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Abstract. One of the main trends for the monitoring and control of business processes is to imple-
ment these processes via private blockchain systems. These systems must ensure data privacy and
verifiability for the entire network here denoted by ‘Net’. In addition, every business activity should
be declared to a trusted third party (TTP), such as an Audit Authority (AA), for tax declaration and
collection purposes.

We present a solution for a confidential and verifiable realization of transactions based on the
Unspent Transaction Output (UTxO) paradigm. This means that the total sum of transaction inputs
(incomes) In must be equal to the total sum of transaction outputs (expenses) Ex, satisfying the
balance equation In = Ex. Privacy in a private blockchain must be achieved through the encryption
of actual transaction values. However, it is crucial that all participants in the network be able to
verify the validity of the transaction balance equation. This poses a challenge with probabilistically
encrypted data. Moreover, the inputs and outputs are encrypted with different public keys. With the
introduction of the AA, the number of different public keys for encryption can be reduced to two.
Incomes are encrypted with the Receiver’s public key and expenses with the AA’s public key.

The novelty of our realization lies in taking additively-multiplicative, homomorphic ElGamal
encryption and integrating it with a proposed paradigm of modified Schnorr identification provid-
ing a non-interactive zero-knowledge proof (NIZKP) using a cryptographically secure h-function.
Introducing the AA as a structural element in a blockchain system based on the UTxO enables ef-
fective verification of encrypted transaction data for the Net. This is possible because the proposed
NIZKP is able to prove the equivalency of two ciphertexts encrypted with two different public keys
and different actors.

This integration allows all users on the Net to check the UTxO-based transaction balance equa-
tion on encrypted data. The security considerations of the proposed solution are presented.
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1. Introduction

The global trends, current tendencies, and frontiers of blockchain technology have been
reported in Boakye et al. (2022) where it is noted that blockchain technology research
in finance has become dominated by studies on crowdfunding, entrepreneurial finance,
bitcoin, entrepreneurship, fintech, and venture capital. Their overview covers 157 articles.
However, the interaction between financial activity and the tax collection system is not
sufficiently outlined in this and other studies.

This paper is a continuation of our previous research based on a tax declaration scheme
using blockchain confidential transactions (Sakalauskas et al., 2023), based on the Un-
spent Transaction Output (UTxO) paradigm. This scheme includes the main blockchain
actors: Senders, the Receiver, the Audit Authority (AA), and the Net, and provides con-
fidentiality of transactions while at the same time ensuring their verifiability for the Net.
Any sum Received by the Receiver is denoted by income i, and any sum spent by the
Receiver is denoted by expense e. The honesty of a transaction is based on the balance
between the total sums of income and expense, which we denote by In and Ex. This means
that, to ensure the honesty of transaction, the balance equation In = Ex must hold. Privacy
in a private blockchain must be achieved through the encryption of actual transaction val-
ues. But at the same time, all the Net must be able to verify the validity of the transaction
balance equation, which is impossible for probabilistically encrypted data.

So far, ciphertext equivalency proofs have been broadly used in cloud computing.
Guomin et al. (2010) present a probabilistic public key encryption scheme based on

a bilinear group where anyone can verify whether two ciphertexts are encryptions of the
same message. The applications of this include searchable encryption and the partitioning
of encrypted data. In their scheme, verifying the equivalency of ciphertexts requires bilin-
ear map operations. Such operations require more computational power than exponential
operations in ElGamal encryption. Their presented solution does not support encryptor
authorization, which is an important part of our application.

The issue of searching among encrypted data is discussed in Canard et al. (2012) with
an approach based on the ElGamal system, using bilinear maps. This approach extends
public-key encryption by having the following functionality: given a plaintext, a cipher-
text, and a public key, it is universally possible to check whether the ciphertext encrypts
the plaintext under the key. This approach, like the previous one, lacks authorization. This
capacity could be valuable when storing encrypted transaction balances, and utilizing the
technique outlined in our paper, in the cloud.

In Hongbo et al. (2019), the problem of protecting data privacy using cloud storage is
considered. The most effective solution is to encrypt data before uploading it to the cloud.
The authors introduced a new notion of identity-based encryption with an equivalency test
which supported flexible authorization using bilinear pairings. The experimental results
presented by the authors show that their scheme is efficient and can satisfy various types
of searches of encrypted data.

