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Abstract. Neural networks (NNs) are well established and widely used in time series forecasting
due to their frequent dominance over other linear and nonlinear models. Thus, this paper does not
question their appropriateness in forecasting cryptocurrency prices; rather, it compares the most
commonly used NNs, i.e. feedforward neural networks (FFNNs), long short-term memory (LSTM)
and convolutional neural networks (CNNs). This paper contributes to the existing literature by defin-
ing the appropriate NN structure comparable across different NN architectures, which yields the
optimal NN model for Bitcoin return forecasting. Moreover, by incorporating turbulent events such
as COVID and war, this paper emerges as a stress test for NNs. Finally, inputs are carefully selected,
mostly covering macroeconomic and market variables, as well as different attractiveness measures,
the importance of which in cryptocurrency forecasting is tested. The main results indicate that all
NNs perform the best in an environment of bullish market, where CNNs stand out as the optimal
models for continuous dataset, and LSTMs emerge as optimal in direction forecasting. In the down-
turn periods, CNNs stand out as the best models. Additionally, Tweets, as an attractiveness measure,
enabled the models to attain superior performance.
Key words: Bitcoin, convolutional neural networks, feedforward neural networks, long short-term
memory, attractiveness measures.

1. Introduction

Neural networks have been successfully applied in fields such as finance (Sezer et
al., 2020), macroeconomics (Šestanović and Arnerić, 2020), engineering (Hegde and
Rokseth, 2020), weather forecasting (Purwandari et al., 2021), medicine (Han et al., 2024),
and many other (Čorić et al., 2023). Their forecasting ability has recently been tested on
time series data, which exhibit features that have to be taken into account and addressed
appropriately (Kalinić Milićević and Marasović, 2023; Šestanović, 2024). Especially in-
teresting are financial time series data, which are not stationary, they can have seasonal
pattern or cyclical behaviour, they are nonlinear, meaning they can exhibit occasional pres-
ence of aberrant observations and the possible existence of regimes within which returns
display different dynamic behaviour (Franses and van Dijk, 2003).

∗Corresponding author.

https://doi.org/10.15388/24-INFOR561


176 T. Šestanović, T. Kalinić Milićević

The dynamic behaviour of cryptocurrencies, as financial time series, displays extreme
observations, asymmetries, and several nonlinear characteristics that are difficult to model
and forecast (Šestanović, 2024). Additionally, the importance of cryptocurrency forecast-
ing lies in their constantly increasing financial market, characterized by high volatility and
extreme price fluctuations.

Bitcoin prices are highly volatile since they are influenced by a vast number of factors
including but not limited to the supply of bitcoins, the cost of the mining process, market
demand, as well as political and economic data (Cavalli and Amoretti, 2021). Some pa-
pers use internal factors for prediction (Polasik et al., 2015; Jang and Lee, 2017; Sovbetov,
2018; Liu and Tsyvinski, 2020; Spilak, 2018; Fahmi et al., 2018; Ji et al., 2019; Chen et
al., 2020; Cavalli and Amoretti, 2021), the others use only Open, High, Low, and Close
(OHLC) prices (Indera et al., 2017; Fahmi et al., 2018; Uras et al., 2020; Li and Dai,
2020), while Azari (2019) and Abu Bakar and Rosbi (2017) use only past closing prices.
Technical indicators are also used as predictors (Indera et al., 2017; Spilak, 2018; Pabuccu
et al., 2020; Li and Dai, 2020; Cavalli and Amoretti, 2021). Few papers use macro-finance
factors (Polasik et al., 2015; Sovbetov, 2018; Liu and Tsyvinski, 2020; Spilak, 2018; Li
and Dai, 2020; Chen et al., 2020) and report the lack of statistical significance if used
in parametric models. Contrary, Walther et al. (2019) found that economic activity is the
most important exogenous volatility driver, while the results in Jang and Lee (2017) sug-
gest that macro-financial markets can have a small impact on cryptocurrencies. Moreover,
Aljinović et al. (2022) report significant dynamic conditional correlations between cryp-
tocurrencies and real estate, S&P500 and gold. However, the majority of papers confirm
attractiveness as an important factor that influences cryptocurrency prices (Polasik et al.,
2015; Sovbetov, 2018; Li and Dai, 2020; Šestanović, 2021; Cavalli and Amoretti, 2021).
This factor is even included among the other indicators in appropriate, comprehensive
manner in models for portfolio optimization that include cryptocurrencies (Trimborn et
al., 2019; Aljinović et al., 2021). On the other hand, (Kalinić Milićević and Marasović,
2023) report that different models cannot agree upon the importance of Tweets and macro-
financial variables in Bitcoin direction forecasting, but show that technical indicators are
the most influential, followed by blockchain and market variables. Since different types of
attractiveness measures can be found in the literature, the most commonly used measures
and their predictive power are compared in this paper, i.e. Google Trends and Tweets.

