
INFORMATICA, 2024, Vol. 0, No. 0, 1–26 1
© 2024 Vilnius University
DOI: https://doi.org/10.15388/24-INFOR578

Data Augmentation for Classification of
Multi-Domain Tension Signals

Tadas ŽVIRBLIS1,∗, Armantas PIKŠRYS2, Damian BZINKOWSKI3,
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Abstract. There are different deep neural network (DNN) architectures and methods for performing
augmentation on time series data, but not all the methods can be adapted for specific datasets. This
article explores the development of deep learning models for time series, applies data augmentation
methods to conveyor belt (CB) tension signal data and investigates the influence of these methods on
the accuracy of CB state classification. CB systems are one of the essential elements of production
processes, enabling smooth transportation of various industrial items, therefore its analysis is highly
important. For the purpose of this work, multi-domain tension data signals from five different CB
load weight conditions (0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg) and one damaged belt condition were collected
and analysed. Four DNN models based on fully convolutional network (FCN), convolutional neural
network combined with long short-term memory (CNN-LSTM) model, residual network (ResNet),
and InceptionTime architectures were developed and applied to classification of CB states. Different
time series augmentations, such as random Laplace noise, drifted Gaussian noise, uniform noise,
and magnitude warping, were applied to collected data during the study. Furthermore, new CB
tension signals were generated using a TimeVAE model. The study has shown that DNN models
based on FCN, ResNet, and InceptionTime architectures are able to classify CB states accurately.
The research has also shown that various data augmentation methods can improve the accuracy
of the above-mentioned models, for example, the combined addition of random Laplace and drifted
Gaussian noise improved FCN model’s baseline (without augmentation) classification accuracy with
2.0 s-length signals by 4.5% to 92.6% ± 1.54%. FCN model demonstrated the best accuracy and
classification performance despite its lowest amount of trainable parameters, thus demonstrating the
importance of selecting and optimizing the right architecture when developing models for specific
tasks.
Key words: fully convolutional network, convolutional neural network, long short-term memory
model, residual networks, inception networks, data augmentation, sliding window, magnitude
warping, variational autoencoder, conveyor belt tension signals.
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1. Introduction

With the rapid development of deep learning (DL), the issue of insufficient datasets has
become increasingly prominent. The performance of deep neural networks (DNN) is par-
ticularly dependent on the quantity, quality, and variety of training data (Sarker, 2021).
This problem is particularly evident in mechanical engineering, where machine learning
(ML) is widely used. In experimental scenarios, obtaining sufficient data to train robust
models can be difficult and expensive. The reliance on large datasets for training DL mod-
els highlights the need for obtaining sufficient data while lowering data collection costs.

Our research paper focuses on applying DL models to the classification of conveyor
belt (CB) states (damaged CB and loaded with 0.5 kg, 1 kg, 2 kg, 3 kg, or 5 kg), specifically
using belt tension time series signals. DL methods for the classification of CB states using
images have been widely researched already, but the methods for classifying CB tension
signals remain limited. Previous studies have demonstrated the potential of DL models
like LSTM for this purpose (Žvirblis et al., 2022).

In the industrial sector, CB systems is one of the essential elements of production pro-
cesses, enabling smooth transportation of various items. Depending on specific industrial
application, CB systems must meet certain criteria and requirements, such as sterility in
the food industry (Klištincová et al., 2024) or high wear resistance and durability (Bort-
nowski et al., 2022b). The reliability and efficiency of these conveyors are important to
optimize work processes and avoid unplanned stops. An integral aspect of the maintenance
of conveyor systems is monitoring their operational status to ensure correct functioning
of the system and timely detection of potential faults (Dąbek et al., 2023). Traditional CB
monitoring methods, such as manual, spectral, or radiographic damage detection (Li et
al., 2011), are usually too expensive or require a lot of manual labour and are prone to
human error.

Monitoring the status of CB systems is a critical aspect of their operational efficiency
and safety. In the past, classification tasks in this area were performed using conven-
tional ML algorithms and shallow models such as logistic regression and decision trees
(Andrejiova et al., 2021). Over the last decade, DL methods have been applied increas-
ingly widely because of their higher accuracy and efficiency. Santos et al. (2020) intro-
duced binary classification models which used CB images. Classification was performed
using deep convolutional neural networks (CNN) such as the visual geometry group
(VGG) network, residual network (ResNet), and densely connected convolutional network
(DenseNet). The highest average classification accuracy (89.8%) for particular data was
achieved using DenseNet model. Zhang et al. (2021) performed a detailed analysis of
ML algorithms and a comparison of DL models such as region-based CNN (R-CNN),
single-shot detector (SSD), receptive field block net (RFBNet), Yolov3, and Yolov4 for
the classification of CB damage images. Improved by the latter authors, Yolov3 architec-
ture achieved an average classification accuracy of 97.3% for four damage classes.

Recent research has further revealed the application potential of DNNs in CB monitor-
ing systems. Wang et al. (2023) presented a computer vision model capable of identifying
CB defects with 94% accuracy, but this model was very sensitive to environmental effects
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and image quality. In another study, Bortnowski et al. (2022a) presented a long short-term
memory (LSTM) autoencoder for automatization of damage detection by using recorded
CB vibration signals. However, this model was not adapted to detect different types of CB
damage. In addition, the vibration signals used in the study may be volatile due to var-
ious factors, such as load conditions or conveyor operating speed, which may affect the
accuracy of the monitoring system.

CB tension signal data was applied to train various ML and DL models by Žvirblis et
al. (2022) to determine the minimum signal length while maintaining high classification
accuracy. However, in the study, DL models were only applied to classify two CB states
(loaded with a 2 kg weight and unloaded). The authors did not include the detection of
CB damage. Also, in the study, the initial dataset of CB tension signals was insufficient to
train the models, so the authors performed two data augmentations methods like addition
of random Laplace noise and drifted Gaussian noise. However, the main aim of the above-
mentioned study was to develop high-accuracy classification models.

