4273 5.2556 4.0645 A6 > A3 > A2 > A4 > A1 > A5
10 MMOORA 0.0398 0.0347 0.0339 0.0320 0.0287 0.0240 A6 > A2 > A3 > A4 > A5 > A1
11 WASPAS 0.8068 0.7149 0.6659 0.6763 0.6179 0.4934 A6 > A2 > A3 > A4 > A5 > A1
12 COCOSO 2.2775 1.9320 1.7556 1.6965 1.2963 0.6153 A2 > A4 > A6 > A3 > A5 > A1
13 MEREC 0.5785 0.5277 0.4597 0.4051 0.3657 0.2508 A1 > A5 > A4 > A2 > A3 > A6

The obtained ranking of the alternatives by the EWPM is A2 > A6 > A4 > A5 > A3 >

A1; but if we remove the thresholds (the YTs, and the RITs), the overall rank structure of
the portfolios will obtained as A6 > A2 > A3 > A4 > A5 > A1. In fact, considering
the thresholds affects not only the overall ranking of the alternatives, but also the best
alternative to be selected. This demonstrates the remarkable impact of the thresholds on
the decisions. Another point to be borne in mind is that there is a considerable difference
between the MEREC result and the other ranks. It is for this reason that the criteria weights
are ignored in the MEREC formula. Let’s point another considerable remark out. All the
methods generate an alternative score between 0 and 1, except the EWPM (including the
Null EWPM), the MOOSRA, and the COCOSO. Among these three methods, only the
EWPM provide an inference guideline on the scores, i.e. categorizing the alternatives in
weak, moderate, and strong classes.

9. Discussion and Conclusion

This paper started by discussing the fact that, in evaluation of the alternatives in MADM,
the existent scoring methods do not take the two momentous concepts into account, i.e.
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Table 6
A comparison between the EWPM and EWSM.

Feature EWPM EWSM

MADM
matrix

Transformation of cost criterion
to benefit criterion

Reciprocal Reciprocal

Conversion of the performance
measures into dimensionless
numbers

Unnecessary Linear normalization,
indirectly

Thresholds IT type Ratio-based Indifference
Threshold (RIT)

Distance-based Indifference
Threshold (DIT)

YT inclusion A weight reduction coefficient A weight reduction
coefficient

Pairwise
comparison
matrix

Type of the matrix OMPC matrix OAPC matrix
Individual relative importance
of the alternatives (as for a
given criterion)

Subtracting the performance
measures

Dividing the performance
measures

The entries of the matrix Weighted multiplication Weighted addition
The inverse feature of the
matrix

Multiplicative inverse
(auv × avu = 1)

Additive inverse
(buv + bvu = 0)

The consistency of the matrix Full consistent
(auv × avk = auk)

Full consistent
(buv + bvk = buk)

Mathematical model to derive
the scores from the matrix

Geometric mean Arithmetic mean

Alternative
Score

Range of the scores [0, +∞) [−1, +1]
Product of all the scores Multiplicative identity, 1 N.A.
Sum of all the scores N.A. Additive identity, 0
Classify the alternatives? Yes Yes
Strong alternatives Score > 1 + π Score > +π

Weak alternatives Score < 1 − π Score < −π

Moderate alternatives Score in interval
[1 − π, 1 + π ]

Score in interval [−π, +π ]

the Indifference Threshold (IT), and the Yearning Threshold (YT). The paper, firstly, en-
hanced the IT and the YT concepts. As a matter of fact, along the traditional IT definition
(Distance-based IT or DIT), a new definition called Ratio-based IT or RIT was developed.
Additionally, the traditional idea of Aspiration Level (AL) was revised and redefined to
develop the new YT concept. Accordingly, to incorporate the IT and YT concepts into the
scoring methods, the paper proposed two extended methods called Extended Weighted
Product Model (EWPM) and Extended Weighted Sum Model (EWSM). Both the meth-
ods try to establish a pairwise comparison matrix extracted from the MADM matrix. As
a remarkable advantage of the proposed methods over the existent methods, the calcula-
tion relations in both the methods allow the Decision Maker (DM) to incorporate his/her
ITs and YTs into the models. Table 6 draws a brief comparison between the EWPM and
EWSM methods in view of their structures and scores.