Previous research has also ambiguous conclusions regarding the appropriate NN
model, which calls for further investigation (Cavalli and Amoretti, 2021; Zhang et al.,
2021; Li and Dai, 2020; Livieris et al., 2021; Lahmiri and Bekiros, 2019; Ji et al., 2019).
Additionally, Lahmiri and Bekiros (2019) revealed that cryptocurrencies exhibit fractal
dynamics, long memory and self-similarity. Therefore, an accurate and reliable forecast-
ing model is an essential tool for portfolio managers, which has to be developed and tested.

The feedforward neural networks (FFNNs) are the most popular NN model. Despite
their power and proven properties as universal approximators (Hornik et al., 1989), FFNNs
have limitations that each input (independent variable) and output (dependent variable)
are handled independently, i.e. temporal or space information is not incorporated into the
model, which is a significant drawback for time series analysis. Recurrent neural networks
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(RNNs), however, are adapted to time series data as they incorporate recurrent connec-
tions from output or hidden layers and the so-called self-connected neuron, which allows
learning the temporal dynamics of time series data (Madaeni et al., 2022). However, their
main problem is capturing long-term dependencies as they suffer from vanishing or ex-
ploding gradient. RNN with long short-term memory (LSTM) units has a cell state which
enables stable gradients, while the presence of filters can control the information flow
(Paranhos, 2021). LSTM emerge as a model most commonly used in financial time se-
ries prediction (Sezer et al., 2020). However, convolutional neural networks (CNNs) have
recently challenged the LSTMs in their predictive power when working with sequences.
Namely, CNNs use filters, which help them learn spatial features from raw time series
data (Fawaz et al., 2019).

In this paper, the most commonly used NNs for time series prediction, i.e. FFNNs,
LSTM and CNNs, which have proven their forecasting abilities on time series data,
are used to forecast Bitcoin returns. The proposed models are compared across differ-
ent periods, including bullish, bearish and stable market periods, using different perfor-
mance measures such as means squared error (MSE), accuracy and Diebold-Mariano test,
through different inputs and, finally, through different NN architectures. That is, neither
input nor NN architecture selection is straightforward and should be chosen with caution.
Additionally, Uras et al. (2020) confirmed that partitioning datasets into shorter sequences,
representing different price “regimes”, enables obtaining precise forecasts. Therefore, Bai-
Perron multiple structural break test is used.

To sum up, the main contributions of this paper to the current literature are:

• It defines the appropriate NN structure comparable across different NN architectures,
which yields the optimal NN model for Bitcoin’s return forecasting.

• It determines which of the attractiveness measures, already proven in the literature as
an important variable for Bitcoin prediction, yields the optimal results.

• It compares the results across different periods based on a non-arbitrary selection of
sub-periods using Bai-Perron multiple structural break test and by employing different
performance measures that include MSE and accuracy, as well as the Diebold-Mariano
test.