Achieving high classification accuracy with certain DL models requires collecting a
sufficiently large and diverse dataset. Collecting large amounts of CB tension time series
data can be difficult and expensive, therefore data augmentation methods can be used to
increase the amount and variety of data. Data augmentation involves the creation of new
data that is modified or synthesized from the original dataset. This enables the model
to better generalize data and recognize features in unseen data. Data augmentation tech-
niques are widely studied in computer vision and natural language processing, but their
application to time series data is still being developed.

For time series data, traditional image augmentation methods such as scaling, rotating,
or cropping often are not suitable due to the time dependence of time series data. Improper
time series augmentations can negatively affect the accuracy and robustness of the model
in real-world scenarios. In research works, some of the most effective time series data
augmentation methods were the application of a sliding window, the addition of noise,
and the synthesis of data using variational autoencoders (VAE) (Kingma and Welling,
2019) or generative adversarial networks (GAN) (Goodfellow et al., 2014).

Data augmentation methods in DL are used to find effective strategies for improvement
of the accuracy and robustness of models while having limited or unbalanced datasets.
Recently, some scientific works related to data augmentation were published (Chlap et
al., 2021; Wang et al., 2017a). However, most of these works provided applications for
the areas related to image augmentation in computer vision models.

Further below, this work reviews various time series data augmentation methods that
could augment the time series dataset and potentially improve the classification accuracy
and robustness of DL models.

Raw time series data usually forms one long time series. The sliding window method
can be used to generate more data for training. This augmentation method was used by
Žvirblis et al. (2022) in a study where the initial CB tension signal data was divided into
two stages. In the first stage, a sliding window method was used to divide the original
signal into smaller signals and thereby expand the dataset. One of the disadvantages of a
sliding window method is that dividing the original signal into smaller signals can cut off
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important features of time series data. Because of this, a DL model may not learn properly
to classify small-window-size time series data.

Additional noise in the data simulates real data, as real equipment such as signal sen-
sors can introduce noise into the observations. Therefore, adding noise makes DL mod-
els more robust to small variations in the data. Laplace, drifted Gaussian, and uniform
noise are commonly used for augmentation of time series data (Um et al., 2017; Iwana
and Uchida, 2021; Žvirblis et al., 2022). However, adding too much noise to the original
dataset can hinder the DL model’s ability to extract features from the signal. For this rea-
son, it is important to study the influence of different amounts of noise on the model’s
classification accuracy.

In augmentation of time series data, scaling means changing the amplitude or size
of the original time series. Scaling augmentation methods for time series include magni-
tude warping, time warping, window warping, and frequency warping (Iwana and Uchida,
2021; Um et al., 2017). However, these augmentations can over-distort important features
of time series data, so it is important to choose the methods appropriate for a specific
dataset.

VAEs can be used for augmentation of time series data as well (Kingma and Welling,
2019; Goubeaud et al., 2021). Desai et al. (2021) presented the architecture of time se-
ries data variational autoencoder (TimeVAE), which was compared with other time series
synthesis models such as TimeGAN (Yoon et al., 2019). On the average, the presented
TimeVAE architecture showed higher accuracy of time series data synthesis than other
models, especially with small data sets.

GANs is another widely researched framework for data augmentation and data synthe-
sis, including time series data (Goodfellow et al., 2014). The architecture of GANs learns
the distribution of data by extracting key features of the data. A trained generator of this
architecture can then synthesize completely new data.

Currently, there are many different uses of GAN architectures for time series data
(Huang et al., 2023; Iglesias et al., 2023). TimeGAN, one of the most widely used GAN
architectures for time series, adds two new embedder and recovery networks to the conven-
tional generator and discriminator architecture (Yoon et al., 2019). These new embedding
and retrieval networks form an autoencoder in TimeGAN architecture that aims to learn
the time dependence and key features of the data. In TimeGAN architecture, the autoen-
coder uses a recovery loss function, which aims to ensure that the network can accurately
recover the original time series data from the latent space.

Conditional GANs contribute to traditional architectures by incorporating conditional
information into the training process. This allows the network to be trained to generate
more accurate data based on specific inputs, such as classes of data. The conditional GAN
time series architecture (TSGAN) has achieved higher accuracy in synthesizing time se-
ries data for classification tasks than other GAN architectures (Smith and Smith, 2020).
TSGAN architecture was tested on 70 datasets and compared with Wasserstein Generative
Adversarial Network (WGAN) architecture (Gregor Hartmann et al., 2018). The accuracy
of the data synthesized by TSGAN architecture was higher than that of WGAN architec-
ture by about 11% on the average.
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There are different DNN architectures and methods for performing augmentations on
time series data, but not all the methods can be adapted for specific datasets. This work
aims to develop DL models for time series, apply data augmentation methods to CB ten-
sion signal data and investigate the influence of these methods on the accuracy of CB state
classification.

The rest of the paper is organized as follows. Materials and methods are described in
Section 2. The main study results are provided in Section 3. Conclusions close the paper
in Section 4.

2. Materials and Methods

The aim of the study on the classification of load and defect states of a CB is to not
only compare the classification accuracy of different DNN models but also to compare
how the accuracy of the models is affected by different data augmentation methods. This
chapter examines selected time series data augmentation methods that will be applied to
CB tension signals as well as selected DL models, accuracy metrics, and data acquisition.

2.1. Experimental Design and Data Collection

The test stand, on which the measurements were carried out, was a CB model, shown in
Fig. 1. Its supporting structure consists of four self-aligning ball bearing units and two
drums are embedded in the inner raceways: drive and return, on which strain gauges T1,
T2, and T3 are located. The housings were connected by threaded rods and bolted with
nuts, and sets of lenticular washers were used between the surfaces of the bearing housings
on both sides to compensate for curvature.

The system uses strain gauges, in which the resistance RT depends directly on the
resultant belt force Fn. During the dynamic testing of the CB (Fig. 2), the speed of the
drive drum is set at v and the recorded waveforms of the signals from the strain gauges

Fig. 1. CB model.
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Fig. 2. CB condition monitoring system.

Fig. 3. CB damage diagram. Here UW I is a longitudinal cut of 50 mm, UW II is a longitudinal cut of 70 mm,
UW III is a longitudinal cut of 45 mm with a depth of 1 mm, UW IV is a longitudinal cut of 50 mm with a depth
of 1.5 mm and UP I is a cross cut of 10 mm.

depend on the pre-tension of the belt, longitudinal damage UW, transverse damage UP, and
the load m. The strain gauge sensors have nonlinear characteristics, and there is a nonlinear
dependence of the readings depending on where the belt is pressed on the belt strain gauge
which girds the shaft. The analog-to-digital converter (ADC) electronic circuit receives
the analog data and converts it to digital, and then sends it via Bluetooth transmission to a
computer. At the stage of converting analog values to digital, the signal is discretized and
its values are measured at a frequency of 200 Hz. The signal, which goes to the computer
in digital form, is represented in analog-to-digital units (ADUs) and the acquired values
are subject to rounding and linearization.

The main purpose of data collection was to observe and analyse the influence of various
belt loads and defects on CB tension signals. The observations were collected by using
three strain gauge sensors, which were placed in parallel at different sections of the CB
(top, middle, and bottom) to fully record the strain signal of the CB. For this reason,
further data collection, analysis, and model building were done on multi-domain data input
structure. Observations were carried out in two stages. In the first stage, observations were
made by using the conveyor loaded with one of five different weights: 0.5 kg, 1 kg, 2 kg,
3 kg, or 5 kg. Each weight category was designed to simulate different loading conditions
on the CB. In the second stage, CB was intentionally damaged in certain places to simulate
defects in real conditions as shown in Fig. 3. During the second stage of observations, CB
tension signals were recorded as in the case of belt damage without any weight load.



Data Augmentation for Classification of Multi-Domain Tension Signals 7

Fig. 4. Sensor signal values in different conditions of the conveyor belt: a) first lower sensor; b) second middle
sensor; c) third upper sensor.

Fig. 5. The scheme of experiment.

To simulate different rotational speeds of the CB, three different revolutions per minute
(RPM) speeds were chosen: 159, 318, and 540. The CB speed of 159 RPM corresponded
to a linear speed of 0.5 m/s, 318 RPM corresponded to 1 m/s, and 540 RPM corresponded
to 1.7 m/s. Each observation was performed 9 times (3 times for each RPM). All the
observations lasted about 8 seconds each on the average.

To gain more insight into the collected data, the amplitude means of the tension signals
under different weight loads and defect states were calculated and presented in Fig. 4. The
damaged CB signal has the highest average amplitude of all the load conditions, therefore
it is clearly identifiable. Higher amplitude can be explained by the presence of defects
and irregularities on the surface of the CB, which cause larger fluctuations in the tension
signals. It can also be observed that the average tension amplitude of the maximum weight
load of 5 kg was the lowest while that of 0.5 kg was the highest as compared with other
weight loads.

Augmentation of the collected data and other steps of the experiment are shown in
Fig. 5.
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2.2. Data Augmentation Techniques

Testing a wide range of data augmentation techniques is crucial in DL because different
augmentations can have varied and sometimes profound impacts on model performance,
generalization, and robustness. Data augmentation helps to prevent overfitting by exposing
the model to diverse data transformations, which simulates the variability it may encounter
in real-world scenarios. Different data types or domains may benefit from specific aug-
mentations. For instance, noise injections can be useful for vibration or sound data. Testing
various augmentations helps identify those that address domain-specific challenges effec-
tively, enhancing the model’s adaptability.

We applied a range of data augmentation techniques, both traditional and advanced.
These included:

• Basic augmentations: sliding window.
• Advanced augmentations: random Laplace noise, drifted Gaussian noise, uniform

noise, and magnitude warping.
• Generative augmentations: variational autoencoders.

A sliding window splits the data into more time series of smaller sizes. The sliding
window formula used in this work is:

W [i] = [1 + i, m + i], i = 0, 1, 2, . . . , k − m,

where a time series of size k is split into multiple time series of length m. Here, W [i]
represents the i-th window, starting with index 1 + i and ending with index m + i.

To expand the dataset of CB signals and to standardize their length, signals of all
original observations were divided into 0.5 s (200 points), 1.0 s (400 points), and 1.5 s
(600 points) signals. The step of each signal’s sliding window was 100% of the window
size itself. For example, a step of 0.5 s-length signal is 0.5 s (200 points). This was done
to create enough of different signals for training the models and to avoid over-fitting the
models.

Random Laplace noise is based on sampling random values from a Laplace distribu-
tion. This distribution is characterized by the Laplace probability density function:

f1(x) = 1

2σ
e− |x−μ|

σ ,

where μ is the mean of the distribution, and σ is the scale parameter controlling the width
of the distribution.

Drifted Gaussian noise adds a random value from a Gaussian (normal) distribution to
each point in the signal. Gaussian distribution is characterized by Gaussian probability
density function:

f2(x) = 1

σ
√

2π
e− 1

2 (
x−μ

σ
)2

,

where μ is the mean of the distribution and σ is the standard deviation.
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Uniform noise generates a value from a uniform distribution. The uniform distribution
is characterized by the density function that represents the equal likelihood of any value
within the specified interval [a; b]:

f (x) =
{

1
b−a

, a � x � b,

0, x < a or x > b.

where a and b are the lowest and highest value of x, respectively.
Magnitude warping for time series data involves the random scaling of certain seg-

ments of the data. To perform the deformations, nodes u = u1, u2, . . . , ui are generated
randomly from a Gaussian distribution. The scaling is then defined by cubic spline in-
terpolation of the nodes S(x) (Iglesias et al., 2023). The magnitude warping function is
represented by the formula:

x
(α)
0 = {α1x1, . . . , αtxt , . . . , αT xT },

where α = {α1, α2, . . . , αi} = S(x), S(x) is cubic spline interpolation of the knots.
TimeVAE architecture is one more of the methods for data augmentation of CB tension

signals (Desai et al., 2021). TimeVAE architecture is trained using the evidence lower
bound (ELBO) loss function:

Lθ,φ = −Eqφ(z|x)

[
log pθ(x|z)] + DKL

(
qφ(z|x)

∣∣∣∣pθ(z)
)
,

where the first term −Eqφ(z|x)[log pθ(x|z)] is the reconstruction loss, which measures
how accurately the model reconstructs the input data. It includes the log-likelihood for
the variable z drawn from the distribution qφ(z|x), where qφ(z|x) is the encoded latent
space for the variable x. The second term DKL(qφ(z|x)||pθ (z)) is the Kullback-Leibler
deviation between qφ(z|x) and pθ(z) distributions. This regularization term is meant to
ensure that the learned latent space remains similar to the prior distribution. In TimeVAE
architecture, the variable z is taken from a Gaussian distribution and passed to the decoder,
thus making the VAE decoder generative.