The problem of plaintext equality, which consists in determining whether ciphertexts
hold the same value, is considered in Blazy et al. (2021). Their approach generates two
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ciphertexts using a probabilistic public-key encryption scheme by the same prover. For a
proof of plaintext equality, the authors proposed sigma protocols that led to non-interactive
zero-knowledge proofs.

In Zhao et al. (2022), a public key encryption scheme is proposed which supports
authorized equality tests on ciphertexts in the dual server model. In this scheme, the pri-
mary server and secondary server must get authorization from users before performing
a sequential equality test on ciphertexts. This scheme provides security against keyword
guessing attacks and is a further improvement on the schemes proposed before.

In Dong et al. (2023), it is pointed out that existing encryption schemes can potentially
suffer from information leakage when dealing with multiple ciphertexts due to the need for
pairwise equality tests. In this paper, encryption is supported by a multi-ciphertext equality
test with proxy-assisted authorization. The proposed scheme incorporates the functional-
ity of the multi-ciphertext equality test into the encryption schemes outlined above. It al-
lows a single equality test to be performed on multiple ciphertexts to determine whether
the underlying plaintexts are equal.

In the reviewed papers, different techniques are considered, but the proposed solutions
do not cover the problem we are examining in this paper. Ensuring privacy in the realiza-
tion of transactions requires that the inputs and outputs of such transactions are encrypted
with different public keys, and that these encryptions are performed by different actors.
All Senders encrypt their transactions with the Receiver’s public key, and the Receiver
declares her expenses to the AA by encrypting them with the AA’s public key. To val-
idate the balance, additively-multiplicative homomorphic encryption must be integrated
into the system. We are using the well-known probabilistic ElGamal encryption paradigm,
transformed to become additively-homomorphic, using also an established technique. This
issue has not been considered in our reviewed literature.

As outlined in the literature, the problem of deciding whether several ciphertexts are
computed from the same plaintext is called the ciphertext equivalency problem. Thus, the
integrity of the transaction can be verified by providing a ciphertext equivalency proof
for the total In and Ex values, which are encrypted. In the case of an honest transaction,
In = Ex, and the Receiver must prove that multiple ciphertexts of the (encrypted) total
In and Ex values are the same. This eventuality is also not considered in the outlined
literature, since it arises when encrypted In and Ex values are made by different actors
and with different public keys.

In the reviewed techniques, no homomorphic property is required for balance verifica-
tion, is realized. Such techniques can be used in a further step to store confidential data in
the cloud. It is also known that encryption based on the bilinear pairing approach requires
more computation power than the ElGamal encryption-based approach. Given the large
number of transactions in the blockchain, optimizing the effectiveness of the ciphertext
equivalency proof on the user side is desirable.

In this paper, we propose a more efficient method for the verification of balances by
the Net in confidential transactions, compared to our previous publication (Sakalauskas
et al., 2023). The background of our approach is the application of modified, probabilis-
tic, additively-multiplicative homomorphic ElGamal encryption together with a modified
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Schnorr identification method (Freeman, 2011; Boneh and Shoup, 2023). The benefit
of this approach is that the public parameters for both cryptographic methods are the
same. The modification of ElGamal encryption involves transforming it into an additively-
multiplicative homomorphic encryption, as proposed by Bunz et al. (2018).

The innovation in our realization is based on the integration of modified, probabilis-
tic and additively-multiplicative homomorphic ElGamal encryption with our proposed
construction of a modified Schnorr identification. This construction is extended to a non-
interactive zero-knowledge proof (NIZKP) using a cryptographically secure h-function
(Boneh and Shoup, 2023). By introducing an AA as a structural element in blockchain
system based on UTxO, the verification of encrypted transaction data for the Net can be
dealt with effectively.

This is achieved when the proposed NIZKP construction proves the equivalency of
two ciphertexts encrypted with two different public keys. This equivalency shows that two
ciphertexts correspond to encryption of the same plaintext, either In or Ex when In = Ex.

Efficiency is assured by using NIZKP, thereby reducing twofold the number of en-
cryptions required for Senders and the number of decryptions realized by the Receiver,
compared with our previous publication (Sakalauskas et al., 2023). This is achieved by
omitting the encryption of random parameters sent by Senders to the Receiver and, hence,
avoiding the decryption of these parameters for the Receiver. For example, if a transaction
has M inputs, then the validity verification requires M encryptions and M decryptions,
respectively. All encryption and decryption methods require at least two modular expo-
nentiations. In this paper, we are using NIZKP which requires only four modular expo-
nentiations instead of 2M encryptions/decryptions of random parameters.

The approach presented here is compatible with mobile e-wallets, and has the capacity
to realize transactions offline. The realization of e-wallet transactions in the presence of
observers is treated in Sakalauskas et al. (2017, 2018), and Muleravičius et al. (2019).
In this case, a digital currency for money transfers can be installed in the customer’s e-
wallet.

The main contributions of this paper are:

• A scheme for verifying the balance of confidential transactions for the Net is presented
based on the UTxO paradigm.

• The additively-multiplicative probabilistic ElGamal encryption scheme is integrated
with our proposed modification of a Non-Interactive Zero Knowledge Proof (NIZKP).

• NIZKP integration allows for a reduction in the number of encryption and decryption
operations versus the previous scheme proposed by the authors.

• The security considerations are presented.

The innovation of our realization is based on the integration of probabilistic, additively-
multiplicative homomorphic ElGamal encryption with our proposed modification of a
Non-Interactive Zero-Knowledge Proof (NIZKP) based on Schnorr identification, and on
the introduction of an AA as a structural element in a UTxO-based blockchain, thus facil-
itating a more effective verification of encrypted transaction data by the Net. This integra-
tion allows all users on the Net to check the balance equation for UTxO-based transactions
from encrypted data.
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In Section 2, an overall description of the proposed scheme is presented. In Sec-
tion 3, an introduction to ElGamal encryption is given, and the construction of additively-
multiplicative homomorphic encryption is presented. The construction of a confidential
transaction is presented in Sections 4 and 5 using our proposed modification of Schnorr
identification. In Section 6, security and efficiency analyses are provided. Section 7 gives
conclusions, and at the end, a list of references is presented.

2. Overall Description of the Transaction Scheme

To be self-contained, we present here some material from Sakalauskas et al. (2023). We
consider multiple-input and multiple-output blockchain transactions based on the UTxO
paradigm, which is the fundamental building block of cryptocurrency transactions in
blockchain systems. Transactions based on a UTxO have certain inputs and outputs (Pinna
et al., 2018).

Our scheme defines the following actors: the transaction creator, Alice; the Audit Au-
thority (AA); and the network of users, denoted as the Net. The Net is divided into three
parts: the Bobs, B1, B2, . . . , BM transferring money to Alice and providing her with in-
come; the Larries L1, L2, . . . , LN receiving money from Alice and thus representing Al-
ice’s expenses; and other Net nodes verifying the transaction’s validity, composing and
validating blocks, etc.

The present solution is an integration of several approaches. It is known that the trust-
worthiness of transactions relies on the balance between income (inputs) and expenses
(outputs). Bunz et al. (2018) present a method to assure the Net of the confidentiality
and verifiability of transactions using a modification of ElGamal encryption (ElGamal,
1985). This technique transforms multiplicatively homomorphic ElGamal encryption into
additively homomorphic encryption. We will use this technique to create confidential and
verifiable transactions for the Net. According to the UTxO paradigm, a valid transaction
requires that the sum of all inputs be equal to the sum of all outputs. Change leftover after
expenses is sent to the transaction creator as one of the outputs.

For business processes, it is important to ensure the confidentiality of transaction
amounts. Confidentiality means that transaction data must be encrypted using a secure
probabilistic encryption method. The challenge here lies in ensuring the honesty of trans-
actions with encrypted incomes and expenses. Even when these values are equal, their
ciphertexts may differ due to probabilistic encryption. As a result, detecting balance vio-
lations becomes problematic. Let us consider a transaction, created by Alice, consisting of
income and expenses. Let us assume that Alice received incomes i1, i2, . . . , iM from sev-
eral Bobs B1, B2, . . . , and BM, respectively. Then the total income is i = i1+i2+· · ·+iM .
Alice transfers part of her total income i to several Larries L1, L2, . . . , LN by disbursing
expenses e1, e2, . . . , eN , respectively. If the sum of expenses e′ = e1 + e2 + · · · + eN is
less than the total income, then she transfers the change value, which we denote by eN+1,
to herself. If the transaction is honest, then the following balance equation must hold

i = i1 + i2 + · · · + iM = e1 + e2 + · · · + eN + eN+1 = e′ + eN+1 = e. (1)
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In an open blockchain, i.e. in an open distributed ledger, all nodes in the Net can verify
the balance of the transaction. If this balance holds good, the transaction is assumed valid.
However, in private blockchain transactions, data should be confidential. In these cases,
the Net cannot directly verify the validity of a transaction.