The remainder of the paper is organized as follows. Section 2 provides a literature
review of related work, Section 3 describes the proposed methodology, including dataset
definition, data preprocessing, a description of neural network architectures, as well as
model evaluation criteria. Section 4 presents experimental results with discussion. Finally,
conclusions and directions for future research are provided in Section 5.

2. Related Work

There are papers that compare FFNNs to other linear and nonlinear models and find NNs
to have the highest predictive performances (Greaves and Au, 2015; Pabuccu et al., 2020).
Namely, Greaves and Au (2015) compare Support Vector Machine (SVM), Logistic re-
gression (LR), Baseline model and NNs in classification. They obtain the highest classifi-
cation accuracy of 55.1% with NNs. Pabuccu et al. (2020) aim to forecast Bitcoin prices
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applying four different machine learning (ML) methods, i.e. SVM, NNs, Naive Bayes
(NB), Random Forest (RF) and LR as a benchmark model. They conclude that in a contin-
uous dataset, RF has the best forecasting performance, while NB, the worse. In a discrete
dataset, NN has the best forecasting performance, while NB again lags behind other mod-
els. Šestanović (2021) confirmed the ability of simple FNNs with lower number of hidden
neurons to accurately predict the Bitcoin price direction, compared both to previous re-
search considered and to LR, while Šestanović (2024) predicted Bitcoin price, returns,
direction, and volatility. Return and volatility predictions are stable regardless of model
or period. Return and direction prediction is best with NNs. ARIMAX and NNARX mod-
els predicted prices effectively. All models predict volatility in a similar way. The price
prediction was the most accurate, whereas JNNX showed poor performance. However,
these papers did not use any sophisticated machine learning models for prediction, which
have been proven in the literature to have superior performance.

Since CNN and LSTM methods have proven their forecasting abilities, more and more
research has recently been testing their abilities in new circumstances. Several studies
confirm that CNN has superior prediction abilities in comparison to LSTM and other
NN architectures (Cavalli and Amoretti, 2021; Zhang et al., 2021; Šestanović and Kalinić
Milićević, 2023), while some improve the accuracy by combining the CNN and LSTM (Li
and Dai, 2020; Livieris et al., 2021). Other research confirms that LSTM exhibits supe-
rior predictive abilities when compared to various NN architectures (Lahmiri and Bekiros,
2019; Ji et al., 2019; Spilak, 2018). Contrary, Uras et al. (2020) indicate linear regression
models outperform NNs, while in Chen et al. (2020) LR and Discriminant Analysis out-
perform more complicated machine learning algorithms. Since the literature does not give
a unique answer, this calls for further investigation. Table 1 provides a brief overview of
the key features of related research and a comparison of related work concerning variables,
data, models and key findings.

Cavalli and Amoretti (2021) predict Bitcoin direction with One-Dimensional (1D)
CNN and demonstrate, using large datasets collected in a cloud-based system, that the
1D CNN allows for the prediction of the Bitcoin trend with higher accuracy compared to
LSTM models.

Among other papers that combine different deep neural network architectures is
Livieris et al. (2021) who proposed a multi-input deep learning (MICDL) model based
on CNN-LSTM approach for predicting prices of Bitcoin, Ether and XRP. The proposed
model is compared to two CNN-LSTM models: model trained with only one cryptocur-
rency and model trained with all three cryptocurrencies. The utilization of all cryptocur-
rencies in the training data of the MICDL yielded a forecasting model with the best return
and direction predictions.

Motivated by the high correlations among different cryptocurrencies as well as the
powerful modelling efficiency exhibited by DL models, Zhang et al. (2021) propose a
CNN-based Weighted and Attentive Memory Channels model to predict the daily clos-
ing price of cryptocurrencies. The results indicate that the proposed model outperforms
the baseline models (ARIMA, RF, XGBoost, MLP, LSTM, CNN, GRU, SVM) in predic-
tive performances. The hyperparameter setting of baseline models is chosen by default.
Additionally, this paper does not use any other inputs.
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Table 1
Key features of prior studies.

