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Abstract. Intensity Modulated Radiation Therapy is an effective cancer treatment. Models based
on the Generalized Equivalent Uniform Dose (gEUD) provide radiation plans with excellent plan-
ning target volume coverage and low radiation for organs at risk. However, manual adjustment of
the parameters involved in gEUD is required to ensure that the plans meet patient-specific physical
restrictions. This paper proposes a radiotherapy planning methodology based on bi-level optimiza-
tion. We evaluated the proposed scheme in a real patient and compared the resulting irradiation
plans with those prepared by clinical planners in hospital devices. The results in terms of efficiency
and effectiveness are promising.
Key words: Intensity Modulated Radiation Therapy (IMRT), Genetic Algorithms, Generalized
Equivalent Uniform Dose (gEUD), Multi-Objective Optimization, Bi-Level Optimization.

1. Introduction

Intensity Modulated Radiation Therapy (IMRT) is an effective radiation therapy technique
in cancer treatment. It requires personalized irradiation plans (RT plans) that specify 3D
dose distributions which effectively destroy cancer cells while minimizing side effects on
healthy tissues. Subsequently, linear accelerators equipped with multileaf collimators de-
liver radiation beams to patients from several fixed angles. Each beam is decomposed into
a regular grid of (thousands of) beamlets with varying intensities that can be individu-
ally controlled. Therefore, every RT plan is defined by the specific intensities of all the
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beamlets over all beams. When preparing an RT plan, the goal is twofold. On the one
hand, plans are sought that ensure deposing the prescribed doses in planning target vol-
umes (PTVs), and, on the other hand, such plans should protect organs at risk (OARs).
These two goals are contradictory and, as such, must be traded-off, which means that high
quality RT plans, i.e. effective and at the same time causing as little harmful side effects
as possible, require significant efforts from the RT planners (Breedveld et al., 2019). This
contradiction leads the way to multi-objective optimization in IMRT.

To obtain effective RT plans, various multi-objective optimization models with several
radiation effect measures (or criteria, at least one measure for each PTV and OAR), phys-
ical or biological, have been proposed (Breedveld et al., 2019; Cho, 2018; Ehrgott et al.,
2010). Physical measures capture characteristics of dose distributions. Usually, in PTVs,
physical measures take the form of sums of absolute or squared values of the difference
between the delivered and prescribed doses. On the other hand, biological measures re-
fer to (estimated) biological effects of radiation in organs (Ólafsson et al., 2005). Doses
delivered to OARs are controlled by imposing physical constraints on acceptable average
or maximal radiation doses per voxel (a voxel being a 3D box constituting the irradia-
tion planning mesh). In PTVs and OARs, the appropriateness of dose distributions is also
assessed by the shapes of dose-volume histograms (DVHs). Favourable DVH shapes are
enforced by appropriate dose-volume constraints, which as a rule rend the optimization
problems nonconvex (Bortfeld, 1999). Given the multiplicity of beams, beamlets, and
voxels, the resulting models are computationally complex. The most handleable are lin-
ear or linearized models (Romeijn et al., 2006; Ólafsson and Wright, 2006). To handle
nonconvex constraints, in Breedveld and Heijmen (2017), the interior point method has
been adapted. Another approach to cope with nonconvexity is to resort to heuristics, or
a combination of heuristic and exact methods (Yihua Lan et al., 2006). Stochastic ap-
proaches are an alternative (Ahmad and Bergen, 2010; Moreno et al., 2021). Another
option is the convex formulation of dose-volume histograms constraints (Fu et al., 2019;
Romeijn et al., 2004). Finally, another possibility is to establish two types of dose-volume
constraints, namely hard and soft constraints, and define a solution of two stages, the first
more general and the second focused on the subthreshold voxels (Mukherjee et al., 2020).

Nowadays, capitalizing on the progress in oncology research, biologically-motivated
measures of radiation effects play an important role in clinical practice. Despite the dif-
ficulties in their implementation for clinical use, they are recommended by the ICRU.1
Reports as an advanced level of treatment reporting, incorporating evolving concepts.
Measures of dose distribution effectiveness, such as the tumour control probability (TCP)
and the normal tissue complication probability (NTCP) (Alber and Nüssli, 1999), the bi-
ologically effective dose (BED) (Saberian et al., 2015), and the generalized equivalent
uniform dose (gEUD) (Breedveld et al., 2019; Niemierko, 1996; Wu et al., 2002), are
gaining popularity. The gEUD metric, based on the linear-quadratic cell survival model,
has been reported to be the most relevant for radiotherapy (Niemierko, 1996; Wu et al.,
2002; Ólafsson et al., 2005). Therefore, it is the focus of this work.

1International Committee for Radiological Units.
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For gEUD-based RT planning optimization, optimal solutions can be efficiently com-
puted by gradient methods, as proposed in Choi and Deasy (2002). However, for every
PTV and OAR several parameters need to be set by the RT planner. Usually, the planner
starts from a set of parameters recommended in the literature and later adjusts them to the
particular patient case by trial and error, to satisfy the imposed physical constraints. The
quality of the final RT plan depends heavily on the knowledge and skills of the planner.