Several advantages of the proposed methods over the existent methods in the literature
(reviewed in Section 2) are worthwhile emphasizing as follows:

1. The existent scoring methods calculate the score of a given alternative by using its
performance measures, without considering the relative relations between the perfor-
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mance measures of the alternative being evaluated and those of other alternatives. This
issue is resolved in the EWPM and EWSM.

2. The above note 1 causes a major superiority of the EWPM and EWSM over the existent
methods. This refers to the capability of the incorporation of the IT values into the score
calculations, while the other methods do not have such a capability.

3. In the proposed models of the EWPM and EWSM, the impact of the YTs is taken into
account.

4. Most of the existent scoring methods generally generate alternative scores, without
any additional interpretation or post guideline. The EWPM and EWSM take a novel
approach about the score values. Both the proposed methods, regarding the values of
the scores, separate the alternatives into three classes, i.e. weak decision, moderate
decision, and strong decision. Owing to this characteristic, by using the EWPM or
EWSM, the DM has an opportunity to focus his/her attention on the strong alternatives.

5. In both the EWPM and the EWSM, the mathematical relations are based on the extrac-
tion of the scores from full consistent pairwise comparison matrices. This property
confirms that these methods have well-founded platforms.

The paper carried out a simulation experiment to compare the outputs of different
scoring methods. Both the simulation experiment and theoretical analysis presented that
if the ITs and YTs are null, the WPM and the EWPM gave the same results. This fact
is true of the WSM and the EWSM. Nevertheless, the DM is advised to use the EWPM
and the EWSM, because these extended methods can classify the alternatives, while the
WPM and the WSM do not have such an advantage. When there are effective IT values or
YT values, application of the EWPM or the EWSM is confidently the decisive and main
recommendation, because the other methods disregard the IT and YT values.

Further works can be undertaken in some areas. The first idea is mixing the proposed
EWPM and EWSM. In this case, approaches of the mix methods such as the WASPAS and
the COCOSO can be applied. The major focus point of the current paper was incorporation
of the IT and YT concepts into the scoring methods. In such a way, future studies can
be performed to address the question of how the IT and YT values can be incorporated
into the compromising and concordance methods. Another idea, for future studies, is to
extend the EWPM and EWSM in uncertain environments, e.g. grey numbers (Deng, 1982;
Zavadskas and Turskis, 2010b) and fuzzy numbers (Zadeh, 1965; Aydogdu et al., 2023).

Compliance with Ethical Statements

Author contributions: The author confirms sole responsibility for study conception and
design, data collection, analysis and interpretation of results, and manuscript preparation.
Conflict of interest: The author declares that there is no conflict of interests regarding the
publication of this paper.
Human participants and/or animals: This article does not contain any studies with human
participants or animals performed by the author.
Ethical approval: There is no ethical approval, due to this study is not with human or
animal subjects, or where private, protected, or culturally significant research locations
were used.



New Aggregation Multiple Attribute Methods 27

A. Appendix

In the relevant literature, there is another format called fuzzy preference relation
(Kacprzyk, 1986). In this format, the DMs’ preference relation is defined by a binary
fuzzy relation pik ∈ [0, 1] that denotes the preference degree of alternative Ai over alter-
native Ak , where the range of pik is between 0 and 1 (equal importance = 0.5, absolute
importance = 1, etc.). The obtained pairwise comparison matrix is additive inverse (i.e.
pik + pki = 1). To derive the scores from a fuzzy preference relation matrix, this ma-
trix should be transformed into a multiplicative preference relation using qik = pik/pki

(Zhang et al., 2004; Chiclana et al., 1998).
If we want to transform the entries as equation (43) into fuzzy preference relation,

regarding the Proposition 7, a 1 is added to each entry bik and the result is divided by 2, so
we have pik = 1+bik

2 . Consequently, the obtained matrix is transformed to multiplicative
form by qik = (1 + bik)/(1 + bki). It can be easily proved that this kind of multiplicative
preference relation matrix is multiplicative inverse but is not full consistent.

B. Appendix

Individual HRs for combinations 1 to 4:

Table 7
Simulation results of the average HR, for low number of the alternatives and low number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.8589 0.9103 1.0000 0.5029 0.8266 0.7202 0.8589 0.9170 0.6691 0.8589 1.0000
WPM 0.8851 0.8589 0.4630 0.8101 0.7276 1.0000 0.9386 0.6700 1.0000 0.8589
ARAS 0.9103 0.4727 0.7958 0.7150 0.8851 0.9190 0.6304 0.8851 0.9103
MARCOS 0.5029 0.8266 0.7202 0.8589 0.9170 0.6691 0.8589 1.0000
COPRAS 0.5578 0.4510 0.4630 0.4846 0.4859 0.4630 0.5029
MOORA 0.7470 0.8101 0.8324 0.7439 0.8101 0.8266
MOOSRA 0.7276 0.7308 0.6535 0.7276 0.7202
MMOORA 0.9386 0.6700 1.0000 0.8589
WASPAS 0.6758 0.9386 0.9170
COCOSO 0.6700 0.6691
Null EWPM 0.8589

Table 8
Simulation results of the average HR, for low number of the alternatives and high number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.7953 0.8754 1.0000 0.5212 0.7982 0.7324 0.7953 0.8850 0.6098 0.7953 1.0000
WPM 0.8306 0.7953 0.4752 0.7547 0.7095 1.0000 0.9054 0.5933 1.0000 0.7953
ARAS 0.8754 0.4719 0.7424 0.7073 0.8306 0.8826 0.5580 0.8306 0.8754
MARCOS 0.5212 0.7982 0.7324 0.7953 0.8850 0.6098 0.7953 1.0000
COPRAS 0.5760 0.4978 0.4752 0.5016 0.4738 0.4752 0.5212
MOORA 0.8145 0.7547 0.7914 0.6706 0.7547 0.7982
MOOSRA 0.7095 0.7317 0.6282 0.7095 0.7324
MMOORA 0.9054 0.5933 1.0000 0.7953
WASPAS 0.6089 0.9054 0.8850
COCOSO 0.5933 0.6098
Null EWPM 0.7953
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Table 9
Simulation results of the average HR, for high number of the alternatives and low number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.7649 0.7718 1.0000 0.3519 0.6345 0.5609 0.7649 0.8664 0.5551 0.7649 1.0000
WPM 0.7850 0.7649 0.2652 0.6239 0.6132 1.0000 0.8892 0.5717 1.0000 0.7649
ARAS 0.7718 0.2376 0.5114 0.5584 0.7850 0.8047 0.4458 0.7850 0.7718
MARCOS 0.3519 0.6345 0.5609 0.7649 0.8664 0.5551 0.7649 1.0000
COPRAS 0.4245 0.2336 0.2652 0.3022 0.3706 0.2652 0.3519
MOORA 0.6233 0.6239 0.6411 0.7990 0.6239 0.6345
MOOSRA 0.6132 0.5991 0.5719 0.6132 0.5609
MMOORA 0.8892 0.5717 1.0000 0.7649
WASPAS 0.5726 0.8892 0.8664
COCOSO 0.5717 0.5551
Null EWPM 0.7649

Table 10
Simulation results of the average HR, for high number of the alternatives and high number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.6825 0.6844 1.0000 0.3686 0.6068 0.5290 0.6825 0.8266 0.4653 0.6825 1.0000
WPM 0.7030 0.6825 0.2794 0.5942 0.5679 1.0000 0.8408 0.4884 1.0000 0.6825
ARAS 0.6844 0.2169 0.4406 0.4582 0.7030 0.7278 0.3462 0.7030 0.6844
MARCOS 0.3686 0.6068 0.5290 0.6825 0.8266 0.4653 0.6825 1.0000
COPRAS 0.4358 0.3034 0.2794 0.3270 0.3553 0.2794 0.3686
MOORA 0.7217 0.5942 0.6233 0.6565 0.5942 0.6068
MOOSRA 0.5679 0.5658 0.5557 0.5679 0.5290
MMOORA 0.8408 0.4884 1.0000 0.6825
WASPAS 0.4943 0.8408 0.8266
COCOSO 0.4884 0.4653
Null EWPM 0.6825

C. Appendix

Individual RCs for combinations 1 to 4:

Table 11
Simulation results of the average RC, for low number of the alternatives and low number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.3909 0.7286 1.0000 −0.0958 0.3871 0.1619 0.3909 0.6650 0.0589 0.3909 1.0000
WPM 0.4486 0.3909 −0.1323 0.4198 0.2100 1.0000 0.6423 0.0750 1.0000 0.3909
ARAS 0.7286 −0.1317 0.3701 0.1632 0.4486 0.6838 0.0204 0.4486 0.7286
MARCOS −0.0958 0.3871 0.1619 0.3909 0.6650 0.0589 0.3909 1.0000
COPRAS −0.1057 −0.1414 −0.1323 −0.0994 −0.2242 −0.1323 −0.0958
MOORA 0.2957 0.4198 0.4294 0.2073 0.4198 0.3871
MOOSRA 0.2100 0.2047 0.0534 0.2100 0.1619
MMOORA 0.6423 0.0750 1.0000 0.3909
WASPAS 0.0805 0.6423 0.6650
COCOSO 0.0750 0.0589
Null EWPM 0.3909

Table 12
Simulation results of the average RC, for low number of the alternatives and high number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM 0.2777 0.6085 1.0000 −0.1488 0.3199 0.1683 0.2777 0.5882 −0.0590 0.2777 1.0000
WPM 0.3334 0.2777 −0.1929 0.2683 0.1561 1.0000 0.5829 −0.0651 1.0000 0.2777
ARAS 0.6085 −0.2105 0.2462 0.1263 0.3334 0.5624 −0.1185 0.3334 0.6085
MARCOS −0.1488 0.3199 0.1683 0.2777 0.5882 −0.0590 0.2777 1.0000
COPRAS −0.1275 −0.1359 −0.1929 −0.1572 −0.2629 −0.1929 −0.1488
MOORA 0.4382 0.2683 0.3357 0.0572 0.2683 0.3199
MOOSRA 0.1561 0.1948 −0.0138 0.1561 0.1683
MMOORA 0.5829 −0.0651 1.0000 0.2777
WASPAS −0.0430 0.5829 0.5882
COCOSO −0.0651 −0.0590
Null EWPM 0.2777
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Table 13
Simulation results of the average RC, for high number of the alternatives and low number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM −0.1909 0.2267 1.0000 −0.4123 −0.2478 −0.3668 −0.1909 0.2814 −0.4466 −0.1909 1.0000
WPM −0.1175 −0.1909 −0.5463 −0.1226 −0.2634 1.0000 0.1196 −0.3371 1.0000 −0.1909
ARAS 0.2267 −0.5135 −0.2435 −0.3516 −0.1175 0.2585 −0.4740 −0.1175 0.2267
MARCOS −0.4123 −0.2478 −0.3668 −0.1909 0.2814 −0.4466 −0.1909 1.0000
COPRAS −0.5074 −0.5291 −0.5463 −0.4657 −0.5941 −0.5463 −0.4123
MOORA −0.1400 −0.1226 −0.1768 −0.1496 −0.1226 −0.2478
MOOSRA −0.2634 −0.2915 −0.3853 −0.2634 −0.3668
MMOORA 0.1196 −0.3371 1.0000 −0.1909
WASPAS −0.3864 0.1196 0.2814
COCOSO −0.3371 −0.4466
Null EWPM −0.1909

Table 14
Simulation results of the average RC, for high number of the alternatives and high number of the criteria.

WPM ARAS MARCOS COPRAS MOORA MOOSRA MMOORA WASPAS COCOSO Null EWPM Null EWSM

WSM −0.2979 0.0067 1.0000 −0.5171 −0.3221 −0.4079 −0.2979 0.1901 −0.5481 −0.2979 1.0000
WPM −0.2743 −0.2979 −0.6026 −0.2774 −0.3649 1.0000 0.0221 −0.4772 1.0000 −0.2979
ARAS 0.0067 −0.6253 −0.3919 −0.4500 −0.2743 −0.0068 −0.5931 −0.2743 0.0067
MARCOS −0.5171 −0.3221 −0.4079 −0.2979 0.1901 −0.5481 −0.2979 1.0000
COPRAS −0.5433 −0.5389 −0.6026 −0.5412 −0.6259 −0.6026 −0.5171
MOORA 0.0391 −0.2774 −0.2633 −0.3652 −0.2774 −0.3221
MOOSRA −0.3649 −0.3496 −0.4527 −0.3649 −0.4079
MMOORA 0.0221 −0.4772 1.0000 −0.2979
WASPAS −0.5027 0.0221 0.1901
COCOSO −0.4772 −0.5481
Null EWPM −0.2979
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