Cryptocurrency Time period,
frequency

Variables Approach The best
model

Greaves and
Au (2015)

Bitcoin 2012-02-01 to
2013-04-01
test set.
hourly

Internal factors SVM, LR, NNs,
Logistic
Regression

NNs

Spilak
(2018)

Bitcoin, Dash,
XRP, Monero,
Litecoin,
Dogecoin, NXT,
Namecoin

2014-07 to
2017-10 daily

Internal factors,
technical indicators,
macroeconomic
variables

FFNN, RNN,
LSTM

LSTM

Ji et al.
(2019)

Bitcoin 2011-11-29 to
2018-12-31
daily

Internal factors DNN, LSTM,
CNN, ResNet, and
their combinations,
and SVM, GRU,
linear/logistic R

LSTM

Lahmiri and
Bekiros
(2019)

Bitcoin, Bitcoin
Cash and XRP

Bitcoin:
2010-07-16 to
2018-10-01,
Digital Cash:
2010-02-08 to
2018-10-01,
Ripple:
2015-01-21 to
2018-10-01
daily

Internal factors LSTM, GRNN LSTM

Chen et al.
(2020)

Bitcoin 2017-02-02 to
2019-02-01
daily

Internal factors,
sentiment analysis
variables,
macroeconomic
factors

Logistic
Regression, DA,
RF, XGBoost,
Quadratic DA,
SVM, LSTM

LR and DA

Li and Dai
(2020)

Bitcoin 2016-12-30 to
2018-08-01
daily

Internal factors,
technical indicators,
macroeconomic
variables, sentiment
analysis variables

BPNN, CNN,
LSTM,
CNN-LSTM

CNN-LSTM

Pabuccu
et al. (2020)

Bitcoin 2008 to 2019
daily

Internal factors,
technical indicators

SVM, NNs, NB,
RF, Logistic
Regression

RF
(continuous
dataset),
NNs
(discrete
dataset)

Uras et al.
(2020)

Bitcoin, Litecoin
and Ether

2015-11-15 to
2020-03-12
daily

Internal factors MLR, FFNN,
LSTM

LR

Cavalli and
Amoretti
(2021)

Bitcoin 2013-04-28 to
2020-02-15
daily

Internal factors,
technical indicators,
sentiment analysis
variables

CNN, LSTM CNN

Livieris et
al. (2021)

Bitcoin, Ether
and XRP

2017-01-01 to
2020-10-31
daily

Internal factors, Three CNN-LSTM
models based on
different sets of
inputs

MICDL

(continued on next page)
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Table 1
(continued)

Cryptocurrency Time period,
frequency

Variables Approach The best
model

Zhang et al.
(2021)

Bitcoin, Bitcoin
Cash, Litecoin,
Ether, EOS, and
XRP

2017-07-23 to
2020-07-15
daily

Internal factors ARIMA, RF,
XGBoost, MLP,
LSTM, CNN,
GRU, SVM

CNN

Šestanović
(2021)

Bitcoin 2016-04 to
2021-04

Internal factors,
macroeconomic
factors, sentiment
analysis variables

Logistic
Regression, FFNN

FFNN

Jaquart
et al. (2022)

100
cryprocurrencies

2018-02-08 to
2022-05-15
daily

Internal factors LSTM, GRU,
TCN, GB, RF, LR

GRU, LSTM

Šestanović
and Kalinić
Milićević
(2023)

Bitcoin 2017-07-05 to
2022-01-01
daily

Internal factors,
sentimenti analysis
variables,
macroeconomic
factors

FFNN, CNN,
LSTM

CNN

Šestanović
(2024)

