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Abstract. The article focuses on the presentation and comparison of selected heuristic algorithms
for solving the inverse problem for the anomalous diffusion model. Considered mathematical model
consists of time-space fractional diffusion equation with initial boundary conditions. Those kind of
models are used in modelling the phenomena of heat flow in porous materials. In the model, Ca-
puto’s and Riemann-Liouville’s fractional derivatives were used. The inverse problem was based
on identifying orders of the derivatives and recreating fractional boundary condition. Taking into
consideration the fact that inverse problems of this kind are ill-conditioned, the problem should be
considered as hard to solve. Therefore,to solve it, metaheuristic optimization algorithms popular in
scientific literature were used and their performance were compared: Group Teaching Optimiza-
tion Algorithm (GTOA), Equilibrium Optimizer (EO), Grey Wolf Optimizer (GWO), War Strategy
Optimizer (WSO), Tuna Swarm Optimization (TSO), Ant Colony Optimization (ACO), Jellyfish
Search (JS) and Artificial Bee Colony (ABC). This paper presents computational examples show-
ing effectiveness of considered metaheuristic optimization algorithms in solving inverse problem
for anomalous diffusion model.
Key words: metaheuristic algorithms, inverse problem, fractional derivative, time-space fractional
diffusion equation, fractional boundary condition, identifying parameters, numerical computation.

1. Introduction

Nowadays, when all kinds of computational and simulation methods are becoming more
and more important and the processing power of computers is increasing, it is worth de-
veloping and looking for new applications of this type of tools. In practice, there are many
classical numerical methods that are successfully used, developed and adapted to current
problems. On the other hand, in recent years, scientists have been developing artificial
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intelligence methods, which include metaheuristic optimization algorithms. In this paper,
we focused on combining a classical numerical method for solving a differential equation
and selected heuristic algorithms for solving the inverse problem.

In the scientific literature, many works on the use of fractional derivatives to model
many processes occurring in physics and engineering can be found (Bhangale et al., 2023;
Brociek et al., 2017, 2019; Sowa et al., 2023; Bohaienko and Gladky, 2023; Koleva et
al., 2021). In particular, derivatives of this type are used to model anomalous diffusion.
As an example, heat flow in porous materials can be mentioned (Brociek et al., 2017,
2019). In article (Brociek et al., 2019), the authors model the phenomenon of heat flow
in a porous medium. For this purpose, several mathematical models were used, including
those based on fractional derivatives. The results from numerical experiments were com-
pared with measurement data. Models that used fractional derivatives proved to be more
accurate than the model with integer-order derivatives. Sowa et al. (2023) used fractional
calculus and presented a voltage regulator extended model. The approach presented in the
paper for modelling a voltage regulator has been verified with measurement data, and the
non-integer order Caputo derivative proved to be an effective tool. Another application of
fractional derivatives in mathematical modelling can be found in the paper (Bohaienko and
Gladky, 2023), where a model for predicting the dynamics of moisture transport in fractal-
structured soils was presented. The model incorporates the Caputo derivative. The nu-
merical solution was obtained using the Crank-Nicholson finite-difference scheme. More
examples and trends in the application of fractional calculus in various scientific fields
are available in the publications (Hristov, 2023b; Obembe et al., 2017; Ionescu et al.,
2017). Publications related to numerical methods in the field of fractional calculus are
also worth mentioning (Ciesielski and Grodzki, 2024; Hou et al., 2023; Arul et al., 2022;
Hristov, 2023a; Podlubny, 1999; Stanisławski, 2022).

In many engineering problems, there is a need to solve what’s known as an ‘inverse
problem’. In simple terms, these issues involve identifying the input parameters of a model
(e.g. boundary conditions or material parameters) based on observations (outputs) of the
model. Typically, these problems are challenging because they are ill-posed (Aster et al.,
2013c; Kaipio and Somersalo, 2005). Examples of inverse problems in various applica-
tions are included in the articles (Montazeri et al., 2022; Brociek et al., 2024; Ashurov
et al., 2023; Wang et al., 2023; Ibraheem and Hussein, 2023; Brociek et al., 2023; Ma-
gacho et al., 2023). For example, the article (Brociek et al., 2024) focuses on an inverse
problem concerning the identification of the aerothermal heating of a reusable launch ve-
hicle based on temperature measurements taken in the thermal protection system (TPS)
of this vehicle. The mathematical model of the TPS presented in the paper takes into ac-
count the dependence on temperature of the material parameters, as well as the thermal
resistances occurring in the contact zones of the layers. To solve the inverse problem, the
Levenberg-Marquardt method was applied.

One approach to solving inverse problems is to create a fitness function (or loss func-
tion, error function), and then optimize it to find the identified parameters. In this context,
metaheuristic optimization algorithms can be very effective. In the paper (Hassan and
Tallman, 2021), the authors utilize genetic algorithms, simulated annealing, and particle
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swarm optimization to solve the piezoresistive inverse problem in self-sensing materials.
The considered problem was ill-posed and multi-modal. The results obtained in the study
indicate that the genetic algorithm proved to be the most effective. As another example,
the article (Al Thobiani et al., 2022) addresses an inverse problem for crack identification
in two-dimensional structures. The authors utilize the eXtended Finite Element Method
(XFEM) associated with the original Grey Wolf Optimization (GWO) and an improved
GWO using Particle Swarm Optimization (PSO) (IGWO). The utilization of heuristic op-
timization algorithms for inverse problems in models with fractional derivatives can be
found in papers (Brociek et al., 2020; Brociek and Słota, 2015). In both of these articles,
the Ant Colony Optimization (ACO) algorithm was applied. The first publication involved
a comparison with an iterative method. In the second article, heat flux on the boundary
was identified. Additionally, papers (Kalita et al., 2023; Alyami et al., 2024; Zhang and
Chi, 2023) address metaheuristic optimization algorithms and their applications.

In this article, an algorithm for solving the inverse problem for the equation of anoma-
lous diffusion is presented. This equation is a partial differential equation with fractional
derivatives. The Caputo derivative was adopted as the derivative with respect to time,
while the Riemann-Liouville derivative was utilized for the derivative with respect to
space. In the considered inverse problem, the objective was to identify the function appear-
ing in the fractional boundary condition as well as the orders of the derivatives. To achieve
this, several metaheuristic optimization algorithms were used and compared.

2. Mathematical Model of Anomalous Diffusion with Fractional Boundary
Condition

In this article, we consider a mathematical model of anomalous diffusion with fractional
derivatives both in time and space. Models of this type can effectively be used to model
mass and heat transport phenomena in porous media (Brociek et al., 2019; Sobhani et
al., 2023; Kukla et al., 2022). The model consists of the following fractional-order partial
differential equation:

C∂αu(x, t)

∂tα
= λ(x, t)

RL∂βu(x, t)

∂xβ
+ f (x, t), x ∈ (0, L), t ∈ (0, T ]. (1)

The equation is supplemented with the initial condition:

u(x, 0) = ϕ(x), x ∈ [0, L], (2)

and boundary conditions:

u(0, t) = 0, t ∈ (0, T ], (3)

u(L, t) +
(

λ(x, t)
RL∂β−1u(x, t)

∂xβ−1

)∣∣∣∣
x=L

= ψ(t). (4)
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It is important to note the boundary condition (4) at the right boundary of the considered
domain. It takes the form of a Robin boundary condition with a fractional derivative.
In the differential equation (1), two different fractional-order derivatives were assumed.
The derivative of order α ∈ (0, 1) with respect to time is a Caputo-type derivative, defined
by the following formula:

C∂αu(x, t)

∂tα
= 1

�(1 − α)

t∫
0

∂f (x, s)

∂s
(t − s)−α ds. (5)

In the case of the derivative with respect to space, a fractional-order derivative of order
β ∈ (1, 2) Riemann-Liouville type was applied:

RL∂βu(x, t)

∂xβ
= 1

�(2 − β)

∂2

∂s2

x∫
0

f (s, t)(t − s)1−α ds. (6)

In the model, it is also assumed that λ is a continuous, positive function called the diffu-
sion coefficient, and the functions f , ϕ, and ψ are also continuous functions. To effectively
model and conduct simulations in such models, the first step is to solve equations (1)–(4).
This task is known as the direct problem (or forward problem). In the next section, a nu-
merical method to solve the considered equation is described.

3. Numerical Method of Forward Problem

This article primarily focuses on the inverse problem. The presented approach requires
optimization of the fitness function. However, in the optimization process, it is necessary
to repeatedly solve equations (1)–(4), that is, the so-called forward problem. To solve it,
an implicit finite difference scheme is applied.

Firstly, the considered domain 	 = [0, T ] × [0, L] is discretized, resulting in a grid
S = {(xi, tk): i = 0, 1, . . . , N, k = 0, 1, . . . , K} with steps 
x = L

N
, xi = i
x,


t = T
K

, tk = k
t . Then, for all functions involved in the model, the values at the grid
points S are determined. We use the following notation: λk

i = λ(xi, tk), f k
i = f (xi, tk),

ϕi = ϕ(xi), ψk = ψ(tk). Let uk
i = u(xi, tk) denote the values of the exact solution at the

points (xi, tk), and Uk
i represent the corresponding values obtained from the numerical

solution.
To derive the implicit finite difference scheme, we need to apply the approximation of

the Riemann-Liouville derivative (6) in the form of the shifted Grünwald formula (Tian
et al., 2015; Tadjeran and Meerschaert, 2007):

RL∂βu(x, t)

∂xβ

∣∣∣∣
(xi ,tk+1)

≈ 1

(
x)β

i+1∑
j=0

gβ,jU
k+1
i−j+1, (7)
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where gβ,j = �(j−β)
�(−β)�(j+1)

. Then, we approximate the Caputo derivative (5) using the
following formula (Lin and Xu, 2007):

C∂αu(x, t)

∂tα

∣∣∣∣
(xi ,tk+1)

≈ 1

�(2 − α)(
t)α

k∑
j=1

(
j1−α − (j − 1)1−α

)(
U

k−j+1
i − U

k−j
i

)
.

(8)

The derivative appearing in the boundary condition (4), after considering the zero condi-
tion at the left boundary, is approximated as follows:

RL∂β−1u(x, t)

∂xβ−1

∣∣∣∣
(xN ,tk+1)

≈ 1

(
x)β−1

( N∑
j=1

gβ−1,jU
k+1
N−j+1 + gβ−1,0

(
3Uk+1

N − 3Uk+1
N−1 + Uk+1

N−2

))
. (9)

Combining all of the above approximations together and after appropriate transforma-
tions, we obtain the implicit difference scheme, which can be expressed in matrix form
as:

A1U1 = Q0 + F 1, (10)

Ak+1Uk+1 = (1 − b1)Q
k +

k−1∑
j=1

(bj − bj+1)Q
k−j + bkQ

0 + Fk+1, (11)

where bj = (j + 1)1−α − j1−α . And the vectors Uk , Qk , Fk have the following form:

Uk = [
Uk

1 , Uk
2 , . . . , Uk

N

]T
,

Qk = [
Uk

1 , Uk
2 , . . . , Uk

N−1, 0
]T

,

F k = [
(
t)α�(2 − α)f k

1 , (
t)α�(2 − α)f k
2 , . . . ,

(
t)α�(2 − α)f k
N−1, (
x)β−1ψk

]
.

The matrix Ak , dependent on the time step k, is of size N × N . Its coefficients are deter-
mined by the following formula:
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ak
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−rλk+1
i gβ,i−j+1, 1 � j � i − 1, 1 � i � N − 1,

1 − rλk+1
i gβ,1, 1 � j = i � N − 1,

−rλk+1
i gβ,0, j = i + 1, 1 � i � N − 1,

λk+1
N gβ−1,N−j+1, 1 � j � N − 3, i = N,

λk+1
N gβ−1,3 + λk+1

N gβ−1,0, j = N − 2, i = N,

λk+1
N gβ−1,2 − 3λk+1

N gβ−1,0, j = N − 1, i = N,

(
x)β−1 + λk+1
N gβ−1,1 + 3λk+1

N gβ−1,0, j = i = N,

0, i + 2 � j � N, 1 � i � N − 2.

(12)

In the above formula, the symbol r is defined as r = (
t)α�(2−α)

(
x)β
. Equations (10)–(11)

define systems of linear equations. Solving these systems will yield the approximate values
of the function u at the grid points S. Article (Xie and Fang, 2020) includes theorems
regarding the stability and convergence of the numerical scheme (10)–(12). In the case of
the scheme under consideration, the convergence order is O((
t)2−α + (
x)2).

4. Description of Inverse Problem

In mathematical modelling, as well as in various computer simulations it is essential to
use proper mathematical models. In this paper, time-space fractional diffusion equation
(TSFDE) with fractional boundary contition is considered. This model was further de-
scribed in Section 2 and can be used as an effective tool in modelling the heat conduc-
tion in porous materials (Brociek et al., 2019). To solve model described by (1)–(4) it
is necessary to know full information about the model input, such as material’s parame-
ters, geometry or model coefficients. In many engineering issues, it is impossible to have
the knowledge of all model’s information. It might be because of the lack of measuring
equipment, or toughness in choosing the parameters. The usual problem is the choice of
such entry model’s parameters – input, that the model’s result – output (e.g. temperature
measurements in a chosen control point) takes the proper value. Problems of this sort are
named inverse problems and are usually hard to solve (Özişik and Orlande, 2021; Aster
et al., 2013c, 2013a, 2013b). To put it simply, the problem is the identifying of the input
parameters to fit to the measurement data (part of model’s output) as closely as possible.

In this article, in order to solve the inverse problem, an approach is presented which
involves optimizing the following fitness function:

F(a0, a1, . . . , adim) =
W∑

w=1

(
uw(a0, a1, . . . , adim) − uw

)2
. (13)

Symbols a0, a1, . . . , adim are marked as unknown input parameters of the model-
parameters, which are to be identified. Objective function F is dependent on these pa-
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Fig. 1. Data flow diagram for forward and inverse problem.

rameters. By dim + 1 the size of optimization task is marked, W is a number of data in
model’s output (e.g. measurement data), uw(a0, a1, . . . , adim) (w = 1, 2, . . . ,W) denotes
output values calculated from the model for fixed input parameters a0, a1, . . . , adim and
by uw the data output (measurement data) is marked, to which model should fit itself.
So, function F measures “how close” are the calculated values from a model (for fixed
input parameters a0, a1, . . . , adim) to output values given in a problem (e.g. measurement
data). Solving given inverse problem is based on finding the minimum of fitness function
relative to unknown parameters a0, a1, . . . , adim. Hence, the use of selected metaheuris-
tic algorithms for finding the minimum of the fitness function is justified. In Section 6,
a computational example is presented and algorithms’ efficiency is discussed. Figure 1
schematically presents the data flow in forward and inverse problems.

5. Metaheuristics Optimization Algorithms

Heuristic optimization algorithms for searching objective function’s minimum are based
on simulating group’s intelligence and communication between the individuals in order
to effectively search the space.

They are used for finding points in search space close to the optimal one (global mini-
mum) in terms of fitness function. Very commonly fitness function describes a certain de-
pendence (e.g. approximate solution error), which in an engineering problem should have
the lowest possible value (problem of minimization). In contrast to classic mathematical
methods, they have small requirements for objective function, which is their biggest ad-
vantage. Usually, within heuristic optimization algorithms, two phases of searching can be
distinguished: exploration part – searching through possibly the vastest part of space, and
exploitation part – looking for good quality solutions in a narrow part of searched space.
Algorithms of this sort use different techniques, from simple local searching to advanced
evolutionary processes. They use mechanisms preventing the method from getting stuck
in a limited area of searched space (falling into a local minimum). These algorithms are
independent of a specific problem (they do not depend on the fitness function). Algorithms
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use knowledge about the problem and/or experience accumulated in a process of search-
ing the domain (agents “communicate” with one another), with quality not decreasing as
the iteration increases. This kind of algorithms falls into the category of probabilistic al-
gorithms, meaning that their method of work include some random elements. However,
a well-tuned algorithm in a vast majority of cases should be able to provide solutions,
which are close to one another.

The biggest problem of heuristic optimization algorithms is tuning them properly, ac-
cording to the problem to be solved. Metaheuristic optimization algorithms can be divided
into four major groups:

• Swarm Intelligence (SI) algorithms. Inspiried by the behaviour of a swarm or a group of
animals in nature. Examples: Ant Colony Optimization (ACO), Artificial Bee Colony
(ACO) or Firefly Algorithm (FA).

• Evolutionary Algorithms (EA). Their description comes from natural behaviours occur-
ring in evolutionary biology. Examples: Genetic Algorithm (GA), Differential Evolu-
tion (DE).

• Physics-based Algorithms (PhA). PhA algoritms base their descirption on physics’ laws.
Examples: Gravitational Search Algorithm (GSA), Electromagnetic Field Optimization
(EFO).

• Human-based algorithms. By simulating some of natural human’s behaviours, re-
searchers proposed a few algorithms for solving optimization problems. Examples:
Group Teaching Optimization Algorithm (GTOA), Collective Decision Optimization
(CSO).

These algorithms gained interest because of their effectiveness in various optimization
engineering problems. Examples of their usefulness include publications (Kalita et al.,
2023; Alyami et al., 2024; Zhang and Chi, 2023; Brociek and Słota, 2015). In this paper,
some of metaheuristic optimization algorithms were used and compared, from which,
three best (in terms of solving inverse problem for model with fractional derivative) were
described in further subsections.

5.1. Group Teaching Optimization

Group Teaching Optimization Algorithm (GTOA) described in this section takes inspira-
tion from the process of group teaching. The goal of the process is to improve knowledge of
the group of students. The process of teaching can be realized by different means, through
learning with a teacher, exchanging knowledge between the students or self-improvement.
Each student acquires knowledge with different efficiency, so it is natural to divide them
into two groups: students with normal abilities and outstanding students. The teacher, in
order to maximize the result, must use different methods while teaching each group. All of
these mechanisms were used as an inspiration in creating Group Teaching Optimization
Algorithm (Zhang and Jin, 2020).

For algorithm’s presentation, the following notation is used:
dim – dimension of the task, N – number of students in population, F – fitness function,
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xt
i = [xt

i,1, x
t
i,2, . . . , x

t
i,dim] – i-th student during iteration t before

learning with a teacher,
xt

teacher = [xt
teacher,1, x

t
teacher,2, . . . , x

t
teacher,dim] – teacher in iteration t ,

xt
ALTi

= [xt
ALTi ,1

, xt
ALTi ,2

, . . . , xt
ALTi ,dim] – i-th student after learning with

teacher during iteration t ,
xt

ALSi
= [xt

ALSi ,1
, xt

ALSi ,2
, . . . , xt

ALSi ,dim] – i-th student after learning with other
students during iteration t ,

xt
AVG = [xt

AVG,1, x
t
AVG,2, . . . , x

t
AVG,dim] – average students’ knowledge within

the population during iteration t ,
xt

best = [xt
best,1, x

t
best,2, . . . , x

t
best,dim] – the best student in iteration t ,

xt
second = [xt

second,1, x
t
second,2, . . . , x

t
second,dim] – the second best student in

iteration t ,
xt

third = [xt
third,1, x

t
third,2, . . . , x

t
third,dim] – the third best student in iteration t .

To generalize, in a process of a group teaching, a few steps can be distinguished. Below,
these steps are introduced along with their mathematical description, which make up a
model of algorithm’s operation.

• Step 1 – Choosing the teacher. During this step, a so-called teacher is chosen from
the whole population. The evaluation of students in a population is determined by their
fitness value – the smaller the value is, the better the quality (knowledge) of the student.
The process of choosing the teacher is done on the basis of the following equation:

xt
teacher =

⎧⎨
⎩

xt
best , F(xt

best ) < F(
xt
best+xt

second+xt
third

3 ),

xt
best+xt

second+xt
third

3 , F(xt
best ) � F(

xt
best+xt

second+xt
third

3 ).

(14)

• Step 2 – Division of the students. During this step, all individuals within the population
are divided into two, equally populated groups based on their knowledge (quality of
their result). The results of this division are two groups, outstanding and normal groups
of students.

• Step 3 – Learning with a teacher. In case of learning with a teacher, the process differs
for both of the groups created in the previous step. The teacher uses different methods for
different students groups. Mathematically, this process can be described with following
equations:
for students in the outstanding group:

xt
ALTi

= xt
i + a

(
xt

teacher − f bxt
AVG − f cxt

i

)
, (15)

for students in the normal group:

xt
ALTi

= xt
i + 2d

(
xt

teacher − xt
i

)
. (16)

In equations (15), (16), symbols a, b, c, d were used to represent random numbers
within the scope [0, 1], symbol f represents the so-called teaching factor. In this case,
f = 1.
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Fig. 2. Diagram of next steps of GTOA.

If student’s knowledge increased, after the learning with a teacher, then the student
goes to the next step. Otherwise, to the next step goes an individual from before learning
with a teacher, that is:

xt
ALTi

=
⎧⎨
⎩

xt
ALTi

, F(xt
ALTi

) < F(xt
i ),

xt
i , F(xt

ALTi
) � F(xt

i ).
(17)

• Step 4 – self-learning of students. This step simulates students learning together during
their free time. Students can share knowledge between one another and learn together,
they can learn by themselves as well. The mathematical description of this process is
as follows:

xt
ALS,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xt
ALT,i + e(xt

ALT,i − xt
ALT,j ) + g(xt

ALT,i − xt
i ),

for F(xt
ALT,i ) < F(xt

ALT,j ),

xt
ALT,i − e(xt

ALT,i − xt
ALT,j ) + g(xt

ALT,i − xt
i ),

for F(xt
ALT,i ) � F(xt

ALT,j ).

(18)

Symbols e, g were used to represent random number from [0, 1]. Index j �= i appear-
ing in the equation (18) represents a random student. Hence, the interaction between
students i and j . Those students, who increased their knowledge after this step, pass to
the next population (denoted by t + 1), meaning:

xt+1
i =

⎧⎨
⎩

xt
ALT,i , F(xt

ALT,i ) < F(xt
ALS,i),

xt
ALS,i , F(xt

ALT,i ) � F(xt
ALS,i).

(19)

Figure 2 schematically depicts the next steps of GTOA algoritm, while Fig. 3 presents
the block diagram of the algorithm. Pseudocode 1 presents the next steps of GTOA.
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Fig. 3. Block diagram of GTOA.



464 R. Brociek et al.

Algorithm 1: Pseudocode of GTOA
Set up the parameters of the algorithm (population size, number of iterations).
Generate random distribution of agents x0

i of the initial population in the search
space.

Calculate the value of the fitness function for each individual in the population.
Set up counter t = 0.
while t < T do

Determine teacher xt
teacher in t-th iteration (equation (14)).

Divide students into two equal groups: normal and outstanding.
for for each student in outstanding group do

The stage of learning with the teacher. Update students’ knowledge
according to the equation (15). The xt

ALTi
vectors are obtained for the

outstanding group.
end
for for each student in normal group do

The stage of learning with the teacher. Update students’ knowledge
according to the equation (16). The xt

ALTi
vectors are obtained for the

normal group.
end
For students in both groups, check if student’s knowledge has been improves

(equation (17)).
for for each student in population do

The stage of self improvement by students. Update students’ knowledge
according to the equation (18). The xt

ALSi
vectors are obtained for each

student in the population.
end
For students in the population, check if student’s knowledge has been

improved (equation (19)). A new population for the next iteration has been
created.

Increment counter t := t + 1.
end
Return xT

best (the best individual in the last iteration).

5.2. Artificial Bee Colony

Artificial Bee Colony (ABC) is one of many metaheuristic algorithms based on animals’
behaviour in their natural environment. In order to find food sources, the algorithm divides
bees into two groups:
Working bees – bees that at the moment are scavenging through the already found food
sources. For those bees, important factors are the distance between the source and the hive
and the amount of nectar in the food source.
Unclassified bees – those bees’ mission is to search for new food sources. They can be
further divided into two groups: observers and scouts. Scouts look for new food sources
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randomly, while observers plan their search based on the information they’re provided
with.
Bees exchange information by performing a special dance. Observer bees decide how to
search the space based on the dance of other bees. After the collection of nectar, every
bee can decide, whether they should share information about the food source they’ve been
exploring, keep on exploring it without the information exchange with other bees or dis-
card the food source and become an observer. In order to present the ABC algorithm,
a following notation has been used:

dim – dimension of the task,
N – number of bees in a colony = number of food sources,
F – fitness function,

xt
i = [xt

i,1, x
t
i,2, . . . , x

t
i,dim] – i-th food source in iteration t ,

vt
i = [vt

i,1, v
t
i,2, . . . , v

t
i,dim] – i-th modified food source during iteration t ,

pt = [pt
1, p

t
2, . . . , p

t
N ] – probabilities of choosing food source by a bee during

iteration t .

The process of an ABC algorithm can be generalized into a few steps. Below, these steps
are presented together with their corresponding mathematical descriptions.

• Step 1 – Dance. At this point scouting bees return to the hive and begin to share in-
formation about the food source they’ve been exploring. Based on the information pro-
vided by the scouts, every source is evaluated and assigned a probability according to
its quality in comparison with other food sources. It is depicted by an equation below:

pi = fit(xi)∑N
j=1 fit(xj )

, (20)

where

fit(xi) =
{

1
1+F(xi )

, if F(xi) � 0,

|1 + F(xi)|, if F(xi) < 0.
(21)

• Step 2 – Leaving the hive. After the dance ends, every observer chooses one of the food
sources and sets out to explore it (one source can be chosen multiple times), the source
is being modified and if the modified source is better than the original one, it replaces
the original one. The formula used to modify the food source is the following:

vt
i = xt

i + �i

(
xt
i − xt

k

)
. (22)

In the equation (22), �i is a pseudo-random number between 0 and 1, k is a randomly
selected index different than i. If the fitness value of modified food source is better than
the one’s before exploration, the modified one replaces the original as a food source,
otherwise it is discarded.
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• Step 3 – Abandoning old food sources. All of the sources which haven’t been chosen by
any of the bees are being discarded and replaced with a new one, that is created using
the following formula:

xi = xmin + ωi(xmax − xmin), (23)

where ωi is a pseudo-random number within the range [0, 1] and max, min represent
the upper and lower limits of the search area, respectively.

More details about the algorithm itself and its exemplary applications are presented
in Li et al. (2012), Karaboga and Basturk (2007), Roeva (2018).

5.3. Jellyfish Search

This algorithm was inspired by the behaviour of jellyfish in the ocean. It simulates factors
such as following ocean currents, passive and active movements inside jellyfish swarm,
time control mechanism which governs the switching between types of movement and
convergence into jellyfish bloom.

Ocean Current
The direction of the ocean current is obtained by averaging all the vectors from each
jellyfish in the ocean to the jellyfish that is currently in the best location:

−−→
trend = X∗ − ec

∑
Xi

nPop
= X∗ − ecμ, (24)

where nPop is the number of jellyfish; X∗ is the jellyfish currently with the best location
in the swarm; ec is the factor that governs the attraction; μ is the mean location of all
jellyfish. Because we assume that there is a normal spatial distribution of jellyfish in all
dimensions, the previous equation can be transformed in the following way:

−−→
trend = X∗ − β × rand(0, 1) × μ, (25)

where β > 0 is a distribution coefficient, related to the length of
−−→
trend. Based on the results

of sensitivity analysis in numerical experiments carried out by authors of this algorithm,
β = 3 is obtained.

Finally, the new location of each jellyfish is given by:

Xi(t + 1) = Xi(t) + rand(0, 1) × (
X∗ − β × rand(0, 1) × μ

)
. (26)

Movement Inside Swarm
After the formation of the swarm, most jellyfish exhibit type A motion. As time goes on,
more and more jellyfish begin to exhibit type B motion.
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Fig. 4. Block diagram of ABC algorithm.
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Algorithm 2: Pseudocode of ABC
Set up the parameters of the algorithm (population size, number of iterations).
Generate random distribution of agents x0

i of the initial population in the search
space.

Calculate the value of the fitness function for each individual in the population.
Save the most fit agent as xbest .
Set up counter t = 0.
while t < T do

Set up counter j = 0.
while j < N × dim do

for every food source do
Create modified food source vt

i using equation (22).
if F(vt

i ) < F(xt
i ) then

replace xt
i with vt

i .
end

end
Increase the counter j := j + 1.

end
for every food source do

Calculate probabilities pt and assign it to all of the food sources using
equation (20).

end
for each bee in a colony do

Choose one food source according to the probabilities pt , then transform
the food source according to equation (22).

end
if any of the food sources was left unchanged then

for every unchanged food source do
Modify the food source using equation (23).

end
end
Calculate the value of the fitness function for each individual food source,

save the best fit one as xnew best

if F(xnew best ) < F(xbest ) then
Replace xbest with xnew best .

end
Increase the counter t := t + 1.

end
Return xbest

(a) Type A motions (Passive motions)
Type A motion is the motion of jellyfish around their own locations. The new location
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of each jellyfish is given by

Xi(t + 1) = Xi(t) + γ × rand(0, 1) × (Ub − Lb), (27)

where Ub and Lb are the upper bound and lower bound of search spaces, respectively;
γ = 0.1 is a motion coefficient.

(b) Type B motions (Active motions)
To update the position of a jellyfish (i) in the type B motion, another jellyfish (j)

must be selected at random. Then we compare the quantity of food at the locations of
those jellyfish and create a vector from the position with less food to the position with
more food. This vector is used to move jellyfish of interest (i) toward direction with
more food.

Xi(t + 1) = Xi(t) + −−→
Step, (28)

−−→
Step = rand(0, 1) × −−−−−→

Direction, (29)

−−−−−→
Direction =

{
Xj(t) − Xi(t), F(Xi) � F(Xj ),

Xi(t) − Xj(t), F(Xi) < F(Xj ),
(30)

where F is an fitness function of location X.

Time Control Mechanism
To regulate the movement of jellyfish between following the ocean current and moving
inside the jellyfish swarm, the time control mechanism is introduced. It includes a time
control function c(t) which is a random value that fluctuates from 0 to 1 over time.

c(t) =
∣∣∣∣
(

1 − t

Maxiter

)
× (

2 × rand(0, 1) − 1
)∣∣∣∣, (31)

where t is the time specified as the iteration number and Maxiter is the maximum number
of iterations, which is an initialized parameter.

To decide which type of movement to use inside a swarm, the function (1 − c(t)) is
used. When its value is less than rand(0, 1), the jellyfish exhibits type A motion. Other-
wise, the jellyfish exhibits type B motion.

Population Initialization
In order to get initial population which is more diverse and has a lower probability of
premature convergence than the one with random positions, the logistic map has been
used.

Xi+1 = ηXi(1 − Xi), 0 � X0 � 1. (32)

Xi is the logistic chaotic value of location of the ith jellyfish; X0 is used for generating
initial population of jellyfish, X0 ∈ (0, 1), X0 /∈ {0.0, 0.25, 0.75, 0.5, 1.0}, and param-
eter η is set to 4.0.
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Boundary Conditions
Oceans are located around the world. The earth is approximately spherical, so when a
jellyfish moves outside the bounded search area, it will return to the opposite bound.

X′
i,d =

{
(Xi,d − Lb,d) + Lb(d), Xi,d > Lb,d ,

(Xi,d − Ub,d) + Ub(d), Xi,d < Ub,d .
(33)

Xi,d is the location of the ith jellyfish in dth dimension; X′
i,d is the updated location

after checking boundary constraints. Ub,d and Lb,d are upper and lower bounds of dth
dimension in search spaces, respectively.

More details about the JS and its exemplary applications are presented in the publica-
tions (Chou and Truong, 2021; Bujok, 2021; Youssef et al., 2021).

Algorithm 3: Pseudocode of JS
Define fitness function F(X), X = (x1, . . . , xd)T

Set up the parameters of the algorithm (population size nPop, maximum iteration
Maxiter).

Initialize population Xi (i = 1, 2, . . . , nPop) using logistic chaotic map.
Calculate the value of the fitness function for each individual in the population.
Record the most fit agent as X∗.
Set up counter t = 1.
while t � Maxiter do

for i = 1 : nPop do
Calculate time control c(t) using Eq. (31)
if c(t) � 0.5 then

Update position Xi using Eq. (26)
else

if rand(0, 1) > (1 − c(t)) then
Update position Xi using Eq. (27)

else
Update position Xi using Eq. (28)

end
end
Check boundary conditions using Eq. (33)
Calculate the value of the fitness function for Xi

if Xi is the fittest agent then
X∗ = Xi

end
end
t = t + 1

end
Return X∗
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Fig. 5. Block diagram of JS.
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Table 1
Reference values of sought parameters with the search

domain.

Parameter Reference value Domain

α = a0 0.6 [0, 1]
β = a1 1.5 [1, 2]
a2 3.00901 [1, 5]
a3 −53.1736 [−70, −20]
a4 339.514 [250, 450]
a5 −20 [−30, −10]
a6 150 [50, 250]

6. Computational Example

This section is designed to present how the presented method of solving an inverse prob-
lem for the model of anomalous diffusion works. As an example, the results provided by
a few chosen metaheuristic optimization algorithms were compared.

In a considered inverse problem, fractional boundary condition (4) on the right side is
recreated, specifically, function ψ appearing in mentioned condition, as well as orders of
fractional derivatives α, β. In the model (1)–(4), the following numeric data was assumed:

x ∈ [0, 1], t ∈ [0, 400], λ(x, t) = 2xt, ϕ(x) = 150x,

f (x, t) = 5t2/5x2

2�
( 2

5

) − 10
√

πx3/2

10
√

t�
( 9

10

) − 2t
√

x(4tx − 15π
√

tx + 150)√
π

.

The objective of this example is to test proposed algorithm (treated as a benchmark),
hence the data sought – orders of derivatives α, β and function ψ are known and have the
following values:

α = 0.6, β = 1.5, ψ(t) = (
√

t − 10)2 + 2t (8t − 45π
√

t + 900)

3
√

π
+ 50.

Upon writing function ψ in a numerical form, the following was obtained:

3.00901t2 − 53.1736t3/2 + 339.514t − 20t1/2 + 150.

So the sought function ψ and orders of derivatives α, β were identified in a following
form:

α = a0, β = a1, ψ(t) = a2t
2 + a3t

3/2 + a4t + a5t
1/2 + a6, (34)

where parameters a0, a1, a2, a3, a4, a5, a6 are unknown. In a Table 1, the domain of each
parameter, as well as it’s exact value are presented.

Data necessary for solving the inverse problem is value of the function u in control
point xp = 1 (the right boundary). This data was generated as a result of solving the
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Fig. 6. Errors distribution in a control point for GTOA and ABC algorithms.

direct problem for the measurement grid 400×400. During the algorithm’s work on solv-
ing the inverse problem, grid of the size 100 × 200 was used. Using different sizes of
grid is for evading the phenomena known as inverse crime (Kaipio and Somersalo, 2005).
To find the minimum of fitness function (13), which describes the error of approximated
solution, selected metaheuristic optimization algorithms were used. Tested group of al-
gorithms includes described in the Section 5 Group Teaching Optimization Algorithm
(GTOA), Artificial Bee Colony (ABC) and Jellyfish Search (JS). Apart from previously
mentioned, following heuristics were used: Equilibrium Optimizer (EO), Grey Wolf Opti-
mizer (GWO), War Strategy Optimization (WSO), Tuna Swarm Optimization (TSO) and
Ant Colony Optimization (ACO). In each algorithm, values of parameters such as number
of iterations and size of the population were chosen in a way that ensures similar number
of calls of fitness function. This is to compare the results obtained from these algorithms.

Obtained results of the search of the minimum of fitness function are presented in a
Table 2. Colour blue was used to mark three algorithms (GTOA, ABC and JS), which
returned a satisfying result. Colour red was used to mark the rest of the algorithms, which
did not handle the task so well. Smallest value of objective function was achieved for
GTOA and was approximately 0.007. Also, in this case, errors of identifying parameters
a0, a1, . . . , a6 are the smallest. Similarly for ABC and JS, obtained errors and value of
objective function are on acceptable level. It is also worth to pay attention to the results
from ACO, where value of fitness function is low. However, the errors in identification of
parameters are on an unacceptable level, which proves that the algorithm got stuck in a
local minimum. For other algorithms,a the values of objective function are on a relatively
highly level.

Another important indicator is fitness of data from control point (so called measure-
ment data) to data obtained from model. On one hand, the measure determining this fit is
the value of the objective function F , while on the other hand, it is the errors of the recon-
structed function u for the identified parameters. Figures 6 (for GTOA and ABC) and 7
(for other algorithms) present errors of distribution of the recreated function u in a con-
trol point. For the two best algorithms (GTOA and ABC), these errors are much smaller
(≈ 10−2) than for the rest of the algorithms (≈ 101) (see Figs. 6, 7).
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Table 2
Results of parameters identification, ai – identified value of ai coefficient, 
ai

– absolute error of
identification, δai

– relative error of identification, F – value of fitness function.

Algorithm ai 
ai
δai

[%] F

GTOA

a0 = 0.5133 0.0867 14.45

a1 = 1.5233 0.0233 1.55

a2 = 3.1069 0.0978 3.25

a3 = −54.61 1.44 2.71 0.007

a4 = 345.71 6.19 1.82

a5 = −19.81 0.19 0.95

a6 = 147.92 2.08 1.38

EO

a0 = 0.4861 0.1138 18.97

a1 = 1.1202 0.3797 25.31

a2 = 1.8613 1.1476 38.14

a3 = −36.34 16.82 31.64 219.14

a4 = 275.80 63.70 18.76

a5 = −30.00 10.00 50.00

a6 = 222.18 72.18 48.12

GWO

a0 = 0.1282 0.4717 78.63

a1 = 1.1339 0.3660 24.41

a2 = 1.9636 1.0453 34.74

a3 = −39.20 13.97 26.27 217.17

a4 = 292.47 47.04 13.85

a5 = −16.64 3.35 16.79

a6 = 75.69 74.30 49.53

WSO

a0 = 0.7993 0.1993 33.22

a1 = 1.1456 0.3543 23.62

a2 = 2.0023 1.0066 33.45

a3 = −39.55 13.62 25.61 42.16

a4 = 290.64 48.86 14.39

a5 = −13.73 6.26 31.34

a6 = 121.65 28.34 18.89

TSO

a0 = 0.4344 0.1655 27.59

a1 = 1.1342 0.3657 24.38

a2 = 1.9612 1.0477 34.82

a3 = −39.04 14.12 26.56 122.48

a4 = 291.17 48.34 14.23

a5 = −15.54 4.46 22.27

a6 = 95.21 54.79 36.53

ACO

a0 = 0.1126 0.4873 81.22

a1 = 1.1014 0.3985 26.57

a2 = 1.9438 1.0652 35.41

a3 = −38.57 14.60 27.46 0.2224

a4 = 287.60 51.91 15.29 (local minimum)
a5 = −15.61 4.39 21.96

a6 = 146.68 3.31 2.21

(continued on next page)
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Table 2
(continued)

Algorithm ai 
ai
δai

[%] F

ABC

a0 = 0.7239 0.1239 20.66
a1 = 1.5089 0.0089 0.59
a2 = 3.2198 0.2108 7.01
a3 = −56.31 3.13 5.91 2.01
a4 = 353.91 14.39 4.24
a5 = −30 10 50
a6 = 165.25 15.25 10.16

JS

a0 = 0.4684 0.1315 21.92
a1 = 1.4316 0.0683 4.55
a2 = 2.5251 0.4838 16.08
a3 = −46.30 6.87 12.92 20.85
a4 = 311.36 28.15 8.29
a5 = −17.50 2.49 12.46
a6 = 136.24 13.75 9.17

Fig. 7. Error distribution in a control point for EO, WSO, TSO, GWO, JS, ACO algorithms.

Because the exact solution is known, we decided to calculate the errors of reconstruc-
tion function u in a full domain (not only in control point). In Fig. 8 errors of reconstruc-
tion function u for identified model parameters are presented. For three best algorithms,
these errors are on an acceptable level and they share similar characteristics. It is the case
of GTOA (maximum error ≈ 1.5), ABC (maximum error ≈ 10) and JS (maximum er-
ror ≈ 20). In the rest of algorithms, maximum errors are high and unacceptable.

As part of the conducted computations, a comparison of the error of identification of
the function ψ occurring in the boundary condition was also performed. These errors were
calculated using the formula:

Eabs = 1

t∗

∫ t∗

0

∣∣ψ(t) − ψapprox(t)
∣∣ dt, (35)

Erel = Eabs

(
1

t∗

∫ t∗

0

∣∣ψ(t)
∣∣ dt

)−1

100%, (36)
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Fig. 8. Function u’s reconstruction’s error in a full domain.

where ψ is the exact solution, and ψapprox is the approximate solution. The corresponding
results are presented in Table 3. For the two best algorithms, the percentage errors are
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Table 3
Absolute and relative errors of function reconstruction ψ .

Algorithm Absolute error Relative error [%]

GTOA 1864.98 3.21
ABC 3966.77 6.82
EO 20147.81 34.67
WSO 19815.22 34.09
TSO 20319.82 34.96
JS 9424.24 16.21
GWO 20478.45 35.23
ACO 20407.33 35.11

3.21% for GTOA and 6.82% for ABC. The JS algorithm ranked third with an error of
16.21%, while for the remaining algorithms, the errors were large ≈ 35%.

7. Conclusion

This article focuses on the method of solving the inverse problem for diffusion equation
with fractional derivatives. In the considered task, the orders of derivatives and the func-
tion occurring in the boundary condition were identified. In the presented approach, the
forward problem was solved using an implicit finite difference scheme, while the inverse
problem was solved using heuristic optimization algorithms. The inverse problem turned
out to be difficult to solve and required identification of seven parameters.

To solve the inverse problem, the following metaheuristic algorithms were compared:
GTOA, ABC, ACO, EO, GWO, JS, TSO, WSO. Satisfactory results were obtained for the
Group Teaching Optimization Algorithm (GTOA) and the Artificial Bee Colony (ABC)
method. Additionally, the Jellyfish Search (JS) algorithm yielded an acceptable result.
The remaining algorithms proved unsuitable for this type of problem.

One of the conclusions from the conducted research and next step in the research is
the possibility to build a hybrid algorithm. Firstly, a heuristic algorithm could be used
for initial solution localization (exploration part), while deterministic methods such as
Nelder-Mead or Hooke-Jeeves could be employed for more focused searches (eploitation
part). This is the next step and a plan for future research in the work carried out by the
authors of this paper.
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