Anyway, gathering all clinical prescriptions in an optimization model to obtain auto-
matic planning is a challenge. Recent studies propose the integration of various models
to improve the quality of the computed optimal plans. For example, Huang et al. (2022)
computes the plans by performing meta-optimization of treatment planning hyperparam-
eters, and a meta-scoring is executed by constructing a tier list of the relevant criteria (e.g.
dose homogeneity, conformity, spillage, and OAR sparing). Wang et al. (2023b) explores
the use of Bayesian optimization methods to optimize the adjustable planning parame-
ters included in both the dose objectives and their corresponding weights. So Bayesian
optimization is used to solve a problem of a reduced dimension focused on the planning
parameters. In Wang et al. (2023a), a new approach for automatic planning based on an in-
tegrated deep reinforcement learning-based framework for the IMRT technique has been
proposed. In this approach, a hybrid objective function has been proposed that combine
gEUD and physical dose constraints, and the trained artificial neural network can mimic
the actions of the physician during optimization and adjust the plan parameters to ob-
tain high-quality plans. In Won et al. (2021), a dose volume-gEUD-based optimization
method to hippocampus-sparing whole-brain radiation therapy using volumetric mod-
ulated arc therapy has been applied and evaluated. The authors conclude that the dose
volume-gEUD optimization plan showed a better dosimetric profile compared to the dose
volume-based optimization one. However, in that work, the value of a parameter shaping
the gEUD function for the hippocampus is selected by inspecting ten integer values in the
range [1, 40] before the optimization step begins.

In our work, we try to fill this gap by automating the tuning of the gEUD parameters.
We present a novel bi-level optimization model that integrates the gEUD metric-based
model with the dose-volume constraints. In this work, we introduce two main contribu-
tions:

Firstly, we propose an RT planning methodology based on a bi-level optimization
scheme. On the lower level, a gEUD-based objective function with all its parameters fixed,
including the gEUD parameters, is optimized using an (exact) gradient algorithm. On the
upper level, these parameters are optimized using an evolutionary algorithm. The output
of this scheme is a collection of non-dominated RT plans, each representing a solution to
the multi-objective optimization problem, with varying priorities.

Secondly, to facilitate the analysis of these RT plans, we have developed a decision
tool. This tool assists the planner in selecting the final plan by providing comprehensive
information and comparisons between different plans, helping to make decisions.

The rest of the paper is structured as follows: In Section 2, we present the proposed
methodology for generating IMRT plans. Section 3 provides an explanation of PersEUD,
the system we have developed and implemented for delivering IMRT RT plans. In Sec-
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tion 4, we present the context and main results obtained from three RT plans using real
patient data. Finally, Section 5 summarizes the conclusions drawn from our study.

2. Computational Methods and Theory: IMRT Planning Based on the gEUD and
Physical Constraints

This section describes the proposed methodology for obtaining IMRT plans by combin-
ing gEUD and physical constraints based on oncology physicians’ recommendations and
individual patient anatomy.

To facilitate the reading, the notation used throughout the paper is summarized in the
Table 1.

2.1. gEUD-Based IMRT Planning

RT planning can be viewed as an optimization process, in which the fluence maps, repre-
sented by vectors of non-negative numbers x, define the radiation intensities of individual
beamlets. Deposition matrices D translate fluencies x to doses deposited in voxels, so that
the doses in voxels are computed as product Dx. The RT planning goal is to compute flu-
encies x that deposit prescribed and homogeneous doses to PTVs and acceptable doses to
OARs.

gEUD is a biology-motivated measure to evaluate radiation effects, based on the con-
cept of the uniform radiation dose delivered to a patient organ, that causes the same effect
as a nonuniform dose (Niemierko, 1996; Wu et al., 2002). In the case of gEUD, radiation
effects in a PTV or an OAR, both referred to as structure s, are evaluated by the following
function that aggregates these effects over all voxels belonging to the structure s:

gEUDs(x, as) =
(

1

|Ms |
∑
j∈Ms

dj (x)as

) 1
as

, (1)

Table 1
Notation and naming conventions.

Notation Meaning

x fluence map
D deposition matrix (translates x to doses in voxels)
Dj j -th row of D

d(x) = Dx vector of doses deposited in voxels
dj (x) = Dj x dose deposited in voxel j

T = {t} set of indices of PTVs
Mt set of voxels in t-th PTV
EUD0

t prescribed uniform dose for t-th PTV
R = {r} set of indices of OARs
Mr set of voxels in r-th OAR
EUD0

r maximal uniform dose for r-th OAR
P = {p} ⊆ R subset of high-priority protected OARs
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where |Ms | is the number of voxels of the structure s; dj (x) = Djx is the radiation dose
deposited in voxel j of structure s by fluence map x and the parameter as represents the
radiation effect on the structure. Its value can be taken from the literature or it can be
adjusted individually by trial and error for each patient case.

According to Wu et al. (2002), clinically meaningful RT plans can be obtained by
computing the maximum of the following function F(x, φ), built over the gEUD:

F(x, φ) =
∏
t∈T

1

1 + ( EUD0
t

gEUDt (x,at )

)nt

·
∏
r∈R

1

1 + ( gEUDr(x,ar )

EUD0
r

)nr
, (2)

where EUD0
t is the prescribed dose for t-th PTV, EUD0

r is the maximum uniform dose
at r-th OAR; nr and nt express the importance of the prescriptions for the corresponding
structure; φ represents the set of parameters involved in the F definition, i.e., φ is an
instance of parameters nt , nr , at , ar and EUD0

r with t ∈ T , r ∈ R.
As is, the objective function F(x, φ) only controls underdosage inside PTVs. However,

overdosage control in those volumes is also important. For this purpose it is common to
define complementary structures, introduced as “virtual PTVs” in Wu et al. (2002), that
are treated as OARs. In this work, for each PTV we have defined a virtual PTV. To lighten
optimization costs, we have interrelated the respective parameters, namely, for each PTV t ,
the corresponding virtual PTV r has EUD0

r = EUD0
t + 1, ar = −at and nr = nt .

In Choi and Deasy (2002), the convexity of function (1) was studied. It was shown
that for a range of parameters, function (1) is a convex function of fluence maps (x).
In Romeijn et al. (2004), the convexity of (2) was analysed and the conclusion was that it
is convex for the range of values of the parameters as considered in practice. This means
that IMRT RT plans can be efficiently obtained by gradient methods, as suggested in Wu
et al. (2002).