Bitcoin 2016-04-09 to
2021-04-09
daily

Internal factors,
macroeconomic
factors, sentiment
analysis variables

ARIMAX,
NNARX, JNNX,
GARCH, NNAR,
JNN, FNN,
Logistic
Regression

NNs for
return and
direction
forecasting,
ARIMAX
and NNARX
for price
forecasting

Note: Autoregressive Integrated Moving Average (ARIMA), ARIMA with exogenous inputs (ARIMAX), Back
Propagation Neural Network (BPNN), Discriminant Analysis (DA), Convolutional Neural Network (CNN),
Deep Neural Network (DNN), Deep Residual Network (ResNet) Extreme Gradient Boosting (XGBoost),
Feed Forward Neural Network (FFNN), Gated Recurrent Units (GRUs), General Regression Neural Net-
work (GRNN), Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Jordan Neural Networks
(JNN), Jordan Neural Networks with exogenous inputs (JNNX), Linear Regression (LR), Long Short-Term
Memory (LSTM), Multiple-Input Cryptocurrency Deep Learning Model (MICDL), Multilayer Perceptron
(MLP), Multiple Linear Regression (MLR), Naive Bayes (NB), Neural Networks (NNs), Neural Network Au-
toregression (NNAR), Neural Network Autoregression with Exogenous Input (NNARX), Random Forest (RF),
Recurrent Neural Network (RNN), Support Vector Machine (SVM), Temporal Convolutional Networks (TCN).

Li and Dai (2020) propose a hybrid NN model based on CNN and LSTM. CNN is
used for feature extraction, which become inputs to LSTM for training and prediction of
the Bitcoin price. They conclude that CNN-LSTM can effectively improve the accuracy
of both value and direction prediction compared with simple NNs.

Uras et al. (2020) forecast daily closing prices of Bitcoin, Litecoin and Ether, using
Simple and Multiple Linear Regression model (RM), as well as FFNN and LSTM mod-
els. The best results were found with RM and LSTM models. However, the linear RMs
outperform NNs.

Chen et al. (2020) predict Bitcoin price at daily and high-frequency intervals. LR and
Discriminant Analysis (DA) achieve an accuracy of 66%, outperforming more complex
machine learning (ML) models. ML models include RF, XGBoost, Quadratic DA, SVM
and LSTM.
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Lahmiri and Bekiros (2019) implement LSTM and generalized regression NN
(GRNN) to forecast the prices of Bitcoin, Bitcoin Cash and XRP. The predictability of
LSTM is significantly higher compared to the GRNN. LSTM are proved highly efficient
in forecasting cryptocurrency prices.

Ji et al. (2019) compare deep NN (DNN), LSTM, CNN, deep residual network, and
their combinations for Bitcoin price prediction, as well as SVM, GRU and linear/logis-
tic RMs which performed worse or equally to SVM. They conclude that LSTM slightly
outperforms the other models. Moreover, DNN performed the best in the classification
problem.

Spilak (2018) uses FFNN, RNN and LSTM in classification tasks to predict price di-
rections of 8 major cryptocurrencies with a rolling window RM. The study reveals that
LSTM has the highest accuracy for direction prediction of the most important cryptocur-
rencies, FFNN has the best generalization power for three cryptocurrencies, while RNN
shows poor prediction performances, seemingly failing to extract the necessary informa-
tion.

Jaquart et al. (2022) train models to predict binary relative daily market movements
of the 100 largest cryptocurrencies. They use only daily closing prices and market cap-
italization data. GRU and LSTM models perform the best, as portfolios based on these
models’ predictions yield the highest performances.

Šestanović and Kalinić Milićević (2023) estimated FFNN, CNN and LSTM models in
the downturn period for Bitcoin return prediction by applying the multi-criteria decision-
making approach for model selection. They concluded that optimal model is CNN.