In this study, we will use the following notation for the private key PrK and public
key PuK of two actors. For Alice: PrKA = x, PuKA = a and for the AA: PrKAA = z,
PukAA = β.

We assume that the AA is a Trusted Third Party (TTP) for all the Net providing tax
accountancy services. All actors must declare to the AA all actual transaction data by
encrypting it with the AA’s PukAA = β to ensure the confidentiality of their business
activity. In addition, in our example, it means that all Bobs must encrypt their expenses
by Alice’s PuKA = a. Then only Alice can decrypt her received income and verify their
correctness. When Alice is transferring her expenses to her Larries, and the leftover change
to herself, she encrypts them with corresponding Larries’ public keys. We do not consider
this stage in this paper.

We will deal with Alice’s encrypted income values im, m = 1, 2, . . . ,M , encrypted
by her PuKA = a and ciphertexts ca,im, respectively. All Alice’s expenses en, n =
1, 2, . . . , N are declared to the AA by encrypting them with PukAA = β represented
by ciphertexts cβ,en, respectively.

3. Additively-Multiplicative Homomorphic ElGamal Encryption

Our solution relies on probabilistic asymmetric ElGamal encryption by transforming it
into additively-multiplicative homomorphic encryption (Bunz et al., 2018). To realize
ElGamal encryption/decryption, public parameters must be shared on the Net. Probabilis-
tic encryption is performed by the Sender using the Receiver’s public key and a randomly
generated number, thus providing different ciphertexts even for the encryption of the same
plaintext. The ciphertext is sent to the Receiver who can decrypt it using the same shared
public parameters and his/her private key to obtain the corresponding plaintext. ElGamal
encryption has so-called multiplicatively homomorphic properties: the encrypted product
of plaintexts is equal to the product of corresponding ciphertexts.

Let Z∗
p = {1, 2, 3, . . . , p−1} be a multiplicative cyclic group of order p−1, where p

is prime, and multiplication is performed mod p. Then let there be a cyclic subgroup Gq

of order q where q is prime and any generator of this group we denote by g. Let Mes be a
message to be encrypted and m – the image of a reversible 1-to-1 function, transforming
Mes to m in Z∗

p. We denote public parameters in ElGamal encryption by

PP = (p, g). (2)

The ElGamal encryption system uses the discrete exponential function (DEF) defined
by the generator g in Gq and provides the following isomorphic mapping DEFg: Zq →
Gq , where Zq = {0, 1, 2, . . . , q−1} is a ring with addition, subtraction, and multiplication
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operations mod q. For any integer i ∈ Zq:

DEFg(i) = gi mod p. (3)

Further, we omit the notation mod p, except in some special cases. A private-public
key pair (PrK, PuK) is computed using public parameters PP in (2) and DEF. Encryption is
performed using the Receiver’s PuK, and decryption, correspondingly, with the Receiver’s
PrK. Let Alice’s private-public key pair be (PrKA = x, PuK = a) and the AA’s private-
public key pair be (PrKAA = z, PuK = β). Key generation for both actors, Alice and the
AA, is performed in the following way:

1. PrKA = x and PrKAA = z are randomly generated integers in the set Zq :

x ← randi(Zq); z ← randi(Zq). (4)

2. PuKA = a and PuKAA = β are computed using DEF:

a = gx mod p; β = gz mod p. (5)

Let Alice be a Sender and encrypt transaction data d corresponding to a single income
or expense with the AA’s PuKAA = β. Then ciphertext cβ = (εβ, δβ) is obtained by the
following two steps:

1. Generate a random integer l ∈ Zq .
2. Compute two components εβ and δβ of the ciphertext cβ

cβ = (εβ, δβ) = (
dβl, gl

)
. (6)

Decryption is performed using the Receiver’s PrKAA = z

d = εβ · (δβ)−z. (7)

We denote encryption and decryption functions by Enc( ) and Dec( ), respectively.
Then, formally, encryption and decryption operations are expressed in the following way:

Enc(β, l, d) = cβ; Dec(z, cβ) = d. (8)

ElGamal encryption has the following multiplicative isomorphic property. Let d1, d2 ∈
Zq . Then, for the encryption of two plaintexts d1 and d2, two random numbers k, l are
generated, yielding two ciphertexts cβ,1 and cβ,2:

cβ,1 = Enc(β, k, d1) = (εβ,1, δβ,1); cβ,2 = Enc(β, l, d2) = (εβ,2, δβ,2). (9)

The encryption of a product d = d1 · d2 with the random parameter j = k + l mod q

yields a ciphertext cβ,12 , equal to the product of two ciphertexts cβ,1 and cβ,2 in Z∗
p, i.e.

Enc(β, j, d1 · d2) = cβ,12 = Enc(β, k, d1) · Enc(β, l, d2) = cβ,1 · cβ,2. (10)
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Then

cβ,12 = cβ,1 · cβ,2. (11)

According to (10) and (11), this encryption is a multiplicative homomorphism of plain-
texts. The value of the multiplied ciphertexts is equal to multiplied value of the underlying
transactions.

To verify the validity of the transaction based on balance equation (1), we need to
obtain the additively-multiplicative homomorphic encryption by transforming transaction
data in the following way:

D1 = gd1; D2 = gd2 , (12)

where d1, d2 are limited by the upper bound to 232 − 1 as noted in Sakalauskas et al.
(2023).

Then (10) can be rewritten in a form denoting the ciphertexts of encrypted transformed
data in capital letters C

Enc(β, j,D1 · D2) = Cβ,12 = Enc(β, k,D1) · Enc(β, l,D2) = Cβ,1 · Cβ,2, (13)

where

Cβ,12 = (εβ,1, δβ,1) · (εβ,2, δβ,2) = (εβ,1 · εβ,2, δβ,1 · δβ,2)

= (
g(d1+d2) mod q · β(k+l) mod q, g(k+l) mod q

)
. (14)

The last step allows us to verify transaction balance in (1) by verifying the multiplied
encrypted income and expenses with different public keys and proving that these cipher-
texts are equivalent using NIZKP.

To create Alice’s confidential and verifiable transaction, all her actual incomes
i1, i2, . . . , iM must be transformed to the numbers I1, I2, . . . , IM using (12) and expenses
e1, e2, . . . , eN+1, to the numbers E1, E2, . . . , EN+1, respectively.

Im = gim, m = 1, 2, . . . ,M, En = gen, n = 1, 2, . . . , N + 1. (15)

The total transformed income is denoted by I , and the total transformed expenses,
by E. Then, referencing homomorphic equation (14), we obtain

I1 · I2 · · · · · IM = I ; E1 · E2 · · · · · EN+1 = E. (16)

The balance equation (1) can then be rewritten as

I = E. (17)
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4. Creation of Confidential and Auditable Transactions

In the proposed solution, all the information about actual transaction data is available to
Alice as a transaction creator and to the AA.

The Bobs in the transaction transfer their expenses as Alice’s income i1, i2, . . . , iM ,
and using (15) computed values I1, I2, . . . , IM . Then the Bobs encrypt them using Alice
PuKA = a with the randomly generated numbers k1, k2, . . . , kM , thus obtaining cipher-
texts Ca,I1, Ca,I2, . . . , Ca,IM , respectively. All Bobs send (Ca,I1, Ca,I2, . . . , Ca,IM) to
Alice.

Alice, after receiving ciphertexts Ca,I1, Ca,I2, . . . , Ca,IM from the Bobs, decrypts
them using her PrK = x and obtains numbers I1, I2, . . . , IM corresponding to the ac-
tual income values i1, i2, . . . , iM transformed according to (15).

Let us consider that according to the agreement between parties, values i1, i2, . . . , iM

are bounded to 232−1. The computation of i1, i2, . . . , iM does not, therefore, require us to
solve a general discrete logarithm problem in Zq , which is assumed unfeasible given secu-
rity requirements. It is enough to perform a search in the set with 232−1 values. Moreover,
Alice can reduce the search area with preliminary knowledge about the expected sums to
be received. For example, let Alice know that the sums received from her Bobs do not
exceed 10.000. Then the search area can be bound by 216 instead of 232 − 1.

According to (10), Alice multiplies all ciphertexts (Ca,I1, Ca,I2, . . . , Ca,IM), thus ob-
taining the ciphertext

Ca,I = Ca,I1 · Ca,I2 · · · · · Ca,IM. (18)

Referring to the multiplicative homomorphic property (10), the ciphertext Ca,I corre-
sponds to the encrypted value I , equal to the multiplication of transformed incomes (15).