RT planning based on maximization of function F(x, φ) goes as follows. At the start,
the values of nt , nr , at , ar , t ∈ T , r ∈ R, are selected according to suggestions from the
literature. Next, in successive planning cycles, the parameters ap and EUD0

p, p ∈ P ,
are manually tuned by the RT planner. This is a tiresome and time-consuming process,
requiring high-expertise planners. In this work, we propose to select the gEUD parameters
automatically by multi-objective optimization. In the next section, we present this idea in
more detail.

2.2. Multi-Objective Optimization for gEUD-Based IMRT Planning

Automated parameter tuning can result in several, even many, RT plans generated in one
planning session. We present a multi-objective optimization model which serves that pur-
pose. We also outline a novel approach to solve this model by a hybrid optimization
scheme, coupling exact and heuristic (evolutionary) optimization methods.
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2.2.1. The Multi-Objective Optimization Model
Here we present a multi-objective optimization model capable of handling physical con-
straints imposed on RT plans. Such constraints are individually selected in the optimiza-
tion process based on the individual patient’s anatomy.

For structure s we consider the following dose distribution statistical measures:

Dmin
s (x) = min

j∈Ms

dj (x),

Ds(x) = 1

|Ms |
∑
j∈Ms

dj (x), (3)

Dmax
s (x) = max

j∈Ms

dj (x).

With these measures we define constraints in structures. Four constraints are defined
for each PTV:

Dmin
t (x) � LBt ,

Dt (x) � LBt ,

Dt (x) � UBt

Dmax
t (x) � UBt,

(4)

where, for given t , LBt and UBt are the lower and upper bound for the dose in any voxel
of the structure, LBt , UBt are lower and upper bound for the average dose in the structure.

Doses in parallel2 OARs are constrained by upper bounds on the average dose in the
structure:

Dr(x) � UBr, (5)

whereas doses in serial3 OARs are constrained by upper bounds on the maximal dose in
individual voxels of the structure:

Dmax
r (x) � UBr. (6)

Constraint violations in structures, PTVs and OARs, are captured by the following
constraint violation functions:

2An organ is called parallel if its functionality is preserved despite partial radiation damage, e.g. the salivary
gland.

3An organ is called serial if it loses its functionality completely if any part of it is damaged, e.g. the spinal
cord.
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Cmin
s (x) =

{
LBs − Dmin

s (x), if LBs is defined in s and LBs > Dmin
s (x),

0, otherwise;

Cmin
s (x) =

{
LBs − Ds(x), if LBs is defined in s and LBs > Ds(x),

0, otherwise;

Cmax
s (x) =

{
Ds(x) − UBs, if UBs is defined in s and UBs < Ds(x),

0, otherwise;

Cmax
s (x) =

{
Dmax

s (x) − UBs, if UBs is defined in s and UBs < Dmax
s (x),

0, otherwise.

(7)

Since obviously constraint violations should be minimized, we formulate the following
objective functions. The first function, denoted f0, aggregates constraint violations over
all structures:

f0(x) =
∑
s∈S

Cmin
s (x) + Cmin

s (x) + Cmax
s (x) + Cmax

s (x). (8)

The priorities to protect the distinguished subsets of OARs, indexed by p, p ∈ P ⊆ R,
are represented in the model by separate objective functions being the averages of the
deposited doses, Dp(x):

fp(x) = Dp(x), p ∈ P, (9)

or

fp(x) = Dmax
p (x), p ∈ P. (10)

Clearly, low values of individual functions f0, f1, . . . , f|P | signal acceptable plans.
The multi-objective optimization problem consists of |P | + 1 objective functions

f0, . . . , f|P |, all of them to be minimized:

min
X

(f0, f1, . . . , f|P |), (11)

where X is the set of technically feasible fluencies.
This model applies for any method of fluence map optimization, capable to handle

functions (8) and (9).
The classical approach to use model (11) for RT planning, with no reference to the

gEUD, would be to produce a set of fluence maps x for which f0(x), . . . , f|P |(x) are mu-
tually nondominated or, with the use of exact optimization methods, even nondominated
in X. That can be achieved with a form of scalarization of the multi-objective problem (11)
(Ehrgott et al., 2010; Kaliszewski et al., 2016).
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2.2.2. Combining the Multi-Objective Optimization Model and the gEUD-Based
Optimization

We propose the following iterative scheme for automated tuning of gEUD parameters, i.e.
elements of φ, φ ∈ �, where � is the set of admissible parameters φ. In each iteration:

1. Each collection of gEUD parameters φ is evaluated with respect to values of |P | + 1
criteria f0(x

∗(φ)), . . . , f|P |(x∗(φ)), where x∗(φ) = argmaxX F(x, φ) is derived by
an exact optimizer.

2. A multi-objective evolutionary optimization algorithm searches set � for collections
of parameters φ, φ ∈ �, such that tuples f0(x

∗(φ)), . . . , f|P |(x∗(φ)) are mutually
nondominated and they dominate analogous tuples derived in the previous iteration.

The process stops when the differences between tuples in successive iterations become
insignificant. The final collection of tuples (f0(x

∗(φ)), . . . , f|P |(x∗(φ))) represents an
approximation of the Pareto efficient set of RT plans x∗(φ) (the set of all nondominated
RT plans at the final iteration).

A distinctive feature of this scheme is that it hybridizes exact and heuristic optimization
methods (Jourdan et al., 2009).

3. An IMRT Planning System with Automated gEUD Parameter Tuning: PersEUD

We have developed and implemented a system, named PersEUD, to deliver IMRT RT
plans based on the gEUD, automated parameter φ tuning, and the optimization hybrid
scheme described in Section 2.2.2. It is composed of four modules:

1. EUDGD, to deliver the optimal solutions x∗(φ) maximizing function (2) for a given
collection of parameters φ,

2. EvalMO, to compute values of functions f0, f1, . . . , f|P | for x∗(φ),
3. EvolTuning, a multi-objective evolutionary algorithm, to provide collections of pa-

rameters φ, nondominated in terms of functions f0, f1, . . . , f|P |,
4. Decision Tool, to control the number of collections of parameters φ presented to RT

planners.

The flow diagram of PersEUD is shown in Fig. 1. One run of the EvolTuning mod-
ule produces K collections of parameters φ, mutually nondominated in terms of func-
tions f0, f1, . . . , f|P |. For each φk, k ∈ K , the module EUDGD computes x∗(φk)

that maximizes function (2) and next, the module EvalMO computes values of functions
f0, f1, . . . , f|P |. These values are used by the EvolTuning module to identify mutually
nondominated parameters φ directing in turn the search for new K collections of φ.

It is worth mentioning the versatility of PersEUD, as it can easily accommodate al-
ternative criteria, because criteria f0, f1, . . . , f|P | are only involved in EvalMO module.
The next four subsections provide more detailed descriptions of the modules of PersEUD.
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Fig. 1. PersEUD flow diagram.

3.1. The EUDGD Module

To maximize function (2), the Gradient Descent method has been custom-coded and the
resulting algorithm (GD) is the backbone of the EUDGD module.

The EUDGD module receives as inputs for each patient case: the patient data, the
deposition matrix, the beamlet geometry, the ROI segmentation, parameters φ and the
number of steps. It returns the optimal fluence x∗(φ). To generate feasible fluence maps,
the EUDGD module needs additional configuration parameters. In the current software
release, these parameters are set to default values, but they can be customized. The default
GD parameter values reported in this work are: 20000 descent steps, 2e−7 step size, and
0.3 as the maximum beamlet intensity limit. Lastly, a 3× smoothing kernel has been ap-
plied to all beamlets after every descent step to facilitate the delivery of fluencies defined
by RT plans by the radiation equipment.

The number of descent steps required by EUDGD to provide acceptable fluence maps
and the size of the auxiliary data structures result in high computational and memory de-
mands. To maximize function (2) in reasonable times, we have applied High Performance
Computing software and hardware techniques, as described in Moreno et al. (2022).
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3.2. The EvalMO Module

For fluence maps x∗(φk) delivered by the EUDGD module, the EvalMO module com-
putes the values of functions f0(x

∗(φk)), . . . , f|P |(x∗(φk)) and sends them to EvolTuning
module.

3.3. The EvolTuning Module

The EvolTuning consists of a multi-objective evolutionary optimization algorithm that
derives parameters φ. It is initialized with collections of ns, as, EUD0

s , s ∈ T ∪R. In order
to generate clinically acceptable plans and reduce the search space of the evolutionary
process, feasibility ranges for each kind of parameter are to be set accordingly.

For the current implementation, the MOEA/D algorithm has been selected and seeded
with parameter values recommended in Zhang and Li (2007), with the exception of the
number of generations (epochs) that is set to 50 and the cardinality of populations set to
150.

EvolTuning uses the evaluations received from EvalMO to generate new collections
of (potentially improved) parameters φ. The process stops when the limit of generations
is reached. As a result, 150 mutually nondominated collections φ of parameters of func-
tion (2), each collection yielding radiation plan in the form of fluence map x∗(x), 150
plans in all, constitute an approximation of the set of Pareto efficient collections φ (in
terms of functions f0, . . . , f|P |).

3.4. Decision Tool

To avoid overwhelming the RT planner with so many plans, the module Decision Tool
reduces the set of mutually nondominated collections φ. It performs this task as follows:

First, plans that minimize objective functions f0, f1, . . . , f|P | separately are selected,
and they define the extreme points of the respective Pareto front. Next, a limited number
of plans, fairly distributed between those extreme points, are added to form the reduced
approximation of the Pareto front. Observe that even if f0 for some plan takes a positive but
small value (meaning that there are some constraint violations), it can be still a clinically
viable option as long as it offers plausible values of f1, . . . , f|P | at the price of a small
constraint violation.

4. Results

As the proof of concept of our proposed methodology, we have prepared three RT plans
for real patient data specified in Section 4.2.

The EUDGD module uses a radiation dose deposition model, yielding the deposition
matrix D, developed by researchers at the Faculty of Electrical Engineering of the Warsaw
University of Technology (Starzyński et al., 2015). The final plan evaluations have been
carried out using the commercially available treatment planning system Eclipse (v 15.6,
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Varian Medical Company). By this, the dose deposition model, as well as the proposed
methodology, were tested in a clinical regime.

4.1. Implementation and Experimentation Platforms

The gEUD-based RT planning system, described in the previous section, consists of mul-
tiple modules connected by a messaging system based on the ZeroMQ library (ZeroMQ,
2023).

The EvolTuning module is implemented in Java and it takes advantage of the well-
known jMetal framework (Durillo and Nebro, 2011). This framework provides well-
crafted implementations of multiple algorithms, allowing the user to select the best one for
a given problem. Although in this experimentation we have used the MOEA/D algorithm,
our modular system allows us to swap the evolutionary algorithm with minimal changes.

For the EUDGD and EvalMO modules, we have developed two versions: a CUDA C
(NVIDIA, 2023) version for NVIDIA-based GPUs, and an OpenMP C (OpenMP, 2023)
version for multicore CPUs. These two versions can be used interchangeably or even in
parallel to fully exploit all the available resources of the given platform.

Finally, the Decision Tool is a Python-based script that is called after the EvolTuning
process terminates. All the figures shown in this section are generated using Python tools
implemented in the Decision Tool module.

Our experiments have been run on the High-Performance Cluster of the SAL
(Supercomputación–Algoritmos) research group, located at the University of Almeria.
Two kinds of computing nodes have been used. The first node contains two AMD EPYC
7302 (32 CPU cores), 512 GB of DDR4 RAM, and two NVIDIA Tesla V100 (32 GB).
The second node contains two Intel Xeon E5-2620v3 (12 CPU cores), 64 GB of DDR3
RAM, and two NVIDIA Kepler K80 (12 GB).

4.2. Patient Data and Plan Evaluation Metrics

For the experimentation, we have used a Head and Neck IMRT real patient case treated
with nine radiation beams. In this case, three PTVs with different prescribing radiation
dose deposition levels 66 Gy, 60 Gy and 54 Gy (Gray, symbol Gy, is a unit of radia-
tion dose) are defined. The most important is the PTV with the highest prescribed dose
(PTV66) because the highest concentration of tumour cells is there. The other two PTVs
are treated prophylactically, so the dose distribution homogeneity in them is less critical.
In addition, five OARs are singled out: the spinal cord +3mm, the brainstem +3mm, the
left salivary gland, the right salivary gland, and the mandible. Also, the normal tissue is
defined as a region of the patient body outside all OARs and all PTVs. The dose deposition
model contains 30265 beamlets interacting with 94647 voxels representing the irradiated
part of the patient body.

Physical restrictions imposed on RT plans by oncology physicians are converted to the
bounds defined in the model presented in Subsection 2.2.1. Table 2 presents the respective
bound values for organs considered in the experiments. Those values are repeated also in
Table 4 and Table 6. The bound values for PTVs are set by the following rules:
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Table 2
Plan 1. Dose bounds, actual doses, and Dx% metrics. Values that exceed their constraint are marked in bold.

Dose bounds Dose Dx%

Region of Interest LB LB UB UB Act. Bound Act.
Gy

Normal tissue – – – 74.25 71.52 – –
Mandible – – – 70.00 68.28 – –
Salivary gland R. – – 26.00 – 14.26 – –
Salivary gland L. – – 26.00 – 12.56 – –
Spinal cord +3mm – – – 50.00 41.43 – –
Brainstem +3mm – – – 60.00 28.67 – –
PTV54 48.60 52.92 55.08 59.40 53.47 – –

D98% for PTV54 – – – – – 51.30 48.00
D2% for PTV54 – – – – – 57.78 56.22

PTV60 54.00 58.80 61.20 66.00 60.04 – –
D98% for PTV60 – – – – – 57.00 52.06
D2% for PTV60 – – – – – 64.20 64.70

PTV66 59.40 64.67 67.32 72.60 66.00 – –
D98% for PTV66 – – – – – 62.70 63.74
D2% for PTV66 – – – – – 70.62 67.32

LBt = 0.90 × prescribed dose for PTVt ,
LBt = 0.98 × prescribed dose for PTVt ,
UBt = 1.02 × prescribed dose for PTVt ,
UBt = 1.10 × prescribed dose for PTVt , t ∈ T .
Explicit constraints on DVH shapes are not a part of model (11) as they are implicitly

controlled by gEUD. On the other hand, the DVH shape for PTVs ideally should look like
the sequence of three-line segments: horizontal (at 100% level), vertical (at the prescribed
deposited dose value), and horizontal again (at 0% level) (cf. Fig. 2, Fig. 4, Fig. 6). DVHs
are primary tool to verify ex-post the homogeneity of dose distributions in PTVs. As such,
they are always visually inspected by RT planers and oncology physicians for a holistic
evaluation. A proxy measure of PTV homogeneity is the dose-volume metric Dx%. For a
given PTV, Dx% is the minimal dose deposited in x% of the most irradiated PTV voxels.

In our case, metrics D98% and D2% are used, namely plans are to satisfy
D98% � 95% × prescribed dose for PTVt , and
D2% � 107% × prescribed dose for PTVt (i.e. in the latter case: the minimal dose

deposited in 2% of the most irradiated PTV voxels should be less or equal than 107% ×
EUD0

t ).
By this, we have the following levels of Dx%

for PTV66 Gy: D98% � 62.70 Gy, D2% � 70.62 Gy,
for PTV60 Gy: D98% � 57.00 Gy, D2% � 64.20 Gy,
for PTV54 Gy: D98% � 51.30 Gy, D2% � 57.78 Gy.
D2% and D98% represent two points on the respective DVHs, thus they give a rough

characterization of DVHs.
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4.3. Numerical Experiments

The planning system PersEUD is run three times, each time with a different aim. The aim
of the first run is to derive a number (150 by default) of mutually nondominated plans
that compromise constraint violations versus the sum of the average of radiation doses
deposited in the left and the right salivary glands (a bi-objective optimization problem).
In the second run, the aim is to derive plans that compromise constraint violations versus
doses deposited in the spinal cord + 3mm (a bi-objective optimization problem), whereas,
in the third run, the aim is to derive plans that compromise constraint violations versus
doses deposited in the left and the right salivary gland versus doses deposited in the spinal
cord +3mm (a tri-criteria optimization problem).

The derived plans are evaluated by medical physicist experts (below: the Experts) who,
in their daily work, make treatment plans in a commercial RT planning system in a series
of try-and-correct interactions. Once they are satisfied with the result, they submit the plan
to the oncology physician responsible for the case for approval. If the plan is disapproved,
the process is repeated. In complex cases, two or three cycles may be needed to secure the
final physician approval.

In the whole process, they deal with one RT plan at a time. The three runs of PersEUD
produce 450 plans, fully automatic. For proof-of-concept analyses, the Experts selected
one plan from those produced in each PersEUD run and pre-selected by the Decision Tool
module.

4.4. PersEUD Run 1: Compromising Constraint Violations Versus the Sum of the
Average of Radiation Doses Deposited in Both Salivary Glands

To fulfill the aim of the first PersEUD run, the second objective f1 is the sum of the average
radiation doses deposited in both glands, |P | = 1, and f0 is defined by formula (8).

From the resulting RT plans, Experts select one that does not violate any constraint
(f0(x) = 0). This plan is denoted as Plan 1 and it is presented in Table 2. Table 3 presents
the parameters of gEUD measures and of the function F(x, φ) for this plan, Fig. 2 presents
its dose-volume histograms, and Fig. 3, the dose distributions for this plan on two exem-
plary cross sections of the patient irradiated part (head and neck).

As seen in Table 2, this plan provides adequate dose distributions in PTVs, and, as
intended, preserves both salivary glands, and it does this surprisingly well. The average
doses are 14.26 Gy for the right and 12.56 Gy for the left salivary gland. These values are
well below the imposed bound of 26 Gy. All other OARs with no protection priority are
also below their acceptable maximal doses. The most notable is the maximum dose in the
spinal cord +3mm, equal to 41.43 Gy, while the bound is 50 Gy, and the maximum dose
in the brainstem +3mm, equal to 28.67 Gy, while the bound is 60.00 Gy.

The actual average dose deposited in PTV66 (the most important PTV) is 66 Gy, as
prescribed, and D98% � 62.70 Gy and D2% � 70.62Gy.

The actual average dose deposited in PTV60 is 60.04 Gy and that is almost the perfect
match as this value is within ±2% range from the target value. However, D98% is signifi-
cantly unmet (52.06 Gy vs 57.00 Gy expected) due to the protection of the salivary gland.
D2% is also exceeded but by a clinically insignificant value.
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Table 3
Plan 1. Parameters of gEUD (as ) and of F(x, φ) (ns ). Black: Parameters φ suggested in
the literature. Blue: Parameter search ranges. Green: Optimal parameters derived by the

EvolTuning module.

Region of Int. EUD0
s as ns

Normal tissue 74.25 40.00 5.00
Mandible 70.00 10.00 5.00
Salivary gland R. [0.5, 26] : 4.37 [1, 100] : 1.01 [1, 100] : 100.00
Salivary gland L. [0.5, 26] : 3.93 [1, 100] : 1.19 [1, 100] : 18.04
Spinal cord +3mm 50.00 10.00 5.00
Brainstem +3mm 60.00 10.00 5.00
PTV54 54.00 [−100, −1] : −96.04 [1, 100] : 34.41
PTV60 60.00 [−100, −1] : −62.81 [1, 100] : 66.77
PTV66 66.00 [−100, −1] : −90.32 [1, 100] : 92.63

Fig. 2. Plan 1. Dose-volume histograms.

The actual average dose deposited in PTV54 is 53.47 Gy and that is also almost the
perfect match as this value is within ±2% range from the target value. Moreover, D2% �
57.78 Gy, but D98% �� 51.30.

As mentioned earlier, in regions treated prophylactically (in the considered case PTV
60 and PTV54) slight violations of D98% and D2% related constraints are acceptable.

4.5. PersEUD Run 2: Compromising Constraint Violations Versus Doses Deposited in
the Spinal Cord +3mm

To fulfill the aim of the second PersEUD run, the second objective f1 is the average radi-
ation dose deposited in the spinal cord +3mm, |P | = 1, and f0 is defined by formula (8).
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Fig. 3. Plan 1. Dose distributions for Z = 75 (left) and Z = 91 (right). Brown: Normal tissue. Pink: Mandible.
Green: Salivary gland R. Blue: Salivary gland L. Cyan: Spinal cord +3mm. Red: PTV54. Orange: PTV60.

Table 4
Plan 2. Dose bounds, actual doses, and Dx% metrics. Values that exceed their constraint are marked in bold.

Region of Interest Dose bounds Dose Dx%

LB LB UB UB Act. Bound Act.
Gy

Normal tissue – – – 74.25 67.30 – –
Mandible – – – 70.00 71.13 – –
Salivary gland R. – – 26.00 – 22.08 – –
Salivary gland L. – – 26.00 – 22.19 – –
Spinal cord +3mm – – – 50.00 11.02 – –
Brainstem +3mm – – – 60.00 9.71 – –
PTV54 48.60 52.92 55.08 59.40 54.30 – –

D98% for PTV54 – – – 51.30 48.03
D2% for PTV54 – – – – – 57.78 58.81

PTV60 54.00 58.80 61.20 66.00 59.68 – –
D98% for PTV60 – – – – – 57.00 58.81
D2% for PTV60 – – – – – 64.20 63.80

PTV66 59.40 64.67 67.32 72.60 66.00 – –
D98% for PTV66 – – – – – 62.70 60.87
D2% for PTV66 – – – – – 70.62 71.66

From the resulting RT plans, the Experts select one that does not violate any constraint
(f0(x) = 0). This plan is denoted as Plan 2 and is presented in Table 4. Table 5 presents
parameters of gEUD and of function F(x, φ) for this plan. Fig. 4 presents its dose-volume
histograms, and Fig. 5, the dose distributions for this plan on two exemplary cross sections
of the patient irradiated part (head and neck).

In Plan 2, the maximum dose deposited in the spinal cord +3mm is 11.02 Gy, notice-
ably lower than in the Plan 1. Although protection of the salivary glands in this plan is not
a priority, the average dose is 22.19 Gy and 22.08 Gy in the left and right salivary gland,
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Table 5
Plan 2. Parameters of gEUD (as ) and of F(x, φ) (ns ). Black: Parameters φ suggested in
the literature. Blue: Parameter search ranges. Green: Optimal parameters derived by the

EvolTuning module.

Region of Int. EUD0
s as ns

Normal tissue 74.25 40.00 5.00
Mandible 70.00 10.00 5.00
Salivary gland R. 26.00 1.00 5.00
Salivary gland L. 26.00 1.00 5.00
Spinal cord +3mm [0.5, 50] : 0.50 [1, 50] : 49.30 [1, 100] : 10.25
Brainstem +3mm 60.00 10.00 5.00
PTV54 54.00 [−100, −1] : −67.50 [1, 100] : 17.76
PTV60 60.00 [−100, −1] : −49.83 [1, 100] : 25.35
PTV66 66.00 [−100, −1] : −7.02 [1, 100] : 14.07

Fig. 4. Plan 2. Dose-volume histograms.

respectively, which is far below the dose tolerance for these organs. This is at the price of
a slight violation of the maximal dose allowed in the mandible (70 Gy) where the actual
dose deposited is 71.13 Gy.

The actual average dose deposited in PTV66 is 66 Gy, as prescribed. However,
D98% �� 62.70 Gy (violation by 1.83 Gy), and D2% �� 70.62 Gy (violation by 1.04 Gy).

The actual average dose deposited in PTV60 is 59.68 Gy and that is almost the per-
fect match as this value is within ±2% range from the target value. Moreover, D98% �
57.00 Gy and D2% � 64.20 Gy.

The actual average dose deposited in PTV54 is 54.30 Gy and that is also almost the
perfect match as this value is within ±2% range from the target value. However, D98% ��
51.30 Gy, but D2% � 57.78 Gy.
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Fig. 5. Plan 2. Dose distributions for Z = 75 (left) and Z = 91 (right). Brown: Normal tissue. Pink: Mandible.
Green: Salivary gland R. Blue: Salivary gland L. Cyan: Spinal cord +3mm. Red: PTV54. Orange: PTV60.

As mentioned earlier, in regions treated prophylactically (i.e. PTV 60 and PTV54)
slight violations of D98% and D2% related constraints are acceptable.

4.6. PersEUD Run 3: Compromising Constraint Violations Versus Doses Deposited in
the Left and the Right Salivary Gland Versus Doses Deposited in the Spinal Cord
+3mm

To fulfill the aim of the third PersEUD run, the second objective function f1 is the average
of the radiation doses deposited in the left and the right salivary glands, the third objective
function is the maximal radiation dose deposited in the spinal cord +3mm, |P | = 2, and
f0 is defined by formula (8).

From the resulting RT plans, the Experts select one that does not violate any constraint
(f (x) = 0). This plan is denoted as Plan 3 and is presented in Table 6. Table 7 presents
parameters of gEUD and of function F(x, φ) for this plan, Fig. 6 presents its dose-volume
histograms, and Fig. 7, the dose distributions for this plan on two exemplary cross sections
of the 3D model of the patient irradiated part (head and neck).

In Plan 3, the average dose deposited in the right and the left salivary gland is 13.94
Gy and 13.14 Gy, respectively. This is much lower than the maximal admissible value
of 26 Gy, while the maximal dose deposited in the spinal cord +3mm is 24.06 Gy (the
maximal acceptable value is 50 Gy). Although Plan 1 and Plan 2 offer slightly lower doses
in respective priority protected OARs (the salivary glands in the first case, and the spinal
cord +3mm in the second case), Plan 3 well balances the doses delivered to both salivary
glands and to the spinal cord +3mm.

The actual average dose deposited in PTV66 is 66 Gy, as prescribed, and D98% �
62.70 Gy, and D2% � 70.62 Gy. The actual average dose deposited in PTV60 is 60.28
Gy, within ±2% range from the target value. Moreover, D98% �� 57.00 Gy and D2% �
64.20 Gy. The actual average dose deposited in PTV54 is 55.34 Gy and that is also almost
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Table 6
Plan 3. Dose bounds, actual doses, and Dx% metrics. Values that exceed their constraint are marked in bold.

Region of Interest Dose bounds Dose Dx%

LB LB UB UB Act. Bound Act.
Gy

Normal tissue – – – 74.25 73.14 – –
Mandible – – – 70.00 69.83 – –
Salivary gland R. – – 26.00 – 13.94 – –
Salivary gland L. – – 26.00 – 13.14 – –
Spinal cord +3mm – – – 50.00 24.06 – –
Brainstem +3mm – – – 60.00 21.78 – –
PTV54 48.60 52.92 55.08 59.40 55.34 – –

D98% for PTV54 – – – – – 51.30 49.64
D2% for PTV54 – – – – – 57.78 59.13

PTV60 54.00 58.80 61.20 66.00 60.27 – –
D98% for PTV60 – – – – – 57.00 52.30
D2% for PTV60 – – – – – 64.20 65.49

PTV66 59.40 64.67 67.32 72.60 66.00 – –
D98% for PTV66 – – – – – 62.70 63.15
D2% for PTV66 – – – – – 70.62 67.63

Table 7
Plan 3. Parameters of gEUD (as ) and of F(x, φ) (ns ). Black: Parameters φ suggested in
the literature. Blue: Parameter search ranges. Green: Optimal parameters derived by the

EvolTuning module.

Region of Int. EUD0
s as ns

Normal tissue 74.25 40.00 5.00
Mandible 70.00 10.00 5.00
Salivary gland R. [0.5, 26] : 4.76 [1, 100] : 1.01 [1, 100] : 18.25
Salivary gland L. [0.5, 26] : 3.79 [1, 100] : 1.31 [1, 100] : 11.17
Spinal cord +3mm [0.5, 50] : 1.80 [1, 50] : 1.33 [1, 100] : 12.79
Brainstem +3mm 60.00 10.00 5.00
PTV54 54.00 [−100, −1] : −65.55 [1, 100] : 54.11
PTV60 60.00 [−100, −1] : −87.12 [1, 100] : 57.66
PTV66 66.00 [−100, −1] : −33.27 [1, 100] : 18.62

the perfect match as this value is within ±2.5% range from the target value. However,
D98% �� 51.30 Gy, but D2% � 57.78 Gy.

As mentioned earlier, in regions treated prophylactically (i.e. PTV60 and PTV54)
slight violations of D98% and D2% related constraints are acceptable.

4.7. Analysis of PersEUD Plans in a Clinical Setting

Table 8 provides a comparison of the three plans. At a glance, the Experts disapproved
Plan 2 due to its underperformance in PTV66, the most important PTV in the considered
case. The explanation for the disapproval is that such an underperformance cannot be
outweighed by the excellent performance in the spinal cord +3mm and the brainstem
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Fig. 6. Plan 3. Dose-volume histograms.

Fig. 7. Plan 3. Dose distributions for Z = 75 (left) and Z = 91 (right). Brown: Normal tissue. Pink: Mandible.
Green: Salivary gland R. Blue: Salivary gland L. Cyan: Spinal cord +3mm. Red: PTV54. Orange: PTV60.

+3mm. From the remaining two, the Experts prefer Plan 3 because it offers low radiation
doses deposited in both salivary glands, the spinal cord +3mm, and brainstem +3mm.

To verify the clinical viability of Plan 3 (below: P3), we compare it with two plans
prepared by the Expert in EclipseTM Treatment Planning system (below: Eclipse) from
Varian Medical Systems, namely:

R1 Starting plan: an RT plan generated automatically by Eclipse at the start of the plan-
ning process.
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Table 8
A comparison table for the three plans. Values that exceed their corresponding constraint

are marked in bold.

Region of Interest Bound type Bound Plan 1 Plan 2 Plan 3
Gy

Normal tissue Average 74.25 71.52 67.30 73.14
Mandible Maximum 70.00 68.28 71.13 69.83
Salivary gland R. Average 26.00 14.26 22.08 13.94
Salivary gland L. Average 26.00 12.56 22.19 13.14
Spinal cord +3mm Maximum 50.00 41.43 11.02 24.06
Brainstem +3mm Maximum 60.00 28.67 9.71 21.79
PTV54 Average 54.00 53.47 54.30 55.34

D98% 51.30 48.00 48.03 49.64
D2% 57.78 56.22 58.81 59.13

PTV60 Average 60.00 60.04 59.68 60.27
D98% 57.00 52.06 58.81 52.30
D2% 64.20 64.76 63.80 65.49

PTV66 Average 66.00 66.00 66.00 66.00
D98% 62.70 63.74 60.87 63.15
D2% 70.62 67.32 71.66 67.63

Fig. 8. DVHs of Plan 3 (solid) compared with R1, the starting plan (dashed).

R2 Blind-expert plan: an RT plan prepared by the Expert without seeing P3.

All plans have to satisfy the same constraints (specified in Table 6). The comparisons
are by DVH and, for illustration, by one representative cross section of the patient model.

The first comparison (Fig. 8) is between P3 and R1. As displayed, P3 reduces the doses
delivered to all OARs, with comparable or better dose distributions in PTVs.

When comparing P3 with R2 (Fig. 9), R2 provides a better dose distribution in PTVs,
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Fig. 9. DVHs of plan 3 (solid) compared with the plan R2, the blind-expert plan (dashed).

Fig. 10. DVHs of the guided plan R3 (solid) compared with R2 (dashed).

however at the expense of higher dose deposited in OARs, especially in both salivary
glands and the spinal cord +3mm. Notably, in P3 the doses deposited in the salivary
glands are 20% lower than in R2. And in P3 the dose deposited in PTV66 is within the
specified bounds.

Next, in Fig. 11, we compare with Guided-expert plan (R3), a plan prepared by the
Expert using P3 as the Eclipse starting plan, with R2 (Fig. 10). R3 provides a similar to
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Fig. 11. Dose deposition of the four compared plans for Z = 83. Only doses higher than 51.3 Gy are represented.

R2 dose distribution in PTVs and a significant reduction in the doses deposited in OARs.
This shows that plans produced by the PersEUD system can be used to enhance RT plans
produced by commercial systems currently in use.

As preliminary conclusions from our work, it can be assumed that using plans from
PersEUD as starting points in RT planning systems routinely used in an oncology hospital
should improve RT plan quality and reduce RT plan preparation times. This claim has to
be validated in more clinical cases.
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5. Conclusions

The gEUD-based RT planning optimization has the potential to deliver better RT plans
than planning routines based on physical criteria. This is because it directly refers to the
biological phenomena in the irradiated cells, whereas the physical criteria measure ra-
diation effects indirectly. Despite its potential, the wide usage of biological optimization
techniques in current clinical practices is hampered by the problematic translation between
input parameters and resulting dose distributions (RT plans), requiring time-consuming
manual model tuning. To help with this situation, we propose a system for automated
parameter tuning by optimization. To our best knowledge, it is the first system of this sort.

The distinctive future of the proposed system is that it consists of two optimization
levels. Because of the number of unknown parameters and the complex nature of the
gEUD-based function (2), this function cannot be optimized directly. Instead, the bi-level
optimization scheme has been adopted. On the upper level, the space of the parameters
is searched for promising collections of parameters, and the search is guided by values
of objective functions of the multi-objective optimization model proposed. Any reason-
able heuristic can perform this search, and we have employed evolutionary multi-objective
optimization to this aim. On the lower level, the gEUD-based function (function (2)) op-
timization is performed by a custom-implemented exact optimization method.

Starting with a solution provided by PersEUD, rather than starting from scratch, can
significantly reduce the time it takes an expert to develop a radiotherapy treatment plan.
This improvement underlines the efficiency and effectiveness of the planning process by
providing a solid starting point. More importantly, this approach can be used indepen-
dently of the commercial treatment planning system used by the expert to refine the final
solution. However, to comprehensively validate its efficacy, further testing with a broader
spectrum of clinical cases is needed.

The bi-level optimization scheme we apply here to RT planning optimization is clearly
also applicable to any optimization problem in which the search is needed not only for opti-
mal values of model variables but also for favourable (at best: optimal) model parameters.
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