In line with previous research findings that the majority of optimal models are con-
structed using CNN and LSTM, this article presents a comprehensive approach to fore-
casting Bitcoin returns using FFNN, CNN and LSTM. The employed NN architectures
are thoroughly explained and compared across various architectures and periods in or-
der to reach a conclusion regarding the important NN configurations. Namely, this paper
emerges as a stress test for NN architectures, since it tests the abilities of more sophisti-
cated NN architectures in different sub-periods, which include bullish, bearish and stable
market conditions, obtained in a logical way, i.e. using Bai-Perron structural break test.
Previous researches do not include downturn periods in their analysis, which are usually
more difficult to predict. The results are compared through different performance measures
and tested using Diebold-Mariano test. Additionally, although some previous researches
use sentiment analysis variable, they do not compare their performances. Finally, although
other papers sometimes use even more inputs for prediction, they narrow them down to the
use of only technical indicators or internal factors, while in this paper the representatives
of important factors are used in a comprehensive manner.

3. Proposed Methodology

3.1. Dataset Definition, Preprocessing and Partitioning

In order to create the initial dataset, different types of factors are extracted. They can be
divided into four main categories: internal factors, technical indicators, external factors,
and attractiveness measures. The considered factors are given in Table 2.
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Table 2
Factors considered in analysis.

Category Variables Source

Internal factors Close price, volume, market capitalization,
average block size, average block time,
average hash rate, average transaction fee

https://bitinfocharts.com

Technical indicators Moving average of close price, lag return Calculated
External factors S&P500, VIX, Gold https://fred.stlouisfed.org
Attractiveness measure Google Trends, Tweets https://bitinfocharts.com

Note: Database is available at: https://github.com/TKalini/Sestanovic-Kalinic-Milicevic-2024/blob/main/
Database_SestanovicKalinicMilicevic.csv.

Market and blockchain variables are differentiated among internal factors. Market data
usually include OHLC Bitcoin prices, volume, and market capitalization. Since Bitcoin
prices are not affected by seasonality like stock prices, the open, high, and low Bitcoin
prices are excluded from our analysis. In that manner, the dimensionality problem is
avoided. Average block size, average block time, average hash rate, and average transaction
fee are selected from a set of available blockchain metrics. Namely, Poyser (2017) define
supply and demand (transaction cost, reward system, mining difficulty, coins circulation,
rule changes), i.e. blockchain measures, as the main internal factors that have a direct im-
pact on their market price. Since previous research involving different technical indicators
yielded good results (Pabuccu et al., 2020; Li and Dai, 2020; Cavalli and Amoretti, 2021),
the moving average of the close price, as well as the lag return are selected as inputs as
well. Although researchers disagree on the impact of external factors on Bitcoin prices
and returns, the following external factors: S&P500, Chicago Board Options Exchange
volatility index (VIX), and Gold prices are considered in this paper. Finally, widely uti-
lized indicators of attractiveness such as Google Trends are used. Google Trends provides
insights into the fluctuation of interest in Bitcoin as a search term over a certain time-
frame, while Tweets indicate the daily count of tweets using the word “Bitcoin”. Bitcoin
closing prices are used to calculate the return for the following day, which is the dependent
variable in the model (Šestanović and Kalinić Milićević, 2023).

More formally, the next-day return Rt , is calculated as follows:

Rt = ln
Pt+1

Pt

, (1)

where Pt are Bitcoin closing prices. Moreover, prices Pt are used to calculate lag returns as
well as moving average values, for different window lengths w with equations (2) and (3):

LagRt = ln
Pt

Pt−1
, (2)

MAt = 1

w

t∑
i = t−w

Pi. (3)

Using the aforementioned variables, i.e. different internal factors, technical indicators,
external factors, and based on two attractiveness measures, i.e. Google Trends and Tweets,

https://bitinfocharts.com
https://fred.stlouisfed.org
https://bitinfocharts.com
https://github.com/TKalini/Sestanovic-Kalinic-Milicevic-2024/blob/main/Database_SestanovicKalinicMilicevic.csv
https://github.com/TKalini/Sestanovic-Kalinic-Milicevic-2024/blob/main/Database_SestanovicKalinicMilicevic.csv
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two initial (IN) datasets are created: D1
IN containing all the variables and the variable

Google Trend and D2
IN containing all the variables and the variable Tweets. Those sets

were used to compare the predictive performance of the models depending on the selected
measures of attractiveness.