Ca,I = Enc(a, k, I ) = (εa,I , δa,I ) = (
Iak, gk

)
, (19)

where k = k1 + k2 + · · · + kM mod q. Notice that in our construction it is not nec-
essary to have any knowledge about k and its additive components. This was necessary
for the method proposed in our previous publication (Sakalauskas et al., 2023), where
k1, k2, . . . , kM were additionally encrypted by the Bobs with Alice’s PuKA = a. Then
Alice decrypted them using her PrKA = x. Therefore, actors made M additional encryp-
tions and M additional decryptions. As we said above, it is not here necessary to perform
these steps since we have proposed using NIZKP instead.

After this step, Alice defines expenses e1, e2, . . . , eN+1 and transforms them to
E1, E2, . . . , EN+1 by applying (15).

We do not consider Alice’s tax declaration to the AA and her encrypted transfer of
expenses to her Larries, since these were presented in the previous paper (Sakalauskas et
al., 2023).

Alice multiplies all expenses (E1, E2, . . . , EN+1) mod p, computing the value

E = E1 · E2 · · · · · EN+1. (20)
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Then the secret random integer l ← randi(Zq) is generated by Alice and used for E

value encryption using the AA’s PuK = β. Thus, the following ciphertext is obtained:

Cβ,E = Enc(β, l, E) = (εβ,E, δβ,E) = (
Eβl, gl

)
. (21)

Alice must prove to the Net that ciphertexts Ca,I , and Cβ,E encrypt the same value
I = E using NIZKP, thus proving that the transaction is valid and honest.

5. A Zero-Knowledge Proof – ZKP

A ZKP is based on our proposed modifications of the classical Schnorr identification
protocol realized in the form of NIZKP (Boneh and Shoup, 2023).

To be self-contained we present the classical ZKP. Recall that the public parameter is
a pair, PP = (p, g). Let Alice be a Prover intending to prove to any Verifier (say, the Net)
that she knows her private key PrKA = x by declaring her public key PuKA = a. Then
PuKA = a is called a statement (St), and PrKA = x is a witness for a. An interactive
ZKP consists of three steps:

1. Alice generates u ← randi(Zq), computes the commitment

t = gu,

and sends t to the Verifier;
2. The Verifier generates h ← randi(Zq) and sends it to Alice;
3. Alice computes a response

r = xh + u mod q,

and sends r to the Verifier.

The Verifier verifies the following identity of terms to be convinced that Alice knows
her PrKA = x.

gr = ah · t.

This technique is generalized to allow NIZKP to convince the Net that two different
ciphertexts Ca,I in (18) and Cβ,E in (21) are obtained by encryption of the same plaintext
with different public keys, namely PuKA = a and PuKAA = β. We assume that the
verifier Net is a so-called honest verifier, and the proof represents the so-called Honest
Verifier ZKP.

Referring to Boneh and Shoup (2023), interactive ZKP can be transformed to non-
interactive by replacing the random value h generated by the Verifier with the h-value
computed by the Prover using a cryptographically secure h-function. This is the basis of
the NIZKP scheme.
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However, the scheme presented above is insufficient to realize a proof of ciphertext
equivalency. We propose the modification of the existing NIZKP to realize two ciphertext
equivalency proofs, namely Ca,I in (18), (19), and Cβ,E in (20), (21). Recall that Ca,I is
a ciphertext of plaintext I encryption with Alice’s PuK = a and Cβ,E is a ciphertext of
plaintext E encryption with the AA’s PuK = β. The statement St of our proposed NIZKP
consists of the following:

St = {
(εa,I , δa,I ), (εβ,E, δβ,E), a, β

}
. (22)

The random integers u ← randi(Zq) and v ← randi(Zq) are generated by Alice, and the
value (−v) mod q is computed. The proof of ciphertext equivalence is computed using
three computation steps:

1. The following commitments are computed:

t1 = gu mod p; (23)
t2 = gv mod p; (24)
t3 = (δa,I )

u · β−v mod p. (25)

2. The following h-value is computed using the cryptographically secure h-function H :

h = H
(
a‖β‖t1‖t2‖t3‖

)
. (26)

3. Alice, having her PrKA = x, randomly generates the secret number l for E encryption
and computes the following two values:

r = x · h + u mod q; (27)
s = l · h + v mod q. (28)

Then Alice declares the following set of data to the Net:

{a, β, t1, t2, t3, r, s} → Net. (29)

To verify the transaction’s validity, the Net computes the h-value according to (26) and
then verifies three identities:

gr = ah · t1; (30)

gs = (δβ,E)h · t2; (31)

(εβ,E)h · (εa,I )
−h · (δa,I )

r · β−s = t3. (32)

The correctness of (30), (31) is proved by the following identities:

gr = gxh+u = gxh · gu = (
gx

)h · gu = ah · t1; (33)

gs = glh+ v = glh · gv = (
gl

)h · gv = (δβ,E)h · t2. (34)
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The correctness of (32) is proved by considering every multiplier separately:

(εβ,E)h = (
E · βl

)h = Eh · βlh; (35)

(εa,I )
−h = (

I · ak
)−h = I−h · a−kh; (36)

(δa,I )
r = (

gk
)r = (

gkxh+ku
) = (

gx
)hk · (

gk
)u

= ahk · (
gk

)u = ahk · (δa,I )
u; (37)

β−s = β−lh−v = β−lh · β−v. (38)

Notice that k is not known to Alice and is included in (δa,I ). If the transaction is honest,
then the transaction balance (1) is satisfied and I = E since. Then Eh · I−h = 1 mod p,
and putting it all together, we obtain:

Eh · βlh · I−h · a−kh · ahk · (δa,I )
u · β−lh · β−v = (δa,I )

u · β−v = t3. (39)

This is the proof to the Net that the balance equation (1) is valid.

6. Security Considerations

It is known that ElGamal encryption possesses semantic security and is secure against
eavesdropping attacks. The modification of classical ElGamal encryption for the
additively-multiplicative homomorphic encryption does not add or subtract security. It is
furthermore proven that the classical Schnorr identification protocol is secure against
eavesdropping attacks (Boneh and Shoup, 2023).

The present modification of the classical Schnorr identification scheme is based on two
parallel proofs of knowledge, i.e. of PrKA = x in (4) and of a secret random parameter l

in (21) used for probabilistic encryption. Therefore, these parallel proofs are also secure
against eavesdropping attacks. The third proof is the combination of the two previous
proofs proving the equivalency of two ciphertexts meaning that total transformed income
I in (16) is encrypted by Alice’s public key a and the total transformed expense E in (16)
is encrypted with the AA’s public key β, when, according to (17), I = E. This proof
neither adds nor subtracts security. Therefore, the proposed scheme is also secure against
eavesdropping attacks.

We refer to the following facts and the proof of statements presented below, as detailed
in numerous publications (e.g. Boneh and Shoup, 2023), providing our security consider-
ations.

Fact 1. Since the group Gq is of prime order, then all elements, except 1, are the gener-
ators and the order q of Gq is super-polynomial.

Fact 2. The DEF in (3) is a 1-to-1 function.

Fact 3. The decisional Diffie–Hellman assumption (DDH) holds in the subgroup Gq .
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Fact 4. Since DDH holds, then the discrete logarithm assumption (DDA) holds in Gq as
well. This means that for every probabilistic polynomial time algorithm, the probability
to find i in (3) is negligible.

The following known statements hold.

Statement 1. ElGamal additively-homomorphic encryption achieves semantic security.

Statement 2. Schnorr’s identification protocol is secure against eavesdropping attacks.

Statement 3. Schnorr’s non-interactive identification protocol is secure against eaves-
dropping attacks if the challenge component in Schnorr’s identification protocol is re-
placed by h-value computation using H-function modelled as a random oracle.

Now we can turn to the proof of security for a non-interactive zero-knowledge proof
of ciphertext equivalency starting from the following clear lemma.

Lemma 1. Let expenses E be encrypted using the AA’s public key β with a secret ran-
dom parameter l. The obtained ciphertext Cβ,E in (21) can then be decrypted using the
parameter l without knowledge of the AA’s private key z.

Proof. For decryption, it is necessary to compute the value β−l mod p, where −l is com-
puted mod q. Then

E = (εβ,E) · β−l = Eβl · β−l .

Corollaries.

1. The AA’s private key z and random secret number l are independent secrets represent-
ing the plaintext E and the ciphertext Cβ,E .

2. Since the discrete exponential function is 1-to-1, then for fixed z, the parameter l

uniquely represents the plaintext E and the ciphertext Cβ,E , and vice versa: for fixed l,
the private key z uniquely represents the plaintext E and the ciphertext Cβ,E .

According to Lemma 1 and the Corollaries, the first two steps of the presented modifi-
cation of NIZKP are based on two independent and parallel proofs of knowledge: one for
PrKA = x in (4) and another for the secret random parameter l in (21) used for probabilis-
tic encryption. These proofs use the classical Schnorr identification scheme. Therefore,
these two parallel proofs are also secure against eavesdropping attacks.

The third proof is the combination of the two previous proofs, demonstrating the equiv-
alence of two ciphertexts. Specifically, this means that the total transformed income I in
(16) is encrypted with Alice’s public key a, and the total transformed expense E in (16)
is encrypted with the AA’s public key β. According to (17), it means that I = E.

Let us consider the commitment t3 consisting of the two secret parameters u and v.
According to Fact 1, all the elements of Gq , except 1, are generators. We can interpret the
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value δa,I as a the generator g1 and β−1 as the generator g2. Then (25) we can rewrite it
in the following way:

t3 = (g1)
u · (g2)

v.

The last equation indicates that t3 can be represented by generators g1 and g2 with two
indices u and v, respectively. In other words, t3 has representation of generator-tuple of
length 2, (2-tuples).

Lemma 2. For all representations of t3 there are exactly q representations of 2-tuples.

Proof. Referencing Fact 1, we can find v as a discrete logarithmic function Dlog in the
following way:

t3 = Dlog
(
t3/(g1)

−u
)
.

So, there are exactly q possible values of u to make t3 representations. The lemma is
proved.

The security proof is based on the fact that the Honest Prover will always convince the
Honest Verifier about the ciphertexts’ equivalency. It is called a completeness proof.

Theorem 1. The presented modified NIZKP protocol is secure against an eavesdropping
attack.

Proof. By inspecting h-value expression in (26), we see that it depends on the values a,
β, t1, t2 and t3. The values a and β are predetermined and cannot be modified. Accord-
ing to Fact 1, the commitments t1 and t2 are in 1-to-1 correspondence with the randomly
generated parameters u and v. Therefore, by fixing t1 and t2, we are also fixing u and v.
In this case, referencing Lemma 1, the number of representations of t3 is exactly 1. As-
suming that H-function is secure (collision free), h-value is fixed and determined by a,
β, t1, t2 and t3. Consequently, the values r and s in (27) and (28) are also fixed. There-
fore, the ciphertext equivalency proof based on equations (30), (31), and (32) satisfies the
completeness condition.

Referencing Fact 3, the commitment t3 does not add any insecurity to this protocol
compared to the classical non-interactive Schnorr identification protocol.

7. Conclusions

A method for the confidential verification of transaction balances by the Net has been
presented using the UTxO system, in a manner providing transparency and trustworthiness
for blockchain transactions. The honesty of transactions can be verified by anyone on the
Net without any knowledge about their actual values.
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The proposed scheme provides a proof to the Net that encrypted transaction data sat-
isfies the balance equation (1) without revealing any information about the actual trans-
action data. It is guaranteed by the semantic security of ElGamal encryption and, in this
paper, by a proposed a non-interactive zero-knowledge proof (NIZKP) based on Schnorr
identification. Proof of security against eavesdropping attacks for the proposed NIZKP is
presented. In the literature, this problem is generally known as a ciphertext equivalency
proof.

The novelty of this proposed solution lies in the integration of additively-multiplicative
homomorphic ElGamal encryption with our constructed NIZKP and its application to
blockchain technology based on a UTxO system. The difference from other known ap-
proaches is that our NIZKP is constructed for different actors making independent en-
cryptions with two different public keys.

The security of the proposed NIZKP against an eavesdropping adversary is proved.
The proposed scheme uses NIZKP, which reduces the number of encryptions and the

number of decryptions by a factor of two for income, as compared with the previous au-
thors’ results.

We intend future research to focus on implementing a sigma identification protocol
for the ciphertext equivalency proof that is secure against active adversary attacks. The
other possible direction for the presented methodology is to create new NIZKP schemes
based on the potential of the matrix power function to provide security against quantum
cryptanalysis attacks. This could involve some contribution to the task of integrating post-
quantum cryptography with blockchain technologies.
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