The encoder passes the input through a one-dimensional convolutional layer with
ReLU activation function. The input is flattened and then connected to the output from the
encoder’s fully connected layer. The encoder output parameters are used for constructing
Gaussian distribution from which the variable z is derived. This variable is then passed
to the decoder, which consists of fully connected, convolution, and time-distributed con-
catenation layers. The output data from the decoder is the same shape as the input data.

2.3. Deep Learning Models Architectures

Multiple DL models were tested in order to ensure the broad applicability of findings, in-
cluding fully convolutional network (FCN), convolutional neural network combined with
long short-term memory network (CNN-LSTM), residual network (ResNet), and incep-
tion network (InceptionTime). All the models were built to classify six CB states, which
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included five load conditions (0.5 kg, 1 kg, 2 kg, 3 kg, and 5 kg) and one damaged-belt
condition.

All the models were built using the Python programming language with TensorFlow
and Keras DL libraries. The Kaggle platform was used for executing the experiments, and
the NVIDIA Tesla P100 graphics processor was used for model training. In addition, each
model was trained using the cross-entropy loss function and the Adam optimizer with a
training rate of η = 0.001. The following subsections present detailed architecture and
parameter configuration of each constructed model.

2.3.1. FCN Model
FCN is an architecture based on deep CNNs that were originally developed for image
segmentation (Long et al., 2015). In the case of time series, FCN architecture can be used
for feature extraction. In the output layer, the classification can be performed using either
the exponential normalization (softmax) or the sigmoid activation function (Wang et al.,
2017b). The basic block of FCN architecture consists of a convolutional layer, followed
by a batch normalization layer and a rectified linear unit (ReLU) activation layer. During
the training, the batch normalization layer accelerates gradient convergence and improves
the model’s robustness. Batch normalization is given by the following formula:

BN(x) = x − μ√
σ 2 + ε

× γ + β,

where x is the input, μ is the mini-batch mean, σ is the mini-batch standard deviation, ε

is the numerical stability constant, γ is the learned scale parameter, and β is the learned
shift parameter.

The mathematical expression of FCN architecture block is given in formulas (1), (2),
and (3):

z = W ∗ x + b, (1)
y = BN(z), (2)
h = ReLU(y), (3)

where ∗ denotes the convolution operation, x is the input data, W is the convolution layer
kernel, b is the bias, BN denotes the batch normalization operation, and ReLU is rectified
linear unit operation.

The final FCN is formed by concatenating three convolutional blocks. After applying
these blocks, the extracted data features are passed to the global average pooling (GAP)
layer, which is responsible for reducing the feature map size (Hsiao et al., 2019). GAP
layer is superior to the traditional fully connected layer because it significantly reduces
the number of weights and helps the model avoid over-training. The final layer consists of
the softmax or sigmoid activation function.

The architecture of the built FCN model is shown in Fig. 6. The developed model is
composed of three one-dimensional convolutional layers with the number of filters 64,
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Fig. 6. FCN model architecture.

Fig. 7. CNN-LSTM model architecture.

128, and 64, respectively. The filter size of each convolutional layer was 3 × 1. The se-
lection of 64, 128, and 64 filters was made based on findings in previous studies that
demonstrated good accuracy in time series classification tasks using similar FCN model
(Wang et al., 2017b). The final layers consist of a GAP layer and a fully connected layer
with a softmax activation function. The resulting FCN model was the smallest among all
the models built in this study as it consisted of only 26437 trainable parameters.

2.3.2. CNN-LSTM Model
The architecture and parameter configuration of the second hybrid CNN-LSTM model
is shown in Fig. 7. The developed model is composed of four different one-dimensional
convolutional blocks and two LSTM layers. The number of convolutional block filters in
the model decreases from 512 to 8, respectively. Convolutional blocks use batch normal-
ization, ReLU activation function, average pooling, and dropout layers. The number of
convolutional filters was empirically tested with various configurations, and the chosen
structure provided optimal classification accuracy. The convolutional blocks are followed
by two LSTM layers, each composed of 16 cells. The final layer is fully connected and uti-
lizes the softmax activation function. The trainable parameters of the created CNN-LSTM
model ranged from 226.077 with 0.5 s-length signals to 245.533 with 2.0 s-length signals.

2.3.3. ResNet Model
The architecture and parameter configuration of ResNet model is shown in Fig. 8. The
model consists of three residual blocks. In the first residual block, each of one-dimensional
convolutions has 64 filters and in the second and third, 128. The selected filter sizes were
based on previous studies that applied ResNet architecture for time series classification
(Wang et al., 2017b). In the architecture diagram of the model, arrows with a plus sign
represent skip connections. The last two layers of the model consist of a GAP layer and
a fully connected layer with a softmax activation function. The developed ResNet model



12 T. Žvirblis et al.

Fig. 8. ResNet model architecture.

Fig. 9. Inception network InceptionTime model architecture.

had the largest number of parameters among all the built models and consisted of 508.357
trainable parameters.

2.3.4. InceptionTime Model
The architecture and parameter configuration of the InceptionTime model with six incep-
tion modules is shown in Fig. 9. Every third module is connected by ResNet skip con-
nections. The final two layers of the model include a GAP layer and a fully connected
layer with a softmax activation function. The InceptionTime model has a total of 427.685
trainable parameters.

2.4. Classification Accuracy Metrics

Overall classification accuracy measures overall accuracy of the model. It is the ratio of
correct guesses to all guesses. The overall accuracy in percent is represented by the for-
mula:

Accuracy = TP + TN
TP + FN + FP + TN

· 100%,

where TP represents true positives, TN represents true negatives, FP represents false pos-
itives, and FN represents false negative model results.

The accuracy of each experiment was measured more than once, so it is important to
estimate the error in order to evaluate the data from these samples of different accuracy. By
calculating the standard error (SE) of the mean, it is possible to assess the extent to which
the sample is representative of the population and draw reasonable conclusions from it.
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SE was calculated by the formula:

SE = s√
n
,

where s is the sample standard deviation and n is the sample size.
Classification accuracy alone can lead to misinterpretation of results when the dataset

is unbalanced. For this reason, depending on the classification results of the classification
model, recall and precision metrics of the model can also be calculated. These metrics are
represented as percentages:

Recall = TP
TP + FN

· 100%,

Precision = TP
TP + FP

· 100%,

where recall shows whether the model can predict all the instances of different classes and
precision shows how often the positive predictions are correct.

In addition, F1-score, which is a weighted average of recall and precision, can be used
to determine the classification accuracy in the case of unbalanced datasets. This metric is
expressed as a percentage in the formula:

F1 = 2 · Recall · Precision
Recall + Precision

· 100%,

where Recall is the proportion of actual positives that were correctly identified and Preci-
sion is the proportion of predictions that were correct.

3. Results and Discussion

In this section, a study on the accomplished classification of CB load and defect states
is provided. First, DNN models were built. Various time series data augmentation meth-
ods were then applied to the dataset and comparisons of the original and augmented sig-
nals were made. Finally, a study of conveyor state classification was carried out by using
the constructed DNN models and various data augmentation methods. The results of all
the studied methods were compared and the conclusions were drawn. The DNN models,
augmentation methods, and data used in the study are available in the GitHub reposi-
tory.1

3.1. Application of Data Augmentations

Data augmentation was performed on the CB tension signals before analysing the CB state
classification accuracy. All the applied data augmentation methods are presented in this
section.

1https://github.com/ArmantasPik/Conveyor-belt-state-classification/

https://github.com/ArmantasPik/Conveyor-belt-state-classification/
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Table 1
Sliding window signals.

Signal length (s) Data points Signal count

0.5 200 1.058
1.0 400 514
1.5 600 319
2.0 800 233

3.1.1. Sliding Window
A sliding window was applied to the raw tension signals to generate datasets of four dif-
ferent lengths: 0.5 s (200 points), 1.0 s (400 points), 1.5 s (600 points), and 2.0 s (800
points). The step size of each sliding window was 100% of the signal’s length. The num-
ber of signals for each length is presented in Table 1. The shortest-signal (0.5 s) dataset
was the biggest (1.058), while that of the longest signal (2.0 s) was the smallest (233).
These signals of different lengths were used in further time series data augmentation and
classification accuracy studies. Additionally, the signals were normalized before applying
data augmentations.

3.1.2. Noise Addition
Various types of noise such as random Laplace, drifted Gaussian, or uniform noises were
added to the processed tension signal data. The scale of the noise was determined by the
standard deviation (std) of the original signal. The different scales of noise were generated
by scaling the standard deviation of the original signal to fractions of its value: std/100,
std/50, and std/20. This scaling adjusts the noise magnitude, with smaller proportions
(e.g., std/100) representing lower noise levels and larger proportions (e.g., std/20) intro-
ducing higher noise, all in proportion to the original signal’s variability. Figure 10 presents
a comparison between the original tension signal and the one augmented with random

Fig. 10. Comparison of different scale random Laplace noise with the original signal.
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Fig. 11. Comparison of random Laplace and drifted Gaussian noise combinations with the original signal.

Laplace noise at different scales. As can be seen, the signal becomes progressively noisier
as the noise scale increases from std/100 to std/20, demonstrating how higher magnitudes
introduce more fluctuations while preserving the overall structure of the original signal.

Noise addition data augmentations were performed by using various noise combina-
tions. Random Laplace noise was combined with drifted Gaussian noise and uniform
noise, each with a magnitude of std/100. Figure 11 compares the original signal with
the combination of random Laplace and drifted Gaussian noise. The use of both Laplace
and drifted Gaussian noise introduces a combination of sharp, sudden deviations (charac-
teristic for Laplace noise) and smoother, gradual deviations (characteristic for Gaussian
noise). The comparison shows that the augmented signal retains the major trends of the
original signal, while the addition of noise results in slight amplitude variations.

3.1.3. Magnitude Warping
Magnitude warping was applied to the processed tension signals. Deformation parame-
ter σ = 0.2 and 4 nodes were used for the deformation function. The comparison of the
original and deformed signal is shown in Fig. 12. The warped signal showed noticeable
changes in amplitude as compared to the original signal. Despite these amplitude modifi-
cations, the main features and overall trends of the original signal remained intact, making
this method suitable for creating variations of the original data without altering the core
structure.

3.1.4. Variational Autoencoder Signal Generation
Processed tension signals were used to train TimeVAE model with three hidden layers
containing 50, 100, and 200 neurons, respectively, and 20 neurons in the latent space. The
selection of 50, 100, and 200 neurons for the hidden layers was based on the architec-
ture proposed in the original study on variational autoencoders for time series generation
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Fig. 12. Comparison of magnitude warping with the original signal.

Fig. 13. Comparison of original and reconstructed signals.

(Desai et al., 2021). These parameters were empirically tested to increase classification
accuracy on the conveyor belt dataset by minimizing reconstruction loss. Similarly, for
the latent space, 20 neurons were selected as it provided sufficient compression of the sig-
nals while maintaining important features. The model was trained for 200 epochs. Proper
parameter configuration was crucial as the error of reconstructed and generated signals
depended on these parameters. After training, random new signals were generated for
classification accuracy study.

The comparison of the original signals and the signals reconstructed by VAE is shown
in Fig. 13 where the signals are converted into 2D spectrograms. As the graph shows,
reconstructed data almost perfectly matches the original data.
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Fig. 14. CB tension signals: a) original signal; b) TimeVAE generated signal.

A comparison of original and randomly generated signal is presented in Fig. 14. It can
be seen that the amplitude and frequency of the generated signal are similar to that of the
real signal, but the generated signal has less noise.

3.2. Classification Accuracy Study

The study on the classification accuracy of CB states was carried out in two stages. In
the first stage, different DNN models were assessed by classifying the signals processed
by a sliding window of varying lengths (0.5 s, 1.0 s, 1.5 s, 2.0 s) without applying any
additional data augmentation methods. The second stage focused on examining the impact
of different data augmentation methods on the classification accuracy of DNN models,
specifically using 2.0 s-length signals. The 2.0 s-length signals were selected for this stage
because their dataset was the smallest.

3.2.1. DNN Models’ Study
For each signal length (0.5 s, 1.0 s, 1.5 s, 2.0 s), the CB dataset was divided into five parts,
ensuring class balance in each fold. Balanced 5-fold cross-validation was used to construct
the training and testing sets. This approach involved using 80% of the data (four out of five
folds) for training and 20% (the remaining fold) for testing. Training and testing sets were
switched five times for each signal length. The final accuracy was calculated by averaging
the results of these five training runs and determining the standard error of the mean.
This method was chosen to provide a more reliable estimate of the model classification
accuracy, particularly given the small dataset sizes.

A total of 6 different classes were assigned to the tension signals based on their load
and defect states: 0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg, and a class for a belt with damage. A cate-
gorical cross-entropy loss function was used for all classification models, with a softmax
activation function applied to the output layer. Each model was trained five times for 300
epochs per experiment, using a batch size of 16 signals per iteration. Before training, all
training sets of different lengths were aligned to ensure that each set consisted of 2000
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Table 2
Augmentation-free multi-class (0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg, and a class for a damaged

belt) classification accuracy of CB states of DNN models.

Signal length, s Accuracy ± SE, %
CNN-LSTM FCN ResNet InceptionTime

0.5 74.3 ± 0.82 76.4 ± 1.14 80.6 ± 1.27 79.3 ± 0.71
1.0 65.5 ± 1.08 81.5 ± 1.29 85.4 ± 1.26 84.9 ± 0.59
1.5 66.3 ± 2.47 83.7 ± 1.51 84.8 ± 1.09 84.8 ± 1.52
2.0 64.3 ± 1.58 88.1 ± 1.48 91.1 ± 1.09 89.1 ± 1.54

Table 3
Augmentation-free multi-class (0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg, and a class for a damaged belt) classification

recall of CB states of DNN models for each class.

Model Signal length, s Recall, %
0.5 kg 1 kg 2 kg 3 kg 5 kg With damage

CNN-LSTM 0.5 71.6 61.0 51.6 64.2 74.3 98.2
1.0 59.8 28.6 42.8 65.5 69.4 96.8
1.5 69.4 38.0 47.2 58.6 66.3 94.0
2.0 60.8 43.4 43.6 57.0 66.9 96.8

FCN 0.5 77.2 62.6 56.2 64.8 76.4 98.6
1.0 78.8 84.0 51.6 76.0 81.5 100
1.5 95.6 64.4 69.4 72.4 81.6 97.6
2.0 96.6 80.0 70.0 88.8 90.4 98.4

ResNet 0.5 83.8 72.6 55.6 73.2 80.6 99.2
1.0 91.6 75.4 61.0 85.2 85.4 100
1.5 88.4 75.2 67.6 81.6 85.9 100
2.0 100 79.0 72.2 91.1 97.2 100

InceptionTime 0.5 85.8 64.4 57.8 69.4 79.3 99.2
1.0 88.6 82.6 64.6 74.6 84.9 100
1.5 93.2 68.3 75.0 82.0 84.8 100
2.0 93.4 85.0 66.2 90.1 91.6 100

signals. To achieve this, the training sets in the first stage were multiplied without aug-
mentations to reach the required 2000 signals.

The classification accuracy results of CB states in the first stage, using various DNN
models without augmentations, are presented in Table 2. According to the results, ResNet
model outperformed other models in all signal lengths and had the highest classification
accuracy, which reached 91.1%±1.09% with 2.0 s-length signals. ResNet and Inception-
Time models have demonstrated similar accuracies for all the signal lengths, differing by
only one or two percentage points. FCN model also performed competitively, achieving
an accuracy of 88.1% ± 1.48% with 2.0 s-length signals, which was only slightly lower
than that of ResNet and InceptionTime models. The accuracy of CNN-LSTM model de-
creased in line with increasing signal length, indicating that it performed comparatively
poorly for this classification task. In addition, the accuracy of all other models improved
with increasing signal length, except of CNN-LSTM model.

The results of classification recall, precision, and F1 statistics for all the models of CB
states for each class are presented in Tables 3, 4, and 5. The results show that all the models
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Table 4
Augmentation-free multi-class (0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg, and a class for a damaged belt) classification

precision of CB states of DNN models for each class.

Model Signal length, s Precision, %
0.5 kg 1 kg 2 kg 3 kg 5 kg With damage

CNN-LSTM 0.5 66.4 55.0 53.8 74.8 75.0 98.8
1.0 49.6 32.2 48.0 66.4 72.4 98.0
1.5 59.4 44.6 39.4 65.8 67.5 100
2.0 51.8 40.6 41.8 66.3 68.6 100

FCN 0.5 67.6 63.8 56.6 72.6 76.7 99.0
1.0 77.2 66.0 67.0 83.2 88.8 100
1.5 77.2 78.2 69.4 84.0 90.2 100
2.0 87.0 79.4 83.8 88.1 95.0 98.6

ResNet 0.5 73.8 71.8 66.8 73.6 80.8 98.4
1.0 80.2 75.0 72.6 85.4 85.5 100
1.5 77.6 70.2 76.8 85.9 92.0 100
2.0 97.2 83.8 78.4 91.7 93.2 100

InceptionTime 0.5 69.6 73.0 62.6 72.0 79.6 99.6
1.0 77.8 86.2 67.2 82.2 85.5 100
1.5 73.6 81.8 74.5 85.6 94.0 100
2.0 95.6 71.6 78.6 89.1 97.2 100

Table 5
Augmentation-free multi-class (0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg, and a class for a damaged belt) classification

F1-score of CB states of DNN models for each class.

Model Signal length, s F1-score, %
0.5 kg 1 kg 2 kg 3 kg 5 kg With damage

CNN-LSTM 0.5 68.6 57.6 52.6 68.6 74.3 98.6
1.0 53.6 29.8 45.0 65.6 70.8 97.2
1.5 63.4 39.8 42.2 61.0 66.1 97.0
2.0 55.0 41.2 41.8 62.2 65.9 98.4

FCN 0.5 71.8 63.0 56.0 68.6 76.2 98.6
1.0 76.4 72.4 58.2 80.8 81.3 100
1.5 84.6 69.8 68.6 84.2 85.0 98.8
2.0 90.8 78.2 73.2 88.1 91.2 98.6

ResNet 0.5 77.8 71.8 60.2 73.0 80.2 98.8
1.0 85.6 75.0 65.6 84.6 85.0 100
1.5 82.2 72.0 70.2 84.6 86.0 100
2.0 98.4 80.4 73.6 90.8 94.6 100

InceptionTime 0.5 76.6 68.0 59.8 70.8 79.1 99.4
1.0 82.2 83.2 64.0 78.2 84.5 100
1.5 81.6 73.8 74.2 84.5 87.2 100
2.0 93.6 77.2 71.6 89.1 94.0 100

classified the damaged CB class with the highest accuracy, for example, F1 statistics of
ResNet and InceptionTime models for 1.0 s, 1.5 s and 2.0 s signals reached 100% accuracy
for this class. Different load states were classified worse by all the models. All the models
were the most sensitive to 0.5 kg, 5 kg, and damaged-belt states, possibly because these
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Table 6
Single epoch training time of DNN models.

Signal length, s Epoch training time, s
CNN-LSTM FCN ResNet InceptionTime

0.5 0.6 0.3 0.7 0.9
1.0 1.0 0.5 1.8 2.1
1.5 1.2 0.7 2.8 2.7
2.0 1.5 0.8 3.4 3.6

signals stood out the most, while the 1 kg, 2 kg, and 3 kg signals were relatively similar,
bringing more difficulty in their classification.

The training times of DNN models for various CB signal lengths are presented in Ta-
ble 6. The signal length refers to the duration of the input CB signal (in seconds), and
the epoch training time is the time (in seconds) taken by each model to complete one
training epoch. The table shows that FCN model required the shortest training time for
all the signal lengths. Meanwhile, ResNet and InceptionTime models took the longest
training time. For example, for 2.0 s signals, training time of ResNet was 3.4 s and
that of InceptionTime 3.6 s, while that of FCN took 0.8 s only. On the average, train-
ing time of InceptionTime model took several fractions of a second longer than that of
ResNet, making it the slowest to train of all the studied models. Longer training time of
ResNet and InceptionTime models likely occurred due to larger number of their parame-
ters.

The first-stage study demonstrated that without any data augmentations, ResNet model
was the most accurate for CB state classification. Also, FCN model’s classification accu-
racy was only slightly lower than that of ResNet and InceptionTime models. FCN model
had the advantage of being the fastest to train and requiring fewer computing resources as
compared to other models. The next stage of the research explores the impact of various
data augmentation methods on the classification accuracy of DNN models by artificially
augmenting CB signal dataset.

3.2.2. Data Augmentation Impact
In the second stage of the research, a study of data augmentation methods was carried
out with the purpose of comparing the impact of various augmentation methods on DNN
models in the classification of CB states. The study used the 2.0 s sliding-window pro-
cessed signals because this dataset was the smallest, consisting of only 233 signals.

A balanced 5-fold cross-validation was also used for each experiment. The hyperpa-
rameters for training the models were the same as in the first stage, that is, in each ex-
periment, the models were trained 5 times for 300 epochs, where the batch size of one
iteration was 16 signals. However, at this stage, various data augmentations were applied
to artificially increase the training sets, increasing the size of each of them to 2000 signals.

The classification accuracy results of each experiment for all DNN models using var-
ious data augmentations are presented in Table 7. The results also show the baseline clas-
sification accuracy of each model without augmentations, which were obtained in the first
phase of the study by classifying 2.0 s-length signals.
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Table 7
Multi-class (0.5 kg, 1 kg, 2 kg, 3 kg, 5 kg, and a class for a damaged belt) classification accuracy for all used

augmentation methods.

Augmentation method Accuracy ± SE, %
CNN-LSTM FCN ResNet InceptionTime

No augmentations 64.3 ± 1.58 88.1 ± 1.48 91.1 ± 1.09 89.1 ± 1.54

Laplace (std/100) 62.4 ± 4.00 89.1 ± 1.35 91.6 ± 1.08 92.1 ± 1.32
Laplace (std/50) 61.4 ± 1.71 89.6 ± 1.91 91.1 ± 0.90 90.6 ± 1.12
Laplace (std/20) 59.9 ± 1.68 91.1 ± 1.11 91.6 ± 0.86 92.4 ± 0.72

Drifted Gaussian (std/100) 61.9 ± 3.04 91.1 ± 1.82 90.1 ± 0.71 91.1 ± 1.68
Drifted Gaussian (std/50) 64.4 ± 1.54 88.1 ± 2.87 92.1 ± 1.47 91.6 ± 1.14
Drifted Gaussian (std/20) 61.9 ± 1.61 92.5 ± 1.86 90.1 ± 0.94 89.5 ± 1.08

Uniform (std/100) 62.9 ± 2.20 89.1 ± 1.91 90.1 ± 1.44 91.1 ± 1.09
Uniform (std/50) 59.9 ± 1.30 89.6 ± 1.27 91.1 ± 1.14 90.6 ± 0.47
Uniform (std/20) 59.9 ± 2.71 89.1 ± 1.49 89.1 ± 1.54 89.2 ± 2.09

Laplace and drifted Gaussian 63.4 ± 2.56 92.6 ± 1.54 91.1 ± 0.92 90.6 ± 0.85
Laplace and uniform noise 62.9 ± 1.97 89.1 ± 1.51 91.1 ± 0.87 92.5 ± 0.71

Magnitude warping 59.4 ± 2.13 88.1 ± 1.93 90.6 ± 2.19 90.1 ± 1.41

TimeVAE 75.7 ± 0.88 77.2 ± 2.75 90.1 ± 2.93 88.6 ± 2.90

The results show that each data augmentation affected the classification accuracy dif-
ferently, depending on the model and the augmentation method itself. The best classifi-
cation accuracy results after applying data augmentations were achieved by using FCN,
ResNet, and InceptionTime models.

Adding Laplace noise increased the accuracy of FCN, ResNet, and InceptionTime
models across all the noise levels, but decreased the accuracy of CNN-LSTM model. The
addition of drifted Gaussian noise notably increased the baseline classification accuracy
of FCN model by 4.4% to 92.5% ± 1.86% with std/20 noise. It also increased the ac-
curacy of ResNet model with std/50 noise by 1% to 92.1% ± 1.47%, and InceptionTime
model by 2% to 91.1%±1.68% with std/100 noise. Adding uniform noise resulted on the
average in worse classification results for all the models as compared to adding Laplace
or drifted Gaussian noise.

The best accuracy result of the entire study, which increased the baseline accuracy of
FCN model by 4.5% to 92.6% ± 1.54%, was achieved by training the model on data aug-
mented with combined Laplace and drifted Gaussian noise. Adding Laplace and uniform
noise increased the accuracy of InceptionTime model by 3.4% to 92.5% ± 0.71%. All the
experiments involving combined noise used noise with a size of std/100.

Magnitude warping augmented data increased the accuracy of only InceptionTime
model by 1% to 90.1% ± 1.41%. Augmenting signals with TimeVAE increased the accu-
racy of only CNN-LSTM model, which reached 75.7% ± 0.71%, but was still lower as
compared to other models.

CNN-LSTM model generally experienced a negative impact from most data augmen-
tations, except for TimeVAE-generated signals, which had a positive effect. Most data aug-
mentations improved the baseline accuracy of FCN model, although TimeVAE augmen-
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Fig. 15. Comparison of change in classification accuracy of data augmentation methods for each model with
baseline (no augmentation) accuracy. Accuracy changes of: a) CNN-LSTM; b) FCN; c) ResNet; d) Inception-
Time.

tation led to a decrease of 10.9%. For ResNet model, most augmentations either reduced
the accuracy or resulted in only a marginal improvement of 1%.

The changes in classification accuracy of each model achieved by various data aug-
mentation methods are presented in Fig. 15. Separate graphs show the relative change in
accuracy for each model as compared to baseline (without any augmentation) accuracy.
CNN-LSTM model generally experienced a negative impact from most data augmenta-
tions, except for TimeVAE-generated signals, which had a positive effect. Most data aug-
mentations improved the baseline accuracy of FCN model, although TimeVAE augmen-
tation led to a decrease of 10.9%. For ResNet model, most augmentations either reduced
accuracy or resulted in only a marginal improvement of 1%. The baseline classification
accuracy of InceptionTime model was increased by almost all the data augmentations.

The plot analysis revealed that for FCN and InceptionTime models, almost all the data
augmentation methods increased the baseline classification accuracy. However, for ResNet
and CNN-LSTM models, most augmentations had a negative impact on the classifica-
tion accuracy. Likely, the architecture of FCN and InceptionTime models allowed them to
adapt more effectively to specific augmentation methods, thereby enhancing their overall
classification accuracy and robustness.
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The results of the second stage of the study showed that FCN model trained with aug-
mented data classified CB load and defect states with an accuracy of 92.6% ± 1.54%.
This model was comparable to ResNet and InceptionTime models in terms of classi-
fication accuracy, but FCN model was trained much faster due to its small number of
trainable parameters. ResNet model achieved an accuracy of 92.1% ± 1.47% with data
augmented by drifted Gaussian noise, while InceptionTime model achieved its best result
of 92.5% ± 0.71% with data augmented by random Laplace and uniform noise. CNN-
LSTM model achieved its highest accuracy of 75.7% ± 0.88% when trained with signals
generated by TimeVAE model. The best accuracy results of FCN, ResNet, and Inception-
Time models were very similar and differed only slightly, but the accuracy of CNN-LSTM
model was much worse.

4. Conclusion

In this research, we examined existing DL algorithms and DNN architectures for classi-
fying CB states. In addition, various time series data augmentation methods applicable to
CB tension signals were examined.

The study successfully developed and evaluated several DNN models for the classi-
fication of CB load and defect states using tension signals, specifically based on FCN,
ResNet, InceptionTime, and CNN-LSTM architectures. FCN model was able to classify
CB states with an accuracy of 92.6% ± 1.54%, making it the most accurate of the stud-
ied models. ResNet and InceptionTime models also performed well, with accuracies of
92.1% ± 1.47% and 92.5% ± 0.71%, respectively. CNN-LSTM model demonstrated the
worst results, with a maximum accuracy of 75.7% ± 0.88% only.

The impact of various data augmentation methods on classification accuracy was also
analysed. The combined addition of Laplace and drifted Gaussian noise increased the
baseline (without any augmentation) accuracy of FCN model by 4.5% to 92.6%±1.54%.
Adding Laplace and uniform noise increased the accuracy of InceptionTime model by
3.4% to 92.5% ± 0.71%. The classification accuracy of CNN-LSTM model trained with
signals generated by TimeVAE increased by 11.4% to 75.7%±0.88%, but it still remained
much lower than that of other models. The baseline accuracy of ResNet model increased
by 1% only to 92.1% ± 1.47% after training with drifted Gaussian noise augmented data.

These results underline the effectiveness of applying data augmentations to small CB
tension signal datasets, enhancing the classification accuracy of models based on FCN and
InceptionTime architectures. In classifying CB states, FCN-based model showed higher
accuracy and speed compared to other models, despite having the lowest amount of train-
able parameters. Successful application of FCN model demonstrated the importance of
selecting and optimizing the right architecture for specific data and classification tasks.

CB status classification under fixed loads and rotation speed could be considered as a
limitation of this study. A set of fixed parameters does not reflect real world conditions and
future investigations should be based on random CB status classification on unseen exper-
iment parameters. Empirical model parameters selection method can be also considered
a limitation of this study.
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Further research on CB state classification could aim to improve accuracy in classify-
ing weights of similar mass (1 kg, 2 kg, 3 kg). Additionally, future research could explore
advanced generative data augmentation techniques, for example, those utilizing GANs or
other VAE architectures to enhance the quality of CB tension signal data.
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