More formally, initial datasets can be defined in the form of supervised data as D1
IN =

{(xt,i , yt )}t∈T ′ and D2
IN = {(zt,i , yt )}t∈T ′ , where T ′ is the total initial sample size, xt ∈ Rp

and zt ∈ Rp are vectors of p = 14 (i = 1, . . . , p) independent variables differing only by
the attractiveness measure, and yt = Rt ∈ R is a dependent variable, i.e. next-day return.

The data-preprocessing phase of analysis consists of dealing with missing data, calcu-
lating the percentage changes, and scaling the data. The selected period does not include
an abundance of data gaps that would reflect negatively on the quality of the chosen data
collection. Missing values were found at some points in time, and were mostly related to
external factors. Linear interpolation was used to fill in the gaps.

In order to improve training efficacy and NN convergence, the actual values for the
majority of independent variables were replaced with percentage changes. For all the
observed variables except lag returns (i = 1), existing values are replaced with cor-
responding percentage changes, i.e. xt,i ← (xt,i−xt−1,i )

xt,i
, t ∈ T ′, i = 2, . . . , p and

zt,i ← (zt,i−zt−1,i )

zt,i
, t ∈ T ′, i = 2, . . . , p.

Following the preparation of the initial datasets D1
IN and D2

IN, each of final dataset
D1 = {(xt,i , yt )}t∈T and D2 = {(zt,i , yt )}t∈T for T = 0, 1, . . . , 2337 included in our
analysis contains a total of 2338 points. Indices t = 0 and t = 2337 correspond to the dates
2016-01-06 and 2022-05-31, respectively. To conclude this step of preprocessing, given
that machine learning algorithms perform better with scaled data, the min-max scaler,
which rescales variables into the [0, 1] range, is used.

In the majority of research papers examining Bitcoin price and return forecasting, the
dataset is split into a training set and a testing set in a predetermined proportion. On the
contrary, in this paper, the breakpoints in the Bitcoin price trend are detected. The model
is then trained on the period preceding the trend break and tested on the part of period fol-
lowing the breakpoint for each breakpoint. In this way, the ability of a NN model to make
predictions in a new environment which is set up in an objective and unbiased manner can
be tested. The Bai-Perron structural break change test is used to detect structural breaks.
Bai and Perron (1998) considered issues associated with multiple structural changes in the
linear regression model derived by minimizing the sum of squared residuals. Throughout,
the dates of the m breaks were treated as unknown variables that needed to be estimated.
The primary considerations are the features of the estimators, particularly the break date
estimates, and the design of tests that provide inferences about the presence of structural
change and the number of breaks. This test is employed to identify breakpoints, resulting
in the identification of indices of five dates T1, T2, . . . , T5 ∈ T at which the test recognized
a structural change. For each Tk, k = 1, . . . , 5 two sets are defined:

1. Train set Dk
train{(xt,i , yt )|t ∈ {0, 1, . . . , Tk}} ⊂ D1 and

2. Test set Dk
test{(xt,i , yt )|t ∈ {Tk + 1, . . . , Tk + n}} ⊂ D1, where n = Tk ·5

100 .
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Table 3
Dataset partitions obtained with Bai-Perron multiple structural break test.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Start date 2016-01-06 2016-01-06 2016-01-06 2016-01-06 2016-01-06
Close date 2016-12-27 2017-12-15 2019-03-25 2020-03-11 2021-03-12
Number of data points 357 710 1175 1527 1893

Fig. 1. Flow chart of close price and return within train and test sets for observed partitions.

Namely, each subset, or training set, is followed by a test set. The size of each test set
corresponds to five percent of the size of the associated train set.

Table 3 displays the time interval and number of observations for each partition. Four
out of five partitions (subsets) are used to build models with different NN architecture.
Due to the low quantity of data points, the first partition is excluded from the study.

A graphical representation of price movements and next-day returns within the training
and testing set for each observed partition are shown in Fig. 1.
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Fig. 1. (continued)

3.2. Neural Network Architectures

In this subsection, the structure of neural networks, as well as the evaluation methods for
models is described. For the sake of simplicity, the preceding will be explained for set D1,
whereas in the experiment, the same was also done for the set D2.

3.2.1. Feedforward Neural Networks
Feedforward neural networks (FFNNs) are the most commonly used NNs. They consist
of three layers: input, hidden, and output. Inputs and outputs are the independent and
dependent variables predefined by the researcher, while hidden neurons are one of hyper-
parameters that have to be fine-tuned. The unknown parameters (weights) are estimated
using the backpropagation (BP) learning algorithm. FFNN can be written as follows:

yt = σ1

(
wco +

q∑
h=1

whoσ2

(
wch +

p∑
i=1

wihxt,i

))
+ εt , (4)
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where yt is the output vector of a time series, xt,i is the input matrix with p variables,
while σ1(·) and σ2(·) are the activation functions in output and hidden layer respectively,
which can be sigmoid, hyperbolic tangent and/or linear. Weights wco and wch are constant
terms of output and hidden neurons respectively. Weights wih and who are the connections
between inputs and hidden neurons and between hidden neurons and output respectively.
εt is an error term.

3.2.2. Long Short-Term Memory
Long Short-Term Memory (LSTM) merges LSTM units, composed of cells, which have
input, output and forget gate to control the information flow, to form the LSTM layer.
LSTM is given in Eqs. (5)–(9):

ft = σg(Wf xt,i + Uf yt−1 + bf ), (5)
it = σg(Wixt,i + Uiyt−1 + bi), (6)
ot = σg(Woxt,i + Uoyt−1 + bo), (7)
ct = ft

∗ct−1 + it
∗σy(Wcxt,i + Ucyt−1 + bc), (8)

yt = ot
∗σy(ct ), (9)

where xt,i is the input vector to the LSTM unit. ft , it and ot are the forget, input and output
gate’s activation vectors respectively. yt is the output vector of the LSTM unit, ct is the
cell state vector, σg and σy are sigmoid and hyperbolic tangent functions respectively. ∗ is
the element-wise (Hadamard) product, W and U are weight matrices and b are the bias
vectors (Bao et al., 2017; Sezer et al., 2020).

3.2.3. Convolutional Neural Networks
Convolutional neural networks (CNNs) have different layers in their architecture: convo-
lutional, max-pooling, dropout and fully connected FFNN layer. The convolutional layer
consists of the convolution (filtering) operation, which is shown in Eq. (10):

s(t) = (x∗w)(t) =
∞∑

a=−∞
x(a)w(t − a), (10)

where t is time, s is feature map, w is kernel, x is input, and a is variable. In addition, the
convolution operation is implemented on two-dimensional images given in Eq. (11):

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I (m, n)K(i − m, j − n), (11)

where I is input image, K is kernel, m and n are dimensions of images, i and j are
variables. Consecutive convolutional and max-pooling layers are also a part of the deep
network architecture. CNN also includes the FFNN architecture given in Eq. (12):

zi =
∑
j

Wi,j xj + bi, (12)
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where W are the parameters, x is input vector, b is bias vector, z is the output from the
neurons which are put forward through the softmax activation function for the calculation
of the output (y) in the output layer, which is shown in Eqs. (13) and (14) (Sezer et al.,
2020):

y = softmax(zi), (13)

softmax(zi) = ezi∑
j ezj

. (14)

3.3. Model Evaluation

Given that the observed problem of predicting the next-day returns is a regression problem,
the performance of the model was evaluated using mean squared error (MSE) which is
calculated using the formula:

MSE = 1

T

T∑
t=1

(yt − ŷt )
2, (15)

where yt and ŷt are observed and predicted values of returns, and T is total number of ob-
servations. