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Abstract. This paper presents a multiple-criteria choice model, the circular intuitionistic fuzzy
(C-IF) ELECTRE, designed to resolve C-IF ambiguities through built-in circular functions. Joint
generalized scoring functions establish contrast relationships between C-IF evaluation values, facil-
itating concordance and discordance analyses for option ranking. The efficacy of C-IF ELECTRE I
and II—leveraging tools such as the prioritization Boolean matrix, average outflows and inflows,
and overall net flow—is validated through a multi-expert supplier evaluation, with outcomes bench-
marked against alternative methods. A comparative analysis explores the impact of parameter vari-
ations, underscoring how integrating C-IF sets with ELECTRE enhances decision-making in com-
plex, multifaceted environments.
Key words: multiple-criteria choice model, circular intuitionistic fuzzy (C-IF), ELECTRE, joint
generalized scoring function, comparative analysis.

1. Introduction

Multiple-criteria analysis is crucial for addressing decision-making challenges in prac-
tical scenarios (Chen, 2024; Liu, 2024). In the ELECTRE (i.e. ÉLimination Et Choix
Traduisant la REalité in French) framework, evaluative criteria serve as standards to as-
sess and prioritize options based on their performance (Akram et al., 2023a, 2023b). How-
ever, uncertainty can disrupt the ELECTRE process, leading to inaccurate assessments,
inconsistent decisions, and suboptimal choices, undermining decision-makers’ confidence
(Ramya et al., 2023; Wu et al., 2023). Insufficient or unreliable data may introduce biases,
distort rankings, and increase subjective judgments, compromising reliability (Liu et al.,
2023; Yüksel and Dinçer, 2023). This heightened risk complicates the appraisal of op-
tions and limits the efficacy of ELECTRE-based analysis (Zhang et al., 2023; Zhou et al.,
2022).

To meet the demands of uncertain environments, researchers have expanded the
ELECTRE methodology to various fuzzy scenarios. Beyond conventional fuzzy models,
recent efforts have focused on higher-order fuzzy frameworks. Akram et al. (2023b) intro-
duced the fuzzy ELECTRE IV method using triangular fuzzy numbers for imprecise data.
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Wu et al. (2023) developed a triadic decision model combining ELECTRE III with at-
tribute ratio evaluation in a spherical fuzzy setting for customer selection. Wang and Chen
(2021) used T-spherical fuzzy score functions and Minkowski distance-dependent indices
to design T-spherical fuzzy ELECTRE I and II methods. Yüksel and Dinçer (2023) evalu-
ated sustainability in circular industrialization using quantum spherical fuzzy ELECTRE.
Zhang et al. (2023) created an ELECTRE II method with cosine similarity measures to as-
sess financial logistics firms’ efficiency using double hierarchy hesitant fuzzy information.
Ramya et al. (2023) proposed a disposal technique selection framework for e-waste using
ELECTRE III with wiggly hesitant Pythagorean fuzzy sets. Zhou et al. (2022) developed a
Fermatean fuzzy ELECTRE method using Jensen-Shannon divergence and cross-entropy
to handle uncertain decision-maker and criteria weights. Akram et al. (2023a) investigated
a 2-tuple linguistic Fermatean fuzzy ELECTRE II for group decision-making with linguis-
tic variables. Pinar and Boran (2022) introduced a q-rung picture fuzzy ELECTRE model,
integrating the technique for order preference by similarity to ideal solutions (TOPSIS) for
group decision analysis. These advancements are a result of continuous work to improve
the applicability and efficacy of ELECTRE-based strategies for tackling challenging and
ambiguous decision-making situations.

Applying fuzzy extensions of the ELECTRE-based outranking methodology to multi-
criteria analysis enhances decision-making, particularly in uncertain environments. These
approaches incorporate fuzzy logic to handle uncertainty, offering deeper insights for
decision-makers. However, advancements specifically tailored to the emerging circu-
lar intuitionistic fuzzy (C-IF) sets remain limited. Intuitionistic fuzzy (IF) sets, intro-
duced by Atanassov (1986), include degrees of hesitancy alongside membership and non-
membership, addressing vagueness more effectively than conventional fuzzy sets (Chen,
2024; Liu, 2024). Their integration with various tools enables more precise handling of
uncertain information (Liu et al., 2023). Atanassov later extended IF sets into C-IF sets,
which represent circles with radii encompassing membership and non-membership com-
ponents (Atanassov, 2020; Çakır and Taş, 2023). C-IF sets have demonstrated versatility
across realistic applications (Alinejad et al., 2024; Ci, 2024; Kong, 2024) and hold promise
for future advancements in ELECTRE-based methods.

C-IF sets offer greater flexibility by integrating membership, hesitancy, and non-
membership components (Ci, 2024; Jameel et al., 2024). Represented by circular shapes,
they capture multiple qualities or attributes, with the circular function enhancing their ex-
pressiveness in a triangular distribution space (Kong, 2024; Pratama et al., 2024). When
the circle’s radius is set to zero, C-IF sets revert to standard IF sets. C-IF sets excel in han-
dling uncertain, imprecise information, making them suitable for diverse decision-making
tasks (Alinejad et al., 2024; Chen, 2023a). Applications include decision assistance and
support (Chen, 2023b, 2024), supplier evaluation and selection (Çakır and Taş, 2023;
Chen, 2024), sustainable renewable energy management (Jameel et al., 2024), biomass
resource strategies (Alinejad et al., 2024), food supply chain monitoring (Alsattar et al.,
2024), pattern recognition and medical diagnosis (Khan et al., 2022), and public health
risk assessments (Kong, 2024). These examples underscore the adaptability and utility of
C-IF sets for addressing uncertainty in practical applications across various domains.
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The versatility of C-IF sets makes them valuable for decision-making; however, effec-
tive analysis requires reliable methods to interpret and manipulate uncertain information
(Pinar and Boran, 2022; Zhang et al., 2023). Chen (2023b) formulated two generalized
C-IF distance metrics – three-term and four-term Minkowski-like measures – designed
to handle imperfect information. The four-term approach accounts for radius, member-
ship, non-membership, and hesitancy, offering a complete representation of C-IF num-
bers. In contrast, the three-term model excludes hesitancy. This study adopts the four-term
model for its comprehensive nature, providing a solid foundation for developing a C-IF
ELECTRE approach to better address research objectives.

C-IF sets are highly effective for managing complex and ambiguous information. How-
ever, there remains a significant gap in developing ELECTRE-based methods tailored for
C-IF decision environments. While existing ELECTRE approaches have shown success
in handling uncertainty across various fuzzy frameworks – including spherical fuzzy (Wu
et al., 2023), T-spherical fuzzy (Wang and Chen, 2021), quantum spherical fuzzy (Yüksel
and Dinçer, 2023), double hierarchy hesitant fuzzy (Zhang et al., 2023), normal wiggly
Pythagorean hesitant fuzzy (Ramya et al., 2023), Fermatean fuzzy (Zhou et al., 2022),
2-tuple linguistic Fermatean fuzzy (Akram et al., 2023a), and q-rung picture fuzzy (Pinar
and Boran, 2022) – their application within C-IF contexts remains limited. This study
addresses this gap with the following motivations:

(1) Uncertainty Challenges: Current ELECTRE-based approaches struggle with complex
uncertainties, highlighting the need for more robust and enhanced methods.

(2) Limited C-IF Applications: Despite progress in C-IF methods, there has been little in-
tegration of ELECTRE in C-IF multiple-criteria analysis, highlighting a key research
gap.

(3) Distance Measurement Importance: Accurate measurement of C-IF distances
is crucial for distinguishing complex information. This study adopts the four-
term Minkowski-like distance model for its completeness in developing the C-IF
ELECTRE approach.

This research aims to develop the C-IF ELECTRE, a multiple-criteria decision model
for discrete decisions involving conflicting or incomparable criteria. It integrates circu-
lar intuitionistic fuzziness with a joint generalized scoring function, based on Hezam et
al.’s (2023) natural exponential function, to address uncertainty. The concepts of aggres-
sive and cautious IF estimates (inspired by Chen, 2023a) are employed to provide up-
per and lower estimations within the C-IF context, with several theorems outlining their
properties and relationships. The C-IF ELECTRE approach involves establishing concor-
dance and discordance sets to determine when one alternative is superior, equal, or infe-
rior to another. C-IF ELECTRE I uses consistency and inconsistency indicators to build a
dominance graph for partial-priority rankings. C-IF ELECTRE II introduces consistency-
dependent outflow, inconsistency-dependent inflow, and net flow values for complete-
priority rankings. Applied to supplier evaluations, the method aligns with comparative
results and highlights the impact of parameter settings, such as distance and divergence
measures, on ranking outcomes.

This study offers key advancements in ELECTRE-based decision-making:
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(1) Joint Generalized Scoring Function: Introduces an inclination parameter to capture
the decision-maker’s aggressive, neutral, or cautious tendencies, integrating these at-
titudes into assessments.

(2) C-IF ELECTRE Framework: Develops a practical model tailored for C-IF contexts
with step-by-step algorithms for defining problems, calculating scores, measuring
consistency/inconsistency, and generating rankings.

(3) C-IF ELECTRE I and II Techniques: Combines C-IF sets with ELECTRE to man-
age complex multi-criteria decisions, validated through multi-expert supplier assess-
ments, producing reliable, consistent rankings aligned with comparative methods.

This article is structured as follows: Section 1 highlights research motivations and the
need for innovations in ELECTRE-based methodologies for C-IF contexts. Section 2 cov-
ers fundamental mathematical notations for IF and C-IF configurations. Section 3 devel-
ops a joint generalized scoring function to address C-IF uncertainty. Section 4 introduces
the C-IF ELECTRE model for complex decision-making in uncertain contexts. Section 5
demonstrates the application of C-IF ELECTRE I and II techniques through a multi-expert
supplier evaluation case. Section 6 analyses the impact of inclination parameter settings
on results, highlighting the approach’s advantages. Section 7 provides conclusions and
suggests directions for future research.

2. Foundational Concepts Related to C-IF Sets

Definition 1 (Atanassov, 1986). Assume ℵ is a nonempty set of elements. Let uI (χ)

and vI (χ) be functions mapping ℵ to [0, 1], representing the degree to which an element
χ ∈ ℵ belongs to or does not belong to an IF set I , respectively, subject to 0 � uI (χ) +
vI (χ) � 1. The IF set I within ℵ is defined as:

I = {〈
χ, uI (χ), vI (χ)

〉∣∣χ ∈ ℵ}
. (1)

Definition 2 (Hezam et al., 2023). Let i(χ) = (uI (χ), vI (χ)) represent an IF number
within the IF set I . The degree of hesitancy is given by hI (χ) = 1 − uI (χ) − vI (χ). The
scoring mechanism for i(χ) uses a natural exponential function with Euler’s number e as:

M
(
i(χ)

) = 1

2

[
uI (χ) − vI (χ) + hI (χ) ·

(
e(uI (χ)−vI (χ))

e(uI (χ)−vI (χ)) + 1
− 1

2

)
+ 1

]
. (2)

Definition 3 (Atanassov, 2020). Let L∗ represent an L-fuzzy set, defined as L∗ =
{〈ℓ, ℓ′〉|ℓ, ℓ′ ∈ [0, 1] and ℓ + ℓ′ � 1}. The membership degree uC(χ) : ℵ −→ [0, 1]
and non-membership degree vC(χ) : ℵ −→ [0, 1] capture the extent to which χ ∈ ℵ be-
longs to or does not belong to a C-IF set C. These degrees satisfy 0 � uC(χ)+vC(χ) � 1.
The degree of hesitancy is calculated as: hC(χ) = 1 − uC(χ) − vC(χ). The built-in cir-
cular function Or has a radius rC(χ) : ℵ −→ [0,

√
2] with the centre at (uC(χ), vC(χ)).

A C-IF number is represented as c(χ) = (uC(χ), vC(χ); rC(χ)). The C-IF set C and its
circular function Or within the domain ℵ are structured as follows:
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Fig. 1. The visualization of the relationship between standard IF and C-IF constructs.

C = {〈
χ, uC(χ), vC(χ); rC(χ)

〉∣∣χ ∈ ℵ} = {〈
χ,Or

(
uC(χ), vC(χ)

)〉∣∣χ ∈ ℵ}
, (3)

Or

(
uC(χ), vC(χ)

)
=

{〈
ℓ, ℓ′〉∣∣ℓ, ℓ′ ∈ [0, 1] and

√(
uC(χ) − ℓ

)2 + (
vC(χ) − ℓ′)2 � rC(χ)

}
∩ L∗.

(4)

A standard fuzzy set describes membership, while an IF set adds flexibility by allowing
for hesitation between membership and non-membership. Building on this, the C-IF set in-
troduces a circular structure, capturing more complex, ambiguous characteristics. Unlike
IF sets, C-IF sets represent uncertainty more precisely using their circular form. Figure 1
compares IF and C-IF sets within a triangular space defined by the vertices (0, 0), (1, 1),
and (0, 1), illustrating their overlap and differences. In this space, the C-IF number c(χ)

is represented by the centre (uC(χ), vC(χ)) and radius rC(χ) of the circular function Or ,
while the IF number i(χ) corresponds to the point (uI (χ), vI (χ)). Figure 1 shows five
ways to depictOr , demonstrating how it constrains Or (uC(χ), vC(χ)) within the L-fuzzy
setL∗. When the radius rC(χ) = 0 for all elements in the domain ℵ, the C-IF set C reduces
to an IF set I , and the C-IF number c(χ) becomes equivalent to the IF number i(χ).

Chen (2023b) introduced two generalized C-IF distance metrics to overcome the lim-
itations of traditional measures and improve adaptability. These metrics use triadic and
quadripartite representations of C-IF Minkowski-like distances. The triadic model in-
cludes radius, membership, and non-membership, while the quadripartite version adds
hesitancy, providing a more comprehensive assessment of C-IF dimensionality.

Definition 4 (Chen, 2023b). Consider two C-IF numbers, c(χ) = (uC(χ), vC(χ); rC(χ))

and c(χ ′) = (uC(χ ′), vC(χ ′); rC(χ ′)). A positive integer ξ ∈ Z+ serves as the metric
parameter. The C-IF Minkowski-like distance between them is defined using three-term
and four-term strategies as follows:

D
ξ

M0

(
c(χ), c

(
χ ′))

= 1

2

(
1√
2

∣∣rC(χ) − rC
(
χ ′)∣∣ + ξ

√
1

2

(∣∣uC(χ) − uC

(
χ ′)∣∣ξ + ∣∣vC(χ) − vC

(
χ ′)∣∣ξ )),

(5)
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D
ξ

M

(
c(χ), c

(
χ ′)) = 1

2

(
1√
2

∣∣rC(χ) − rC
(
χ ′)∣∣

+ ξ

√
1

2

(∣∣uC(χ) − uC

(
χ ′)∣∣ξ + ∣∣vC(χ) − vC

(
χ ′)∣∣ξ + ∣∣hC(χ) − hC

(
χ ′)∣∣ξ )). (6)

These distance measures quantify the dissimilarity between C-IF numbers, varying
by approach (three-term or four-term) and the chosen metric parameter ξ . The triadic
model omits hesitancy, while the quaternary model offers a more exhaustive representa-
tion. This research adopts the four-term Minkowski-like distance as the foundation for the
C-IF ELECTRE methodology due to its comprehensive coverage of all relevant dimen-
sions, ensuring alignment with the study’s objectives.

3. Joint Generalized Scoring Function

This section aims to develop a joint generalized scoring function that addresses the
C-IF uncertainty. Utilizing a natural exponential-based scoring mechanism (Hezam et al.,
2023), it effectively handles IF scenarios. Building on Chen’s (2023a) concepts of aggres-
sive and conservative estimates, this section introduces practical notions of aggressive and
cautious IF estimates. It also explores their fundamental properties, highlighting their role
in representing upper and lower bounds within C-IF information.

Definition 5. For a C-IF number c(χ) = (uC(χ), vC(χ); rC(χ)), its aggressive IF esti-
mate iαc (χ) and cautious IF estimate i

β
c (χ) are defined as follows:

iαc (χ) = (
uα

I (χ), vα
I (χ)

) =
(

min

{
1, uC(χ) + rC(χ)√

2

}
, max

{
0, vC(χ) − rC(χ)√

2

})
,

(7)

iβc (χ) = (
u

β
I (χ), v

β
I (χ)

) =
(

max

{
0, uC(χ) − rC(χ)√

2

}
, min

{
1, vC(χ) + rC(χ)√

2

})
.

(8)

Theorem 1. For a C-IF number c(χ), the aggressive IF estimate iαc (χ) = (uα
I (χ), vα

I (χ))

and cautious IF estimate i
β
c (χ) = (u

β
I (χ), v

β
I (χ)) follow a quasi-ordering relationship:

iαc (χ) �Q i
β
c (χ). When defined as iαc (χ) = (

uC(χ) + rC(χ)/
√

2, vC(χ) − rC(χ)/
√

2
)

and i
β
c (χ) = (

uC(χ) − rC(χ)/
√

2, vC(χ) + rC(χ)/
√

2
)
, both estimates exhibit equal

hesitancy: hα
I (χ) = h

β
I (χ).

Proof. The conditions for iαc (χ) �Q i
β
c (χ) are uα

I (χ) � u
β
I (χ) and vα

I (χ) � v
β
I (χ)

for each χ ∈ ℵ. From Eqs. (7) and (8), it follows that min{1, uC(χ) + rC(χ)/
√

2} �
max{0, uC(χ) − rC(χ)/

√
2}, leading to uα

I (χ) � u
β
I (χ). Since max{0, vC(χ) −

rC(χ)/
√

2} � min{1, vC(χ) + rC(χ)/
√

2}, it follows that vα
I (χ) � v

β
I (χ). It is es-

tablished that iαc (χ) �Q i
β
c (χ) if and only if uα

I (χ) � u
β
I (χ) and vα

I (χ) � v
β
I (χ).
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Given iαc (χ) = (uC(χ) + rC(χ)/
√

2, vC(χ) − rC(χ)/
√

2) and i
β
c (χ) = (uC(χ) −

rC(χ)/
√

2, vC(χ) + rC(χ)/
√

2), the degrees of hesitancy are: hα
I (χ) = 1 − uC(χ) −

rC(χ)/
√

2−vC(χ)+rC(χ)/
√

2 = 1−uC(χ)−vC(χ) and h
β
I (χ) = 1−uC(χ)−vC(χ).

Thus, iαc (χ) and i
β
c (χ) have the same degrees of hesitancy.

Theorem 2. The scoring mechanisms M(iαc (χ)) and M(i
β
c (χ)) exhibit the fundamental

properties: (1) 0 � M(iαc (χ)) � 1 and 0 � M(i
β
c (χ)) � 1; (2) M(iαc (χ)) = 1 and

M(i
β
c (χ)) = 1 if iαc (χ) = (1, 0) and i

β
c (χ) = (1, 0), respectively; and (3) M(iαc (χ)) = 0

and M(i
β
c (χ)) = 0 if iαc (χ) = (0, 1) and i

β
c (χ) = (0, 1), respectively.

Proof. Applying Eq. (2), the scoring mechanisms M(iαc (χ)) and M(i
β
c (χ)) are estab-

lished:

M
(
iαc (χ)

) = 1

2

[(
uα

I (χ) − vα
I (χ)

) + hα
I (χ) ·

(
e(uα

I (χ)−vα
I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
− 1

2

)
+ 1

]
,

M
(
iβc (χ)

) = 1

2

[(
u

β
I (χ) − v

β
I (χ)

) + h
β
I (χ) ·

(
e(u

β
I (χ)−v

β
I (χ))

e(u
β
I (χ)−v

β
I (χ)) + 1

− 1

2

)
+ 1

]
.

Given the property in (1), the aggressive IF estimate iαc (χ) satisfies uα
I (χ) + vα

I (χ) +
hα

I (χ) = 1, where uα
I (χ), vα

I (χ), and hα
I (χ) are constrained to the interval [0, 1]. The

scoring mechanism uses the natural exponential function. Since 0 � uα
I (χ)− vα

I (χ) � 1,
we have 0 < e(uα

I (χ)−vα
I (χ)) � e1 ≈ 2.71828. This leads to the following outcomes:

0 <
e(uα

I (χ)−vα
I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
� e

e + 1
,

− 1

2
<

e(uα
I (χ)−vα

I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
− 1

2
� e

e + 1
− 1

2
= e − 1

2e + 2
= 0.2311.

Aa a result, it is known that M(iαc (χ)) � 1, because:

uα
I (χ) − vα

I (χ) + hα
I (χ) ·

(
e(uα

I (χ)−vα
I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
− 1

2

)
� uα

I (χ) + vα
I (χ) + hα

I (χ) � 1,

1

2

[(
uα

I (χ) − vα
I (χ)

) + hα
I (χ) ·

(
e(uα

I (χ)−vα
I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
− 1

2

)
+ 1

]
� 1

2
(1 + 1) = 1.

On the other hand, it is inferred that M(iαc (χ)) � 0, because:

uα
I (χ) − vα

I (χ) + hα
I (χ) ·

(
e(uα

I (χ)−vα
I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
− 1

2

)
+ uα

I (χ) + vα
I (χ) + hα

I (χ)

= 2uα
I (χ) + hα

I (χ) ·
(

e(uα
I (χ)−vα

I (χ))

e(uα
I (χ)−vα

I (χ)) + 1
− 1

2
+ 1

)

> 2uα
I (χ) + hα

I (χ)

(
−1

2
+ 1

)
� 0.
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It follows that 0 � M(iαc (χ)) � 1 and 0 � M(i
β
c (χ)) � 1. According to property (2),

M(iαc (χ)) = 1 and M(i
β
c (χ)) = 1 if iαc (χ) = (1, 0) and i

β
c (χ) = (1, 0), respectively. In

these cases, both aggressive and cautious IF estimates yield a score of 1. For property (3),
M(iαc (χ)) = 0 and M(i

β
c (χ)) = 0 if iαc (χ) = (0, 1) and i

β
c (χ) = (0, 1). Here, both IF

numbers yielding (0, 1) lead to a score of 0.

Theorem 3. For the aggressive and cautious IF estimates iαc (χ) and i
β
c (χ), the scoring

mechanisms satisfy the inequality M(iαc (χ)) � M(i
β
c (χ)) for each χ ∈ ℵ.

Proof. Consider the scoring mechanism M(i(χ)) for an IF number i(χ) = (uI (χ), vI (χ))

in Eq. (2). Expanding the formula of M(i(χ)), the following representation is yielded:

M
(
i(χ)

) = 1

2
+ 1

2
uI (χ) − 1

2
vI (χ) − 1

4
hI (χ) + 1

2
hI (χ) ·

(
e(uI (χ)−vI (χ))

e(uI (χ)−vI (χ)) + 1

)
.

To find the first partial derivative of M(i(χ)) in terms of uI (χ), we treat vI (χ) and hI (χ)

as constants. The derivatives of the first four terms with respect to uI (χ) are 0, 0.5, 0,
and 0, respectively. For the fifth term, which has uI (χ) in the exponent, we apply the
chain rule. To simplify this process, we introduce a new function:

H
(
i(χ)

) = e(uI (χ)−vI (χ))

e(uI (χ)−vI (χ)) + 1
.

Applying the quotient rule, the following outcome can be generated:

dH(i(χ))

duI (χ)
= (e(uI (χ)−vI (χ)) + 1) · e(uI (χ)−vI (χ)) − e(uI (χ)−vI (χ)) · e(uI (χ)−vI (χ))

(e(uI (χ)−vI (χ)) + 1)2

= e(uI (χ)−vI (χ))

(e(uI (χ)−vI (χ)) + 1)2
.

The first partial derivative of M(i(χ)) regarding uI (χ) can be obtained:

∂M(i(χ))

∂uI (χ)
= 1

2
+ 1

2
hI (χ)

e(uI (χ)−vI (χ))

(e(uI (χ)−vI (χ)) + 1)2
� 0.

Since the partial derivative ∂M(i(χ))/∂uI (χ) is non-negative, the scoring mechanism
M(i(χ)) is non-decreasing with respect to uI (χ) when vI (χ) and hI (χ) are held constant.
Similarly, to find the first partial derivative of M(i(χ)) in terms of vI (χ), we differentiate
the expression while treating uI (χ) and hI (χ) as constants. The result of differentiating
the function H(i(χ)) with respect to vI (χ) is as follows:

dH(i(χ))

dvI (χ)
= (e(uI (χ)−vI (χ)) + 1) · (−e(uI (χ)−vI (χ))) − e(uI (χ)−vI (χ)) · (−e(uI (χ)−vI (χ)))

(e(uI (χ)−vI (χ)) + 1)2

= −e(uI (χ)−vI (χ))

(e(uI (χ)−vI (χ)) + 1)2
.
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The first partial derivative of M(i(χ)) concerning vI (χ) is generated:

∂M(i(χ))

∂vI (χ)
= −1

2
− 1

2
hI (χ)

e(uI (χ)−vI (χ))

(e(uI (χ)−vI (χ)) + 1)2
� 0.

Thus, one can conclude that the scoring mechanism M(i(χ)) is non-increasing in relation
to vI (χ) when u(χ) and hI (χ) are fixed. As established in Theorem 1, the aggressive
and cautious IF estimates have a quasi-ordering relationship: iαc (χ) �Q i

β
c (χ), leading to

uα
I (χ) � u

β
I (χ) and vα

I (χ) � v
β
I (χ). Given that M(i(χ)) is non-decreasing in uI (χ) and

non-increasing in vI (χ), it can be deduced that M(iαc (χ)) � M(i
β
c (χ)).

Definition 6. Consider c(χ) = (uC(χ), vC(χ); rC(χ)) as a C-IF number within the
C-IF set C. Let ϕ be an inclination parameter ranging from 0 to 1. The joint generalized
scoring function for c(χ), denoted as Sϕ(c(χ)), is formulated as follows:

Sϕ
(
c(χ)

) = ϕ · M
(
iαc (χ)

) + (1 − ϕ) · M
(
iβc (χ)

)
. (9)

Theorem 4. The following characteristics are fulfilled by the joint generalized scor-
ing function Sϕ(c(χ)) (ϕ ∈ [0, 1]) of a C-IF number c(χ): (1) 0 � Sϕ(c(χ)) � 1;
(2) Sϕ(c(χ)) = M(iαc (χ)) when ϕ = 1; and (3) Sϕ(c(χ)) = M(i

β
c (χ)) when ϕ = 0.

Proof. From Definition 6, the inclination parameter ϕ ranges from 0 to 1. As per Theo-
rem 2, the scoring mechanisms for iαc (χ) and i

β
c (χ) are also bounded between 0 and 1.

Given properties 0 � ϕ � 1, 0 � M(iαc (χ)) � 1, and 0 � M(i
β
c (χ)) � 1, we conclude

that 0 � Sϕ(c(χ)) � 1. For properties (2) and (3), the equations Sϕ(c(χ)) = M(iαc (χ))

and Sϕ(c(χ)) = M(i
β
c (χ)) follow from the cases where ϕ = 1 and ϕ = 0, respec-

tively.

When the inclination parameter ϕ exceeds 0.5, it indicates that the decision-maker
places greater importance on the aggressive IF estimate, reflecting an aggressive stance.
Conversely, if ϕ is less than 0.5, the decision-maker favours the cautious IF estimate,
demonstrating a cautious attitude. When ϕ equals 0.5, both aggressive and cautious per-
spectives are given equal weight, reflecting a neutral disposition.

The inclination parameter ϕ in the joint generalized scoring function Sϕ(c(χ)) rep-
resents the decision-maker’s psychological predisposition toward aggressive, neutral, or
cautious attitudes. Assigning a specific value to ϕ reflects the decision-maker’s personal
tendencies or preferences. Within Sϕ(c(χ)), ϕ indicates a neutral tendency or preference
for either aggressive or cautious outcomes.

4. Proposed C-IF ELECTRE Approach

This section introduces the C-IF ELECTRE decision-making model, designed to address
complex discrete choice situations with multiple, incommensurable, and contradictory
criteria. Proposed within the C-IF uncertain context, this model offers a novel approach
for tackling these intricate decision-making challenges.
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4.1. Suggested Methodology

From a mathematical perspective, a multiple-criteria choice problem involves a set of m

choice options, signified as O = {O1,O2, . . . , Om}, and a set of n evaluative criteria,
denoted as E = {E1, E2, . . . , En}. The decision-maker can distinguish between two sub-
sets of evaluative criteria: EB , which includes beneficial criteria to be maximized, and
EN , which includes non-beneficial criteria to be minimized. These subsets are mutually
exclusive (EB ∩EN = ∅) and together comprise the entire set of criteria (EB ∪EN = E).

The significance of a criterion Ej ∈ E is represented by its C-IF weight wj = (ωj ,


j ; rj ), where ωj ∈ [0, 1] and 
j ∈ [0, 1] indicate the degree of membership and non-
membership of Ej in the fuzzy concept of “importance.” The radius rj ∈ [0,

√
2] reflects

the extent of uncertainty within the circular structure. The degree of hesitancy is given by
ℏj = 1 −ωj −
j . A C-IF set W represents the weight characteristic, defined as follows:

W = {〈Ej , ωj ,
j ; rj 〉
∣∣Ej ∈ E

} = {〈
Ej ,Or (ωj ,
j )

〉∣∣Ej ∈ E
}
, (10)

Or (ωj ,
j )

=
{〈

ℓ, ℓ′〉∣∣ℓ, ℓ′ ∈ [0, 1],
√

(ωj − ℓ)2 + (

j − ℓ′)2 � rj , and ℓ + ℓ′ � 1

}
. (11)

The C-IF evaluation value of a choice option Ok (where k = 1, 2, . . . , m) assessed by
an evaluative criterion Ej (where j = 1, 2, . . . , n) is represented as ckj = (ukj , vkj ; rkj ).
The hesitation is calculated using the formula hkj = 1−ukj −vkj . The fuzzy characteristic
associated with each choice option Ok ∈ O is represented on this wise:

Ck = {〈Ej , ukj , vkj ; rkj 〉
∣∣Ej ∈ E

} = {〈
Ej ,Or (ukj , vkj )

〉∣∣Ej ∈ E
}
, (12)

Or (ukj , vkj )

=
{〈

ℓ, ℓ′〉∣∣ℓ, ℓ′ ∈ [0, 1],
√

(ukj − ℓ)2 + (
vkj − ℓ′)2 � rkj , and ℓ + ℓ′ � 1

}
.

(13)

Based on Definition 5, the aggressive IF estimate iαkj = (uα
kj , v

α
kj ) and cautious IF

estimate i
β
kj = (u

β
kj , v

β
kj ) related to the C-IF evaluation value ckj are calculated using the

formulas: iαkj = (min{1, ukj + rkj /
√

2}, max{0, vkj − rkj /
√

2}) and i
β
kj = (max{0, ukj −

rkj /
√

2}, min{1, vkj +rkj /
√

2}). The degrees of hesitancy are given by: hα
kj = 1−uα

kj −vα
kj

and h
β
kj = 1 − u

β
kj − v

β
kj . As per Definition 2, the natural exponential function-based

scoring mechanisms for iαkj and i
β
kj are defined as: M(iαkj ) = (1/2) · {(uα

kj − vα
kj ) + hα

kj ·
[e(uα

kj −vα
kj )

/(e
(uα

kj −vα
kj ) + 1) − (1/2)] + 1} and M(i

β
kj ) = (1/2) · {(uβ

kj − v
β
kj ) + hα

kj ·
[e(u

β
kj −v

β
kj )

/(e
(u

β
kj −v

β
kj ) +1)−(1/2)]+1}. Utilizing these results and setting the inclination

parameter ϕ, the joint generalized scoring function is generated as: Sϕ(ckj ) = ϕ ·M(iαkj )+
(1 − ϕ) · M(i

β
kj ). This scoring function will be used to establish the sets of concordance

and discordance for all pairs of choice options.
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Definition 7. The contrast relationship between the C-IF evaluation values ckj =
(ukj , vkj ; rkj ) and clj = (ulj , vlj ; rlj ) for choice options Ok and Ol assessed by Ej can
be identified using the joint generalized scoring function-based relations: “�S” (more ad-
vantageous than), “∼S” (indifferent), and “≺S” (more disadvantaged than), as follows:

1. For Ej ∈ EB : (a) If Sϕ(ckj ) > Sϕ(clj ), then ckj �S clj ; (b) If Sϕ(ckj ) = Sϕ(clj ), then
ckj ∼S clj ; and (c) If Sϕ(ckj ) < Sϕ(clj ), then ckj ≺S clj .

2. For Ej ∈ EN : (a) If Sϕ(ckj ) < Sϕ(clj ), then ckj �S clj ; (b) If Sϕ(ckj ) = Sϕ(clj ), then
ckj ∼S clj ; and (c) If Sϕ(ckj ) > Sϕ(clj ), then ckj ≺S clj .

Definition 8. The concordance set Cϕ(Ok/Ol) and the discordance set Dϕ(Ok/Ol) for
the case where choice option Ok outperforms Ol (Ok,Ol ∈ O and k �= l) can be defined
using the joint generalized scoring function-based relations in Definition 7, as seen below:

C
ϕ(Ok/Ol) = {

Ej

∣∣ckj �S clj for Ej ∈ E
}

= {
Ej

∣∣(Sϕ(ckj ) � Sϕ(clj ) fo rEj ∈ EB

)
,
(
Sϕ(ckj ) � Sϕ(clj ) for Ej ∈ EN

)}
,

(14)

D
ϕ(Ok/Ol) = {

Ej

∣∣ckj ≺S clj for Ej ∈ E
}

= {
Ej

∣∣(Sϕ(ckj ) < Sϕ(clj ) for Ej ∈ EB

)
,
(
Sϕ(ckj ) > Sϕ(clj ) for Ej ∈ EN

)}
.

(15)

Theorem 5. The concordance set C
ϕ(Ok/Ol) and the discordance set D

ϕ(Ok/Ol)

satisfy the following characteristics in a fixed setting of the inclination parameter ϕ:
(1)Cϕ(Ok/Ol)∩Dϕ(Ok/Ol) = ∅; (2)Cϕ(Ok/Ol)∪Dϕ(Ok/Ol) = E; (3)Cϕ(Ok/Ol) =
E\Dϕ(Ok/Ol); and (4) Cϕ(Ok/Ol) = D

ϕ(Ol/Ok) when Sϕ(ckj ) �= Sϕ(clj ) for Ej ∈ E.

Proof. Properties (1) to (3) are trivially valid. Property (1) states that Cϕ(Ok/Ol) and
D

ϕ(Ok/Ol) do not share any common criteria. Property (2) indicates that the union of
C

ϕ(Ok/Ol) and D
ϕ(Ok/Ol) includes all criteria in the set E. Property (3) clarifies that

C
ϕ(Ok/Ol) contains all criteria in E except those in D

ϕ(Ok/Ol). When Sϕ(ckj ) �=
Sϕ(clj ), property (4) determines that Cϕ(Ok/Ol) = {Ej |(Sϕ(ckj ) > Sϕ(clj ) for Ej ∈
EB), (Sϕ(ckj ) < Sϕ(clj ) for Ej ∈ EN)}. Conversely, it is known that Dϕ(Ol/Ok) =
{Ej |(Sϕ(clj ) < Sϕ(ckj ) for Ej ∈ EB), (Sϕ(clj ) > Sϕ(ckj ) for Ej ∈ EN)}. Therefore, it
is concluded that Cϕ(Ok/Ol) = D

ϕ(Ol/Ok).

This study employs the joint generalized scoring function with W to define consistency
indicators between choice pairs. Given the C-IF weight wj = (ωj ,
j ; rj ), the aggressive
and cautious IF estimates are: iαWj = (ωα

j ,
α
j ) = (min{1, ωj + rj /

√
2}, max{0,
j −

rj /
√

2}) and i
β
Wj = (ω

β
j ,


β
j ) = (max{0, ωj − rj /

√
2}, min{1,
j + rj /

√
2}). The

hesitancy degrees are: ℏα
j = 1 − ωα

j − 
α
j and ℏ

β
j = 1 − ω

β
j − 


β
j . Using Definition 2,
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the scoring mechanisms for iαWj and i
β
Wj are based on the natural exponential function:

M
(
iαWj

) = 1

2

[(
ωα

j − 
α
j

) + ℏ
α
j ·

(
e
(ωα

j −
α
j )

e
(ωα

j −
α
j ) + 1

− 1

2

)
+ 1

]
,

M
(
i
β
Wj

) = 1

2

[(
ω

β
j − 


β
j

) + ℏ
β
j ·

(
e
(ω

β
j −


β
j )

e
(ω

β
j −


β
j ) + 1

− 1

2

)
+ 1

]
.

Using the derived results and assuming the same inclination parameter ϕ, the joint gen-
eralized scoring function is defined as: Sϕ(wj ) = ϕ · M(iαWj ) + (1 − ϕ) · M(i

β
Wj ). This

function combines the scoring mechanisms M(iαWj ) and M(i
β
Wj ) for aggressive and cau-

tious IF estimates, weighted by ϕ and (1 − ϕ), to produce an overall score for wj .

Definition 9. When the choice option Ok outperforms Ol (Ok,Ol ∈ O and k �= l), the
consistency indicator Iϕ

C
(Ok/Ol) is defined via the joint generalized scoring functions as:

Iϕ

C
(Ok/Ol) =

∑
Ej ∈Cϕ(Ok/Ol)

Sϕ(wj ) · |Sϕ(ckj ) − Sϕ(clj )|∑n
j ′=1 Sϕ(wj ′) · |Sϕ(ckj ′) − Sϕ(clj ′)| . (16)

Theorem 6. Assuming that Sϕ(ckj ) �= Sϕ(clj ) for at least one evaluative criterion
Ej ∈ E, without loss of generality, the consistency indicator Iϕ

C
(Ok/Ol) within a fixed set-

ting of the inclination parameter ϕ satisfies the boundary condition: 0 � Iϕ

C
(Ok/Ol) � 1.

Proof. Applying Theorem 4, we know 0 � Sϕ(ckj ) � 1 and 0 � Sϕ(clj ) � 1, im-
plying 0 � |Sϕ(ckj ) − Sϕ(clj )| � 1. Since the joint generalized scoring function is
non-negative, Iϕ

C
(Ok/Ol) � 0. Given that Cϕ(Ok/Ol) ⊆ E by Theorem 5 (where

Cϕ(Ok/Ol)∪Dϕ(Ok/Ol) = E), it follows:
∑

Ej ∈Cϕ(Ok/Ol)
Sϕ(wj )·|Sϕ(ckj )−Sϕ(clj )| �∑

Ej ∈E Sϕ(wj ) · |Sϕ(ckj ) − Sϕ(clj )| = ∑n
j ′=1 Sϕ(wj ′) · |Sϕ(ckj ′) − Sϕ(clj ′)|. Thus,

Iϕ

C
(Ok/Ol) � 1. In cases of zero denominator issues, at least one |Sϕ(ckj ) − Sϕ(clj )|

must be non-zero, as Sϕ(ckj ) �= Sϕ(clj ) for at least one criterion Ej ∈ E. Hence,
0 � Iϕ

C
(Ok/Ol) � 1.

Theorem 7. Assuming Sϕ(ckj ) �= Sϕ(clj ) for Ej ∈ E, the consistency indicator Iϕ

C
(Ok/

Ol) exhibits the ensuing properties for a fixed inclination parameter ϕ: (1) Iϕ

C
(Ok/Ol)+

Iϕ

C
(Ol/Ok) = 1; (2)

∑m
k=1,k �=l

∑m
l=1,l �=k I

ϕ

C
(Ok/Ol) = m(m − 1)/2; and (3) Iϕ

C = 0.5,
where Iϕ

C is the average consistency indicator across all Iϕ

C
(Ok/Ol), with k �= l.

Proof. As per Definition 8, the concordance sets are derived as: Cϕ(Ok/Ol) = {Ej |
(Sϕ(ckj ) � Sϕ(clj ) for Ej ∈ EB), (Sϕ(ckj ) � Sϕ(clj ) for Ej ∈ EN)} andCϕ(Ol/Ok) =
{Ej | (Sϕ(clj ) � Sϕ(ckj ) for Ej ∈ EB), (Sϕ(clj ) � Sϕ(ckj ) for Ej ∈ EN)}. Assuming
Sϕ(ckj ) �= Sϕ(clj ) for Ej ∈ E, the simplified expressions become: Cϕ(Ok/Ol) = {Ej |
(Sϕ(ckj ) > Sϕ(clj ) for Ej ∈ EB), (Sϕ(ckj ) < Sϕ(clj ) for Ej ∈ EN)} andCϕ(Ol/Ok) =
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{Ej | (Sϕ(clj ) > Sϕ(ckj ) for Ej ∈ EB), (Sϕ(clj ) < Sϕ(ckj ) for Ej ∈ EN)}. Thus,
C

ϕ(Ok/Ol) ∪ C
ϕ(Ol/Ok) = E. For property (1), the calculation follows:

Iϕ

C
(Ok/Ol) + Iϕ

C
(Ol/Ok)

=
∑

Ej ∈Cϕ(Ok/Ol)
Sϕ(wj )|Sϕ(ckj ) − Sϕ(clj )| + ∑

Ej ∈Cϕ(Ol/Ok)
Sϕ(wj )|Sϕ(clj ) − Sϕ(ckj )|∑n

j ′=1 Sϕ(wj ′ ) · |Sϕ(ckj ′ ) − Sϕ(clj ′ )|

=
∑

Ej ∈E Sϕ(wj ) · |Sϕ(ckj ) − Sϕ(clj )|∑
Ej ∈E Sϕ(wj ) · |Sϕ(ckj ) − Sϕ(clj )| = 1.

The sum of consistency indicators for Ok outperforming Ol and vice versa equals 1,
satisfying property (1). Property (2) asserts that the total sum of consistency indicators
for all option pairs (excluding self-pairs) is m(m − 1)/2. This follows from the relation
Iϕ

C
(Ok/Ol) + Iϕ

C
(Ol/Ok) = 1, leading to:

m∑
k=1,k �=l

m∑
l=1,l �=k

Iϕ

C
(Ok/Ol) =

m∑
k=1,k �=l

(
Iϕ

C
(Ok/Ol) + Iϕ

C
(Ol/Ok)

)

=
m∑

k=1,k �=l

1 = m(m − 1)

2
.

This confirms property (2), representing the total pairwise comparisons. The average con-
sistency indicator Iϕ

C is computed over all Iϕ

C
(Ok/Ol) values, as:

Iϕ

C =
∑m

k=1,k �=l

∑m
l=1,l �=k I

ϕ

C
(Ok/Ol)

m(m − 1)
= m(m − 1)

2

/
m(m − 1) = 1

2
.

Accordingly, property (3) is confirmed.

This study introduces an inconsistency indicator for each choice pair using the joint
generalized scoring function Sϕ and the C-IF Minkowski-like distance D

ξ

M0 or D
ξ

M
.

In Definition 4, D
ξ

M0(ckj , clj ) employs a three-term model (radius, membership, non-
membership), excluding hesitancy. Conversely, the four-term distance D

ξ

M
(ckj , clj ) incor-

porates all key elements: radius, membership, non-membership, and hesitancy. This study
adopts the four-term Minkowski-like distance model to fully capture the uncertainty in
C-IF information and leverage its comprehensive representation. By setting ξ = 1 (Man-
hattan) or ξ = 2 (Euclidean), the four-term distance is computed as:

D
ξ

M
(ckj , clj ) = 1

2

{
1√
2
|rkj − rlj | + ξ

√
1

2

(|ukj − ulj |ξ + |vkj − vlj |ξ + |hkj − hlj |ξ )}
.

Definition 10. When choice option Ok outperforms Ol (where Ok,Ol ∈ O and k �= l),
the inconsistency indicator Iϕ

D
(Ok/Ol) is formulated using the (four-term strategy-based)
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C-IF Minkowski-like distance and the joint generalized scoring function as follows:

Iϕ

D
(Ok/Ol) =

∑
Ej ∈Dϕ(Ok/Ol)

D
ξ

M
(ckj , clj ) · |Sϕ(ckj ) − Sϕ(clj )|∑n

j ′=1 D
ξ

M
(ckj ′ , clj ′) · |Sϕ(ckj ′) − Sϕ(clj ′)| . (17)

Theorem 8. Assuming that Sϕ(ckj ) �= Sϕ(clj ) for at least one evaluative criterion Ej ∈
E, without loss of generality, the inconsistency indicator Iϕ

D
(Ok/Ol) within a fixed setting

of the inclination parameter ϕ satisfies the boundary condition: 0 � Iϕ

D
(Ok/Ol) � 1.

Proof. Both the C-IF Minkowski-like distance and the joint generalized scoring function
possess the non-negativity property. Next, this theorem’s proving procedure follows a re-
semble approach to that of Theorem 6.

Theorem 9. Assuming Sϕ(ckj ) �= Sϕ(clj ) for Ej ∈ E, the inconsistency indicator
Iϕ

D
(Ok/Ol) satisfies the following beneficial characteristics for a fixed inclination pa-

rameter ϕ: (1) Iϕ

D
(Ok/Ol) + Iϕ

D
(Ol/Ok) = 1; (2)

∑m
k=1,k �=l

∑m
l=1,l �=k I

ϕ

D
(Ok/Ol) =

m(m − 1)/2; and (3) Iϕ

D = 0.5, where Iϕ

D represents the average inconsistency indicator
calculated by considering all Iϕ

D
(Ok/Ol) values for Ok,Ol ∈ O, and k �= l.

Proof. By Definition 8, the discordance sets are defined as follows: D
ϕ(Ok/Ol) =

{Ej | (Sϕ(ckj ) < Sϕ(clj ) for Ej ∈ EB), (Sϕ(ckj ) > Sϕ(clj ) for Ej ∈ EN)} and
D

ϕ(Ol/Ok) = {Ej | (Sϕ(clj ) < Sϕ(ckj ) for Ej ∈ EB), (Sϕ(clj ) > Sϕ(ckj ) for Ej ∈
EN)}. With the precondition Sϕ(ckj ) �= Sϕ(clj ) for Ej ∈ E, it implies that
D

ϕ(Ok/Ol) ∪ D
ϕ(Ol/Ok) = E. The C-IF Minkowski-like distance exhibits sym-

metry: D
ξ

M
(ckj , clj ) = D

ξ

M
(clj , ckj ). Property (1) can be confirmed as follows:

�Ej ∈Dϕ(Ok/Ol)D
ξ

M
(ckj , clj )·|Sϕ(ckj )−Sϕ(clj )|+�Ej ∈Dϕ(Ol/Ok)D

ξ

M
(clj , ckj )·|Sϕ(clj )−

Sϕ(ckj )| = �Ej ∈ED
ξ

M
(ckj , clj ) · |Sϕ(ckj ) − Sϕ(clj )|. Consequently, Iϕ

D
(Ok/Ol) +

Iϕ

D
(Ol/Ok) = �Ej ∈ED

ξ

M
(ckj , clj ) · |Sϕ(ckj )−Sϕ(clj )|/�Ej ∈ED

ξ

M
(ckj , clj ) · |Sϕ(ckj )−

Sϕ(clj )| = 1. Thus, property (1) is satisfied. The proofs for properties (2) and (3) follow
a similar approach as in Theorem 7. In summary, property (1) states that the sum of the
inconsistency indicators for Ok and Ol equals one. Property (2) indicates the total number
of possible pairwise discordance comparisons is m(m − 1)/2. Property (3) asserts that,
on average, the inconsistency indicators reflect a balanced level of inconsistency between
the choice options.

To construct the C-IF ELECTRE I prioritization procedure, this study first com-
pares the consistency indicator Iϕ

C
(Ok/Ol) with the average consistency indicator Iϕ

C for
Ok,Ol ∈ O and k �= l. This comparison allows for the establishment of the consistency
entry Bϕ

C
(Ok/Ol) and the creation of the consistency Boolean matrix B

ϕ

C
. The process

investigates and articulates consistencies between pairs of choice options as follows:

Bϕ

C
(Ok/Ol) =

{
1 if Iϕ

C
(Ok/Ol) � Iϕ

C,

0 if Iϕ

C
(Ok/Ol) < Iϕ

C,
(18)
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B
ϕ

C
=

⎡
⎢⎢⎢⎣

− Bϕ

C
(O1/O2) · · · Bϕ

C
(O1/Om)

Bϕ

C
(O2/O1) − · · · Bϕ

C
(O2/Om)

...
...

. . .
...

Bϕ

C
(Om/O1) Bϕ

C
(Om/O2) · · · −

⎤
⎥⎥⎥⎦ . (19)

This study compares the inconsistency indicator Iϕ

D
(Ok/Ol) with the average incon-

sistency indicator Iϕ

D to generate the inconsistency entry Bϕ

D
(Ok/Ol) for Ok,Ol ∈ O and

k �= l. The inconsistency Boolean matrix B
ϕ

D
is constructed. The following procedure

assesses and depicts the inconsistencies between pairs of choice options:

Bϕ

D
(Ok/Ol) =

{
1 if Iϕ

D
(Ok/Ol) � Iϕ

D,

0 if Iϕ

D
(Ok/Ol) > Iϕ

D,
(20)

B
ϕ

D
=

⎡
⎢⎢⎢⎣

− Bϕ

D
(O1/O2) · · · Bϕ

D
(O1/Om)

Bϕ

D
(O2/O1) · · · Bϕ

D
(O2/Om)

...
...

. . .
...

Bϕ

D
(Om/O1) Bϕ

D
(Om/O2) · · · −

⎤
⎥⎥⎥⎦ . (21)

Using the specified ϕ, this paper formulates the overall prioritization entryBϕ

O
(Ok/Ol)

for Ok,Ol ∈ O (k �= l) and constructs the overall prioritization Boolean matrix B
ϕ

O
as:

Bϕ

O
(Ok/Ol) = Bϕ

C
(Ok/Ol) · Bϕ

D
(Ok/Ol), (22)

B
ϕ

O
=

⎡
⎢⎢⎢⎢⎣

− Bϕ

O
(O1/O2) · · · Bϕ

O
(O1/Om)

Bϕ

O
(O2/O1) − · · · Bϕ

O
(O2/Om)

...
...

. . .
...

Bϕ

O
(Om/O1) Bϕ

O
(Om/O2) · · · −

⎤
⎥⎥⎥⎥⎦ . (23)

If Bϕ

O
(Ok/Ol) = 1, it indicates that Ok is preferred to Ol based on both consistency

and inconsistency indicators. If Bϕ

O
(Ok/Ol) = 0, it means that either Ok is less preferred

than Ol or they are considered unrelated. A dominance graph can be constructed to il-
lustrate a partial priority ranking of the m options based on the results from the overall
prioritization Boolean matrix B

ϕ

O
, forming the basis for the C-IF ELECTRE I prioritiza-

tion process.
This study presents the concepts of consistency-dependent average outflow, inconsis-

tency-dependent average inflow, and overall net flow for ranking choice options in the C-IF
ELECTRE II prioritization process. These concepts are inspired by the leaving and enter-
ing flows developed by Wang and Chen (2021). Specifically, the consistency-dependent
average outflow Aϕ

C
(Ok), the inconsistency-dependent average inflow Aϕ

D
(Ok), and the

overall net flow N ϕ

O
(Ok) for choice option Ok are defined as follows:

Aϕ

C
(Ok) =

∑m
l=1,l �=k I

ϕ

C
(Ok/Ol)

m − 1
, (24)
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Aϕ

D
(Ok) =

∑m
l=1,l �=k I

ϕ

D
(Ok/Ol)

m − 1
, (25)

N ϕ

O
(Ok) = Aϕ

C
(Ok) − Aϕ

D
(Ok). (26)

The average outflow, average inflow, and overall net flow satisfy these properties:
(1) 0 � Aϕ

C
(Ok) � 1; (2) 0 � Aϕ

D
(Ok) � 1; and (3) −1 � N ϕ

O
(Ok) � 1. A higher

value of N ϕ

O
(Ok) indicates a better option. The C-IF ELECTRE II process ranks options

in O by descending net flows, offering a thorough assessment to guide decision-making
effectively.

4.2. Suggested Algorithm

Figure 2 presents a systematic framework for applying the C-IF ELECTRE I and
II approaches to multiple-criteria choice problems under C-IF uncertainty. The C-IF
ELECTRE I method involves several stages: (1) Problem Definition: Identifies choice
options and evaluative criteria; (2) Data Creation: Establishes C-IF weights for criteria
and generates C-IF evaluation values for options; (3) C-IF Scoring: Computes aggres-
sive and cautious IF estimates, and determines scoring mechanisms based on hesitancy
degrees; (4) Consistency/Inconsistency Indexing: Identifies concordance and discordance
sets, calculates Minkowski-like distances, and determines consistency/inconsistency in-
dicators; and (5) C-IF ELECTRE I Prioritization: Produces overall prioritization entries
and Boolean matrices, and creates a dominance graph for partial-priority ranking. The
C-IF ELECTRE II approach follows similar steps but incorporates average outflows and
inflows alongside net flows to establish complete-priority rankings via overall net flows.

The implementation steps of the C-IF ELECTRE I approach are as follows:
Problem definition stage: See Steps I.1 and I.2
Step I.1. Define a multiple-criteria decision problem with evaluative criteria E = {E1,

E2, . . . , En} and choice options O = {O1,O2, . . . , Om}.
Step I.2. Split criteria into beneficial EB and non-beneficial EN subsets.

Data creation stage: See Steps I.3 and I.4
Step I.3. Establish C-IF weights wj = (ωj ,
j ; rj ) for each criterion Ej and construct
the weight characteristic W using Eqs. (10) and (11).
Step I.4. Generate C-IF evaluation values ckj = (ukj , vkj ; rkj ) for each option Ok under
criterion Ej and build the fuzzy characteristic Ck using Eqs. (12) and (13).

C-IF scoring stage: See Steps I.5–I.7
Step I.5. Compute the aggressive IF estimates iαkj = (uα

kj , v
α
kj ) and iαWj = (ωα

j ,
α
j )

using Eq. (7), as well as the cautious IF estimates i
β
kj = (u

β
kj , v

β
kj ) and i

β
Wj = (ω

β
j ,


β
j )

by Eq. (8).
Step I.6. Derive hesitancy degrees hα

kj , h
β
kj , ℏα

j , and ℏ
β
j , as well as scoring mechanisms

M(iαkj ), M(i
β
kj ), M(iαWj ), and M(i

β
Wj ) using the natural exponential function in Eq. (2).

Step I.7. Designate a value to the inclination parameter ϕ ∈ [0, 1], and generate joint
scoring functions Sϕ(ckj ) and Sϕ(wj ) using Eq. (9).
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Fig. 2. The systematic procedure of the C-IF ELECTRE I and II approaches.

Consistency/inconsistency indexing stage: See Steps I.8–I.10
Step I.8. Employ Eqs. (14) and (15), respectively, to establish the concordance set
C

ϕ(Ok/Ol) and the discordance set Dϕ(Ok/Ol) (Ok,Ol ∈ O and k �= l).
Step I.9. Allocate a value for the metric parameter ξ ∈ Z+, and derive the C-IF
Minkowski-like distance D

ξ

M
(ckj , clj ) using the four-term strategy described in Eq. (6).

Step I.10. Determine the consistency indicator Iϕ

C
(Ok/Ol) and the inconsistency indica-

tor Iϕ

D
(Ok/Ol) using Eqs. (16) and (17), respectively.

C-IF ELECTRE I prioritization stage: See Steps I.11–I.13
Step I.11. Compare the consistency indicator Iϕ

C
(Ok/Ol) with the average consistency

indicator Iϕ

C = 0.5 (from Theorem 7) to obtain the consistency entry Bϕ

C
(Ok/Ol) and the

consistency Boolean matrix B
ϕ

C
, as provided in Eqs. (18) and (19), respectively.
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Step I.12. Contrast the inconsistency indicator Iϕ

D
(Ok/Ol) with the average inconsistency

indicator Iϕ

D = 0.5 (from Theorem 9) to acquire the inconsistency entry Bϕ

D
(Ok/Ol) and

the inconsistency Boolean matrix B
ϕ

D
, as presented in Eqs. (20) and (21), respectively.

Step I.13. Produce the overall prioritization entry Bϕ

O
(Ok/Ol) and the overall prioritiza-

tion Boolean matrix B
ϕ

O
using Eqs. (22) and (23), respectively. Construct a dominance

graph to indicate the partial-priority ranking of options in the set O.
The implementation steps of the C-IF ELECTRE II approach include:

Steps II.1 to II.10. Same as Steps I.1 to I.10.

C-IF ELECTRE II prioritization stage: See Steps II.11 and II.12
Step II.11. Calculate the consistency-dependent average outflowAϕ

C
(Ok) the inconsistency-

dependent average inflow Aϕ

D
(Ok) using Eqs. (24) and (25), respectively.

Step II.12. Obtain the overall net flow N ϕ

O
(Ok) using Eq. (26), and then rank the options

in descending order based on their overall net flow values.

5. Application to a Problem with Supplier Evaluation

This section delves into the practical quandary of multi-expert supplier appraisal, as posed
by Otay and Kahraman (2022), through the application of the proposed C-IF ELECTRE
framework. Moreover, the operationalization of the advocated C-IF ELECTRE I and II
methodologies is elucidated, highlighting their prowess in both efficacy and efficiency.

The C-IF ELECTRE approach is applied to evaluate and select suppliers in an en-
gineering company, focusing on a specific component from various supplied options.
Initially, potential suppliers are listed as choice options. Environmental considerations,
particularly pollution control and ISO standards, are prioritized in the assessment. Sup-
pliers failing to meet these criteria are eliminated from further analysis. The remaining
options—Supplier Options #1 to #3—are evaluated across three key dimensions: cost,
service, and technology/quality. These dimensions are assessed through nine evaluative
criteria, including payment terms, on-time delivery, and quality management systems. Fig-
ure 3 illustrates the hierarchical structure of the multi-expert supplier evaluation, detailing
the relationships among dimensions, evaluative criteria, and supplier options.

Step I.1 was conducted based on the problem setting from Otay and Kahraman (2022)
and the hierarchical structure shown in Fig. 3. Three choice options were evaluated: Sup-
plier Options #1, #2, and #3, represented as O = {O1,O2,O3}. These suppliers were
assessed across three dimensions: (1) the cost dimension, consisting of price (E1), terms
of payments (E2), and handling and transportation (E3); and (2) the service dimension,
encompassing flexibility (E4), on-time delivery (E5), and past performance (E6); and
(3) the technology and quality dimension, including quality management systems (E7),
technological capability (E8), and R&D studies (E9). The set of evaluative criteria was
defined as E = {E1, E2, . . . , E9}.

Step I.2 divides the set E into two subsets: EB (beneficial criteria) and EN (non-
beneficial criteria). Beneficial criteria reflect attributes where higher values are preferred,
while non-beneficial criteria favour lower values. For instance, price (E1) and terms of



Circular Intuitionistic Fuzzy ELECTRE Approach: A Novel Multiple-Criteria Choice Model 19

Fig. 3. The hierarchical structure of the multi-expert supplier evaluation issue.

payments (E2) are non-beneficial, as lower values are preferred. In contrast, quality man-
agement systems (E7) and technological capability (E8) are beneficial, with higher values
indicating desirable traits. Although the nine criteria E1, E2, . . . , E9 include both types,
they are standardized as beneficial following Otay and Kahraman (2022). The sets of ben-
eficial and non-beneficial criteria were defined as EB = {E1, E2, . . . , E9} and EN = ∅.

The data creation stage focuses on establishing the C-IF weight wj and C-IF evaluation
value ckj as outlined in Steps I.3 and I.4. This study follows a structured nine-point lin-
guistic rating scale, as proposed by Chen (2024), involving the following steps: (1) Select a
Linguistic Scale: Use a nine-point scale to streamline evaluations; (2) Collect Evaluations:
Gather semantic evaluations from decision-makers regarding choice options and criterion
importance; (3) Convert to IF Numbers: Transform the semantic evaluations into corre-
sponding IF numbers; (4) Calculate C-IF Evaluation Values: For each decision-maker’s
assessment, define an IF number. Then, average these IF numbers to find the centre and
determine the radius based on maximum deviation; and (5) Establish C-IF Weights: Sim-
ilarly, calculate C-IF weights by averaging the importance weights to find the center and
radius. These steps synthesize insights from multiple decision-makers into a cohesive C-IF
framework for evaluation values and weights.

In the context of multi-expert supplier evaluation, the data from Otay and Kahraman
(2022) were used, consolidating evaluations from three procurement specialists to de-
rive collective C-IF weights. In Step I.3, the C-IF weight wj is presented as a C-IF num-
ber (ωj ,
j ; rj ) in the second column of Table 1. Using Eqs. (10) and (11), the weight
characteristic was established as: W = {〈Ej , ωj ,
j ; rj 〉|Ej ∈ {E1, E2, . . . , E9}} =
{〈Ej ,Or (ωj ,
j )〉|Ej ∈ {E1, E2, . . . , E9}}, where Or (ωj ,
j ) = {〈ℓ, ℓ′〉 | ℓ, ℓ′ ∈
[0, 1], [(ωj − ℓ)2 + (
j − ℓ′)2]0.5 � rj , and ℓ + ℓ′ � 1} for j ∈ {1, 2, . . . , 9}.

In Step I.4, the C-IF evaluation value ckj , expressed as a C-IF number (ukj , vkj ; rkj ),
was derived from the aggregated evaluation data in Otay and Kahraman’s (2022) study
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Table 1
Information regarding the C-IF weight wj and the C-IF evaluation value ckj .

Ej (ωj ,
j ; rj ) (u1j , v1j ; r1j ) (u2j , v2j ; r2j ) (u3j , v3j ; r3j )

E1 (0.573, 0.360; 0.158) (0.346, 0.528; 0.271) (0.624, 0.254; 0.163) (0.618, 0.277; 0.100)

E2 (0.327, 0.589; 0.112) (0.439, 0.439; 0.142) (0.650, 0.250; 0.000) (0.675, 0.207; 0.190)

E3 (0.456, 0.469; 0.158) (0.346, 0.528; 0.271) (0.569, 0.327; 0.112) (0.629, 0.267; 0.114)

E4 (0.454, 0.480; 0.174) (0.401, 0.480; 0.198) (0.698, 0.194; 0.074) (0.615, 0.267; 0.178)

E5 (0.571, 0.366; 0.174) (0.578, 0.316; 0.098) (0.718, 0.175; 0.102) (0.618, 0.277; 0.100)

E6 (0.342, 0.574; 0.161) (0.618, 0.277; 0.100) (0.737, 0.140; 0.145) (0.776, 0.096; 0.199)

E7 (0.324, 0.592; 0.074) (0.578, 0.316; 0.098) (0.615, 0.267; 0.178) (0.729, 0.166; 0.115)

E8 (0.577, 0.360; 0.074) (0.574, 0.293; 0.341) (0.598, 0.296; 0.072) (0.569, 0.327; 0.112)

E9 (0.458, 0.473; 0.000) (0.528, 0.346; 0.271) (0.569, 0.327; 0.112) (0.598, 0.296; 0.072)

∗: Refer to Otay and Kahraman (2022).

Table 2
Specifics on the aggressive IF estimates iα

Wj
and iα

kj
, alongside the cautious IF estimates i

β
Wj

and i
β
kj

.

Outcomes associated with the aggressive IF estimates iα
Wj

= (ωα
j
,
α

j
) and iα

kj
= (uα

kj
, vα

kj
)

Ej (ωα
j
,
α

j
) (uα

1j
, vα

1j
) (uα

2j
, vα

2j
) (uα

3j
, vα

3j
)

E1 (0.685, 0.248) (0.538, 0.336) (0.739, 0.139) (0.689, 0.206)

E2 (0.406, 0.510) (0.539, 0.339) (0.650, 0.250) (0.809, 0.073)

E3 (0.568, 0.357) (0.538, 0.336) (0.648, 0.248) (0.710, 0.186)

E4 (0.577, 0.357) (0.541, 0.340) (0.750, 0.142) (0.741, 0.141)

E5 (0.694, 0.243) (0.647, 0.247) (0.790, 0.103) (0.689, 0.206)

E6 (0.456, 0.460) (0.689, 0.206) (0.840, 0.037) (0.917, 0.000)

E7 (0.376, 0.540) (0.647, 0.247) (0.741, 0.141) (0.810, 0.085)

E8 (0.629, 0.308) (0.815, 0.052) (0.649, 0.245) (0.648, 0.248)

E9 (0.458, 0.473) (0.720, 0.154) (0.648, 0.248) (0.649, 0.245)

Outcomes associated with the cautious IF estimates i
β
Wj

= (ω
β
j
,


β
j

) and i
β
kj

= (u
β
kj

, v
β
kj

)

(ω
β
j
, 


β
j

) (u
β
1j

, v
β
1j

) (u
β
2j

, v
β
2j

) (u
β
3j

, v
β
3j

)

E1 (0.461, 0.472) (0.154, 0.720) (0.509, 0.369) (0.547, 0.348)

E2 (0.248, 0.668) (0.339, 0.539) (0.650, 0.250) (0.541, 0.341)

E3 (0.344, 0.581) (0.154, 0.720) (0.490, 0.406) (0.548, 0.348)

E4 (0.331, 0.603) (0.261, 0.620) (0.646, 0.246) (0.489, 0.393)

E5 (0.448, 0.489) (0.509, 0.385) (0.646, 0.247) (0.547, 0.348)

E6 (0.228, 0.688) (0.547, 0.348) (0.634, 0.243) (0.635, 0.237)

E7 (0.272, 0.644) (0.509, 0.385) (0.489, 0.393) (0.648, 0.247)

E8 (0.525, 0.412) (0.333, 0.534) (0.547, 0.347) (0.490, 0.406)

E9 (0.458, 0.473) (0.336, 0.538) (0.490, 0.406) (0.547, 0.347)

and is shown in the third to fifth columns of Table 1. The C-IF characteristic for each
Ok was established using Eqs. (12) and (13) as follows: Ck = {〈Ej , ukj , vkj ; rkj 〉|Ej ∈
{E1, E2, . . . , E9}} = {〈Ej ,Or (ukj , vkj )〉|Ej ∈ {E1, E2, . . . , E9}}, whereOr (ukj , vkj ) =
{〈ℓ, ℓ′〉 | ℓ, ℓ′ ∈ [0, 1], [(ukj −ℓ)2+(vkj −ℓ′)2]0.5 � rkj , and ℓ+ℓ′ � 1} for k ∈ {1, 2, 3}
and j ∈ {1, 2, . . . , 9}.

Table 2 presents the aggressive and cautious IF estimates for each criterion and supplier
option. In Step I.5, the aggressive IF estimates iαWj = (ωα

j ,
α
j ) and iαkj = (uα

kj , v
α
kj )

are generated using Eq. (7). For example, with w1 = (0.573, 0.360; 0.158) and c21 =
(0.624, 0.254; 0.163), Eq. (7) yields: iαW1 = (min{1, 0.573+0.158/

√
2}, max{0, 0.360−
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Table 3
Specifics on the scoring mechanisms M(iα

Wj
), M(iα

kj
), M(i

β
Wj

), and M(i
β
kj

).

Outcomes related to aggressive IF estimates Outcomes related to cautious IF estimates

Ej M(iα
Wj

) M(iα1j
) M(iα2j

) M(iα3j
) M(i

β
Wj

) M(i
β
1j

) M(i
β
2j

) M(i
β
3j

)

E1 0.722 0.604 0.809 0.748 0.494 0.208 0.572 0.602
E2 0.447 0.603 0.705 0.878 0.286 0.397 0.705 0.603
E3 0.607 0.604 0.705 0.769 0.379 0.208 0.543 0.603
E4 0.612 0.603 0.812 0.809 0.362 0.315 0.705 0.549
E5 0.729 0.705 0.852 0.748 0.479 0.564 0.705 0.602
E6 0.498 0.748 0.913 0.967 0.265 0.602 0.701 0.705
E7 0.416 0.705 0.809 0.872 0.310 0.564 0.549 0.706
E8 0.663 0.894 0.707 0.705 0.557 0.396 0.603 0.543
E9 0.492 0.792 0.705 0.707 0.492 0.396 0.543 0.603

0.158/
√

2}) = (0.685, 0.248) and iα21 = (min{1, 0.624 + 0.163/
√

2}, max{0, 0.254 −
0.163/

√
2}) = (0.739, 0.139). These results are shown in the upper portion of Table 2.

Similarly, the cautious IF estimates i
β
Wj = (ω

β
j ,


β
j ) and i

β
kj = (u

β
kj , v

β
kj ) were generated

using Eq. (8) and presented in the bottom half of Table 2.
In Step I.6, the degrees of hesitancy ℏ

α
j , hα

kj , ℏβ
j , and h

β
kj for the estimates iαWj , iαkj ,

i
β
Wj , and i

β
kj were computed. For instance, for iαW1, hesitancy was calculated as: ℏα

1 =
1 − ωα

1 − 
α
1 = 1 − 0.685 − 0.248 = 0.067. The scoring mechanisms M(iαWj ), M(iαkj ),

M(i
β
Wj ), and M(i

β
kj ) were then derived using the natural exponential function approach

from Eq. (2). For example, for iα21 = (0.739, 0.139) with hα
21 = 0.122:

M
(
iα21

) = 1

2

[
(0.739 − 0.139) + 0.122 ·

(
e(0.739−0.139)

e(0.739−0.139) + 1
− 1

2

)
+ 1

]
= 0.809.

The results, including the scoring mechanisms M(iαWj ) and M(iαkj ) for aggressive IF esti-
mates (left part), and M(i

β
Wj ) and M(i

β
kj ) for cautious IF estimates (right part), are illus-

trated in Table 3.
In Step I.7, the inclination parameter ϕ is assigned a value within [0, 1] to reflect the

decision-maker’s preference between aggressive and cautious IF estimates. Here, setting
ϕ = 0.5 indicates equal importance to both. Next, the joint generalized scoring functions
S0.5(wj ) and S0.5(ckj ) were computed for each wj and ckj using Eq. (9). For instance,
the calculation for S0.5(c21) is: S0.5(c21) = 0.5 × 0.809 + (1 − 0.5) × 0.572 = 0.691.

In the example with ϕ = 0.5, the expressions of Eqs. (14) and (15) were simplified
since all criteria were beneficial. The concordance and discordance sets were defined as:

C
0.5(Ok/Ol) = {

Ej

∣∣ S0.5(ckj ) � S0.5(clj ) for Ej ∈ E
}
,

D
0.5(Ok/Ol) = {

Ej

∣∣ S0.5(ckj ) < S0.5(clj ) for Ej ∈ E
}
.

As outlined in Step I.8, Table 4 presents the results for C0.5(Ok/Ol) and D
0.5(Ok/Ol)

when option Ok outperforms Ol (k �= l), along with relevant explanations.
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Table 4
Specifics on the concordance and discordance sets for ϕ = 0.5 (C0.5(Ok/Ol) and D

0.5(Ok/Ol)).

Ok Ol C0.5(Ok/Ol) D0.5(Ok/Ol) Explanation

O1 O2 ∅ {E1, E2, . . . , E9} S0.5(c1j ) < S0.5(c2j ) for j ∈ {1, 2, . . . , 9}
O3 {E8} {E1, E2, . . . , E7, E9} S0.5(c18) � S0.5(c38) and S0.5(c1j ) < S0.5(c3j )

for j ∈ {1, 2, . . . , 7, 9}
O2 O1 {E1, E2, . . . , E9} ∅ S0.5(c2j ) � S0.5(c1j ) for j ∈ {1, 2, . . . , 9}

O3 {E1, E4, E5, E8} {E2, E3, E6, E7, E9} S0.5(c2j ) � S0.5(c3j ) for j ∈ {1, 4, 5, 8} and
S0.5(c2j ) < S0.5(c3j ) for j ∈ {2, 3, 6, 7, 9}

O3 O1 {E1, E2, . . . , E7, E9} {E8} S0.5(c3j ) � S0.5(c1j ) for j ∈ {1, 2, . . . , 7, 9} and
S0.5(c38) < S0.5(c18)

O2 {E2, E3, E6, E7, E9} {E1, E4, E5, E8} S0.5(c3j ) � S0.5(c2j ) for j ∈ {2, 3, 6, 7, 9} and
S0.5(c3j ) < S0.5(c2j ) for j ∈ {1, 4, 5, 8}

In Step I.9, the metric parameter ξ was set to 1 and 2, reflecting the common use
of the Manhattan (ξ = 1) and Euclidean (ξ = 2) metrics in practice. The C-IF dis-
tances D1

M
(ckj , clj ) and D2

M
(ckj , clj ) were computed using the four-term technique from

Eq. (6):

D1
M(ckj , clj ) = 1

2

[
1√
2
|rkj − rlj | + 1

2

(|ukj − ulj | + |vkj − vlj | + |hkj − hlj |
)]

,

D2
M(ckj , clj ) = 1

2

(
1√
2
|rkj − rlj | +

√
1

2

(|ukj − ulj |2 + |vkj − vlj |2 + |hkj − hlj |2
))

.

These formulas account for differences in parameters r , u, v, and h between two C-IF
evaluation values (ckj and clj ) to calculate the distance measures D1

M
and D2

M
. Given

c13 = (0.346, 0.528; 0.271) and c23 = (0.569, 0.327; 0.112) with hesitancy degrees of
0.126 and 0.104, the distances were: D1

M
(c13, c23) = D1

M
(c23, c13) = (1/2) · [(1/

√
2) ·

|0.271−0.112|+(1/2)·(|0.346−0.569|+|0.528−0.327|+|0.126−0.104|)] = 0.168, and
D2

M
(c13, c23) = D2

M
(c23, c13) = (1/2) · {(1/

√
2) · |0.271 − 0.112| + [(1/2) · (|0.346 −

0.569|2 + |0.528 − 0.327|2 + |0.126 − 0.104|2)]0.5} = 0.163. These Manhattan- and
Euclidean-like distances, detailed in Table 5, quantify the dissimilarity between the C-IF
evaluation values, reflecting differences across their parameters.

Following Step I.10, the consistency indicator I0.5
C

(Ok/Ol) and inconsistency in-
dicator I0.5

D
(Ok/Ol) (for ϕ = 0.5) were derived using Eqs. (16) and (17). In the

case where O3 outperforms O2, Table 4 shows the concordance set C0.5(O3/O2) =
{E2, E3, E6, E7, E9} and the discordance setD0.5(O3/O2) = {E1, E4, E5, E8}. The con-
sistency indicator I0.5

C
(O3/O2) was then computed as:

I0.5
C

(O3/O2) =
∑

Ej ∈{E2,E3,E6,E7,E9} S0.5(wj ) · |S0.5(c3j ) − S0.5(c2j )|∑9
j ′=1 S0.5(wj ′) · |S0.5(c3j ′) − S0.5(c2j ′)|

= (
0.367 · |0.741 − 0.705| + 0.493 · |0.686 − 0.624| + 0.382 · |0.836 − 0.807|
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Table 5
Specifics on the C-IF Manhattan- and Euclidean-like distances D1

M
(ckj , clj ) and D2

M
(ckj , clj ).

Outcome of the C-IF Manhattan-like distances Outcome of the C-IF Euclidean-like distances

D1
M

(c1j , c2j ), D1
M

(c1j , c3j ), D1
M

(c2j , c3j ), D2
M

(c1j , c2j ), D2
M

(c1j , c3j ), D2
M

(c2j , c3j ),
Ej D1

M
(c2j , c1j ) D1

M
(c3j , c1j ) D1

M
(c3j , c2j ) D2

M
(c2j , c1j ) D2

M
(c3j , c1j ) D2

M
(c3j , c2j )

E1 0.177 0.196 0.034 0.176 0.192 0.033
E2 0.156 0.135 0.089 0.151 0.134 0.086
E3 0.168 0.197 0.031 0.163 0.192 0.031
E4 0.192 0.114 0.078 0.190 0.114 0.076
E5 0.072 0.021 0.052 0.072 0.020 0.051
E6 0.084 0.126 0.041 0.080 0.120 0.040
E7 0.053 0.082 0.079 0.050 0.081 0.076
E8 0.109 0.098 0.030 0.108 0.097 0.029
E9 0.077 0.105 0.030 0.074 0.102 0.029

+ 0.363 · |0.789 − 0.679| + 0.492 · |0.655 − 0.624|)/(0.608 · |0.675 − 0.691|
+ 0.367 · |0.741 − 0.705| + 0.493 · |0.686 − 0.624| + 0.487 · |0.679 − 0.759|
+ 0.604 · |0.675 − 0.779| + 0.382 · |0.836 − 0.807| + 0.363 · |0.789 − 0.679|
+ 0.610 · |0.624 − 0.655| + 0.492 · |0.655 − 0.624|) = 0.458.

By employing Eq. (17) and utilizing the C-IF Manhattan-like distance D1
M

(ckj , clj ), the
inconsistency indicator I0.5

D
(O3/O2) can be produced in this fashion:

I0.5
D

(O3/O2) =
∑

Ej ∈{E1,E4,E5,E8} D1
M

(c3j , c2j ) · |S0.5(c3j ) − S0.5(c2j )|∑9
j ′=1 D1

M
(c3j ′ , c2j ′) · |S0.5(c3j ′) − S0.5(c2j ′)|

= (
0.034 · |0.675 − 0.691| + 0.078 · |0.679 − 0.759| + 0.052 · |0.675 − 0.779|

+ 0.030 · |0.624 − 0.655|)/(0.034 · |0.675 − 0.691| + 0.089 · |0.741 − 0.705|
+ 0.031 · |0.686 − 0.624| + 0.078 · |0.679 − 0.759| + 0.052 · |0.675 − 0.779|
+ 0.041 · |0.836 − 0.807| + 0.079 · |0.789 − 0.679| + 0.030 · |0.624 − 0.655|
+ 0.030 · |0.655 − 0.624|) = 0.451.

Using the C-IF Euclidean-like distance D2
M

(ckj , clj ), the inconsistency indicator
I0.5
D

(O3/O2) equals 0.454. Additional results are provided in Table 6’s third, fifth, and
seventh columns.

Following Step I.11, the average consistency indicator I0.5
C is 0.5 (Theorem 7). Using

Eq. (18), the consistency entry B0.5
C

(Ok/Ol) was generated by comparing I0.5
C

(Ok/Ol)

with I0.5
C . The fourth column of Table 6 presents these comparisons. The consistency

Boolean matrix B0.5
C

was then constructed using Eq. (19):

B0.5
C

=
⎡
⎣ − 0 0

1 − 1
1 0 −

⎤
⎦ .



24 T.-Y. Chen

Table 6
Specifics on the consistency/inconsistency indicators and entries for ϕ = 0.5.

Use of the D1
M

measure Use of the D2
M

measure

Ok Ol I0.5
C

(Ok/Ol) B0.5
C

(Ok/Ol) I0.5
D

(Ok/Ol) B0.5
D

(Ok/Ol) I0.5
D

(Ok/Ol) B0.5
D

(Ok/Ol)

O1 O2 0.000 0 (< I0.5
C ) 1.000 0 (> I0.5

C ) 1.000 0 (> I0.5
C )

O3 0.019 0 (< I0.5
C ) 0.990 0 (> I0.5

C ) 0.990 0 (> I0.5
C )

O2 O1 1.000 1 (� I0.5
C ) 0.000 1 (� I0.5

C ) 0.000 1 (� I0.5
C )

O3 0.542 1 (� I0.5
C ) 0.549 0 (> I0.5

C ) 0.546 0 (> I0.5
C )

O3 O1 0.981 1 (� I0.5
C ) 0.010 1 (� I0.5

C ) 0.010 1 (� I0.5
C )

O2 0.458 0 (< I0.5
C ) 0.451 1 (� I0.5

C ) 0.454 1 (� I0.5
C )

In Step I.12, the average inconsistency indicator I0.5
D was yielded to be 0.5 (The-

orem 9). By comparing I0.5
D

(Ok/Ol) with I0.5
D , the inconsistency entry B0.5

D
(Ok/Ol)

was derived using Eq. (20). Results based on the C-IF Manhattan-like distance D1
M

and
Euclidean-like distance D2

M
are shown in the sixth and eighth columns of Table 6, respec-

tively. Table 6 summarizes the consistency and inconsistency indicators I0.5
C

(Ok/Ol) and
I0.5
D

(Ok/Ol), along with their entries B0.5
C

(Ok/Ol) and B0.5
D

(Ok/Ol) for ϕ = 0.5. As
noted from Eq. (21), both distance measures yield the same inconsistency Boolean matrix
B0.5

D
, as shown:

B0.5
D

=
⎡
⎣ − 0 0

1 − 0
1 0 −

⎤
⎦ .

Following Step I.13, the overall prioritization entry B0.5
O

(Ok/Ol) was calculated using
B0.5
O

(Ok/Ol) = B0.5
C

(Ok/Ol) · B0.5
D

(Ok/Ol) from Eq. (22). These results were then used
to build the overall prioritization Boolean matrix B0.5

O
via Eq. (23), as shown:

B0.5
O

=
⎡
⎣ − 0 0

1 − 0
1 0 −

⎤
⎦ .

Continuing the procedure in Step I.13, a dominance graph was created to illustrate the
partial-prioritization ranking of the three supplier options, as shown in Fig. 4. The overall
outranking relationships using the C-IF ELECTRE I techniques were depicted utilizing
orange arrows: O2 �0.5

O
O1 and O3 �0.5

O
O1. Consistency-based relationships are shown

with green arrows: O2 �0.5
C

O1, O2 �0.5
C

O3, and O3 �0.5
C

O1. Inconsistency-based
relationships are indicated by yellow arrows: O2 �0.5

D
O1 and O3 �0.5

D
O1. The ranking

from the C-IF analytic hierarchy process (AHP) and VIKOR (i.e. VlseKriterijumska Opti-
mizacija I Kompromisno Resenje in Serbian) methodology in Otay and Kahraman (2022)
was O2 � O3 � O1. The outranking relationships from the C-IF ELECTRE I approach
with ϕ = 0.5 and ξ = 1, 2 align closely with the findings of Otay and Kahraman.
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Fig. 4. The dominance graph for the multi-expert supplier evaluation issue.

In the C-IF ELECTRE II approach, Steps II.1–II.10 mirror Steps I.1–I.10. In Step II.11,
Eq. (24) calculates the consistency-dependent average outflow A0.5

C
(Ok). For example, for

O1:A0.5
C

(O1) = ∑3
l=1,l �=1 I0.5

C
(O1/Ol)/(3 − 1) = [I0.5

C
(O1/O2) + I0.5

C
(O1/O3)]/2 =

(0.000+0.019)/2 = 0.010. Moreover, A0.5
C

(O2) = 0.771 and A0.5
C

(O3) = 0.720. In Step
II.11, Eq. (25) computes the inconsistency-dependent average inflow A0.5

D
(Ok). Using the

C-IF Manhattan-like distance measure D1
M

: A0.5
D

(O1) = ∑3
l=1,l �=1 I0.5

D
(O1/Ol)/(3 −

1) = [I0.5
D

(O1/O2) + I0.5
D

(O1/O3)]/2 = (1.000 + 0.990)/2 = 0.995. Addition-
ally, A0.5

D
(O2) = 0.275 and A0.5

D
(O3) = 0.231. Using the C-IF Euclidean-like dis-

tance measure D2
M

:A0.5
D

(O1) = ∑3
l=1,l �=1 I0.5

D
(O1/Ol)/(3 − 1) = [I0.5

D
(O1/O2) +

I0.5
D

(O1/O3)]/2 = (1.000 + 0.990)/2 = 0.995, A0.5
D

(O2) = 0.273, and A0.5
D

(O3) =
0.232.

Finally, Eq. (26) calculates the overall net flow N 0.5
O

(Ok). Using the C-IF Manhattan-
like distance measure D1

M
, the calculations yield: N 0.5

O
(O1) = A0.5

C
(O1) − A0.5

D
(O1) =

0.010 − 0.995 = −0.985, N 0.5
O

(O2) = 0.496, and N 0.5
O

(O3) = 0.489. Using the C-IF
Euclidean-like distance D2

M
:N 0.5

O
(O1) = A0.5

C
(O1) − A0.5

D
(O1) = 0.010 − 0.995 =

−0.985, N 0.5
O

(O2) = 0.498, and N 0.5
O

(O3) = 0.488. Arranging these in descending
order, the complete prioritization ranking is O2 �0.5

N O3 �0.5
N O1 for both measures

D1
M

and D2
M

. This aligns with the preference order from the C-IF AHP and VIKOR
methodology in Otay and Kahraman (2022), confirming that the outranking relationships
from the current C-IF ELECTRE II approach with ϕ = 0.5 and ξ = 1, 2 are consistent
with their findings.

The proposed C-IF ELECTRE I and II techniques have demonstrated feasibility and
efficiency in addressing multiple-criteria supplier assessments. By integrating C-IF theory
with the established ELECTRE framework, these methodologies provide a comprehensive
and reliable decision-making toolset. They effectively consider both beneficial and non-
beneficial criteria while accounting for the decision-maker’s attitudes toward aggression
and caution. The rankings of supplier options generated from these techniques are coher-
ent and dependable, aligning with the findings from the C-IF AHP and VIKOR approach



26 T.-Y. Chen

by Otay and Kahraman (2022). This indicates that the C-IF ELECTRE I and II methods
significantly enhance decision-making in complex supplier evaluation scenarios.

The C-IF ELECTRE approach provides valuable insights into how decision-makers
evaluate suppliers across multiple criteria. Key dimensions—such as cost, service, tech-
nology, and quality—greatly influence supplier rankings, particularly factors like price,
on-time delivery, and technological capability. By incorporating both aggressive and cau-
tious estimates, this method addresses uncertainty and adapts to varying market conditions
and expert judgments, improving the reliability of recommendations.

Key advantages of the C-IF ELECTRE methodology include: (1) Refined Uncertainty
Representation: Circular structures capture uncertainty, offering a balanced view of fluctu-
ating factors like supplier reliability; (2) Flexibility in Risk Management: The inclination
parameter allows customization based on the decision-maker’s risk tolerance, accommo-
dating aggressive or cautious evaluations; and (3) Improved Sensitivity to Complex Crite-
ria: This approach effectively manages complex, interdependent criteria, making it ideal
for multidimensional supplier evaluations where factors are interconnected.

Despite its strengths, the C-IF ELECTRE approach has limitations: (1) Computational
Complexity: The integration of C-IF sets and the need for precise calibration of parameters
(ϕ and ξ ) increases computational intricacy, potentially burdening decision-makers with-
out advanced tools or expertise; and (2) Limited Sensitivity to Extremes: The approach
may not adequately respond to suppliers excelling or underperforming in specific crite-
ria, risking the omission of those with exceptional performance in niche areas but lacking
broader competencies.

6. Comprehensive Comparative Analysis

This section examines the effects of different inclination parameter settings on the C-IF
ELECTRE approach’s results. It also incorporates the Chebyshev distance metric (ξ →
∞) within the C-IF Minkowski-like distance measure, alongside the previously used Man-
hattan and Euclidean metrics. Moreover, it evaluates divergence functions proposed by
Khan et al. (2022) to compare the results generated by the C-IF ELECTRE techniques.

The C-IF Chebyshev-like distance between ckj and clj is derived by setting the metric
parameter ξ in Definition 4 to infinity. This is calculated using the four-term strategy as:

D∞
M(ckj , clj ) = 1

2

{
1√
2
|rkj − rlj | + max

{|ukj − ulj |, |vkj − vlj |, |hkj − hlj |
}}

.

(27)

Divergence measures in fuzzy contexts help identify differences between fuzzy sets.
For C-IF sets, Khan et al. (2022) developed various divergence functions to address higher-
order uncertainties and evaluated their performance. They established five divergence
functions based on chi-square and Canberra distances, as well as the exponential func-
tion. This study will adopt these five divergence measures to calculate inconsistency in-
dicators. Let Dε

E
(ckj , clj ) represent the divergence measure between ckj and clj , where ε
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Fig. 5. Comparison outcomes of consistency indicators and consistency-dependent average outflows.

is an identifier parameter from the set {1, 2, . . . , 5}. The formulas for the five divergence
measures based on chi-square distances (D1

E
and D2

E
), Canberra distances (D3

E
and D4

E
),

and the exponential function (D5
E

) are presented below:

D1
E(ckj , clj ) = (ukj − ulj )

2

1 + ukj + ulj

+ (vkj − vlj )
2

1 + vkj + vlj

+ (rkj − rlj )
2

1 + rkj + rlj
, (28)

D2
E(ckj , clj ) =

[
(ukj − ulj )

2

1 + ukj + ulj

+ (vkj − vlj )
2

1 + vkj + vlj

]
· e

(rkj −rlj )2

1+rkj +rlj , (29)

D3
E(ckj , clj ) = |ukj − ulj |

1 + ukj + ulj

+ |vkj − vlj |
1 + vkj + vlj

+ |rkj − rlj |
1 + rkj + rlj

, (30)

D4
E(ckj , clj ) =

[ |ukj − ulj |
1 + ukj + ulj

+ |vkj − vlj |
1 + vkj + vlj

]
· e

|rkj −rlj |
1+rkj +rlj , (31)

D5
E(ckj , clj ) = 1

2 · (e2 − 1)

[
(ukj − ulj ) · (

e

4·ukj
1+ukj +ulj − e

4·ulj
1+ukj +ulj

) + (vkj − vlj )·
(
e

4·vkj
1+vkj +vlj − e

4·vlj
1+vkj +vlj

) + (rkj − rlj ) · (e 4·rkj
1+rkj +rlj − e

4·rlj
1+rkj +rlj

)]
.

(32)

In the initial comparative analysis, the inclination parameter ϕ was systematically var-
ied from 0 to 1 in increments of 0.1. Using these eleven configurations, the study applied
the C-IF ELECTRE to the same supplier evaluation issue. Figure 5 illustrates the results
in two parts: Fig. 5(a) shows the distribution of consistency indicators Iϕ

C
(Ok/Ol) among

option pairs. The distribution remains stable for ϕ values between 0 and 0.4, but shifts sig-
nificantly when ϕ exceeds 0.5. As ϕ increases, Iϕ

C
(O2/O1), Iϕ

C
(O2/O3), and Iϕ

C
(O3/O1)

decrease, while Iϕ

C
(O1/O2), Iϕ

C
(O3/O2), and Iϕ

C
(O1/O3) increase. Figure 5(b) displays

the consistency-dependent average outflows Aϕ

C
(Ok) for each option. It reveals that the

average outflow of O1 is consistently the lowest across all ϕ values. As ϕ increases from
0 to 0.6, O2 has the highest average outflow, followed by O3. From ϕ = 0.7 to 1, O3

surpasses O2 in average outflow, indicating a shift in advantage. These findings suggest
that O2 is favoured at lower ϕ values, while O3 gains an advantage at higher ϕ values.

In the second comparative analysis, the study examined the combined effects of dif-
ferent inclination parameter values (ϕ = 0, 0.1, . . . , 1) and various C-IF distance and
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Fig. 6. Comparison outcomes of inconsistency indicators for distinct C-IF distance/divergence measures.

divergence measures on inconsistency indicators. It evaluated the C-IF Minkowski-like
distance D

ξ

M
with metric parameters ξ = 1, 2,∞, alongside five divergence measures

Dε
E

based on chi-square, Canberra, and exponential functions. The study tested these eight
measures: Manhattan-like D1

M
, Euclidean-like D2

M
, Chebyshev-like D∞

M
, chi-square D1

E

and D2
E

, Canberra D3
E

and D4
E

, and exponential D5
E

. It compared outcomes for various
parameter combinations, as shown in Fig. 6: (1) Similar trends: Inconsistency indicators
calculated with D1

M
, D2

M
, and D∞

M
showed high consistency. Likewise, results from di-

vergence measures D1
E

, D3
E

, and D5
E

aligned closely with those from the Minkowski-like
distances; (2) Distinct patterns: Line charts in Fig. 6(e) and (g) revealed unique trends,
suggesting these cases differ from others; and (3) Stable results: Indicators based on D2

E

and D4
E

remained relatively consistent across all ϕ values, contrasting with other mea-
sures that captured parameter variations more effectively. These findings highlight the C-
IF ELECTRE framework’s robustness in accommodating diverse distance and divergence
measures.

The third comparative analysis considered key parameters: inclination (ϕ =
0, 0.1, . . . , 1), metric (ξ = 1, 2,∞), and identifier (ε = 1, 2, . . . , 5). Figure 7 contrasts
outcomes of inconsistency-dependent average inflows across various C-IF distance/diver-
gence measures, including Manhattan, Euclidean, and Chebyshev distances (D1

M
, D2

M
,

and D∞
M

) from Chen (2023b) and five divergence measures (D1
E

–D5
E

) from Khan et al.
(2022). Key findings include: (1) Consistent trends: Radar charts in Fig. 7(a)–(d), (f), and
(h) show similar patterns across distance measures D1

M
, D2

M
, and D∞

M
and divergence

measures D1
E

, D3
E

, and D5
E

; (2) Distinct cases: Fig. 7(e) (D2
E

) and Fig. 7(g) (D4
E

) reveal
unique patterns, indicating these scenarios differ from others; and (3) Disadvantage pat-
terns: Across all ϕ values, option O1 shows the highest average inflow (disadvantage).
For ϕ from 0 to 0.4, O2 has the lowest inflow, followed by O3. When ϕ exceeds 0.5, O3

becomes the least disadvantaged, followed by O2. These results confirm that the C-IF
ELECTRE techniques produce consistent and reliable findings, regardless of the mea-
surement method used.

The fourth comparative study considered the parameters ϕ = 0, 0.1, . . . , 1, ξ =
1, 2,∞, and ε = 1, 2, . . . , 5. Figure 8 illustrates the overall net flow N ϕ

O
(Ok) for each

option, reflecting both the advantages from consistency indicators and disadvantages
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Fig. 7. Comparison outcomes of inconsistency-dependent average inflows.

Fig. 8. Comparison outcomes of overall net flows.

from inconsistency indicators. When using C-IF Manhattan, Euclidean, and Chebyshev
distances (D1

M
, D2

M
, and D∞

M
), or divergence measures based on Canberra distances

(D3
E
,D4

E
) and the exponential function (D5

E
), the rankings were O2 �ϕ

N O3 �ϕ

N O1 for
ϕ values from 0 to 0.5, and shifted to O3 �ϕ

N O2 �ϕ

N O1 for ϕ values from 0.6 to 1. With
the chi-square-based divergence measure D1

E
, the rankings remained O2 �ϕ

N O3 �ϕ

N O1

for ϕ between 0 and 0.4, but shifted to O3 �ϕ

N O2 �ϕ

N O1 for ϕ between 0.5 and 1. Using
D2

E
, the shift occurred later, with rankings changing from O2 �ϕ

N O3 �ϕ

N O1 (ϕ = 0
to 0.6) to O3 �ϕ

N O2 �ϕ

N O1 (ϕ = 0.7 to 1). These findings reveal how rankings vary
with ϕ values under different distance and divergence measures, offering insights into the
options’ performance across varying conditions.

7. Conclusions

The proposed C-IF ELECTRE I and II approaches effectively handle uncertainties, hes-
itancies, and imprecise data through C-IF theory. They integrate a scoring mechanism,
consistency and inconsistency indexing, and prioritization steps. Applied to supplier eval-
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uation tasks, these methods demonstrate practical utility and reliability. The key contri-
butions include: introducing the joint generalized scoring function, capturing decision-
maker preferences, developing the C-IF ELECTRE framework, and validating its benefits
through multi-expert supplier assessments.

The C-IF ELECTRE methodology, while effective for handling uncertainty in sup-
plier evaluations or other decision-making issues, requires careful parameter tuning,
may be complex for non-experts, and could face limitations in other fuzzy contexts or
decision-making scenarios, requiring further validation and adaptation for broader appli-
cability. Future research could broaden the application of the C-IF ELECTRE approach
and strengthen its validity through comparisons with other methods and model qual-
ity metrics. While this study focused on supplier evaluation, future work should apply
the approach to diverse fields—such as healthcare, project management, and environ-
mental sustainability—to assess its versatility. Comparative analyses with other decision-
making models, including traditional and fuzzy ELECTRE methods, would highlight the
unique strengths of the C-IF ELECTRE. Additionally, evaluating its stability and relia-
bility through metrics like accuracy and consistency would provide valuable quantitative
insights, further validating its effectiveness and practical value.
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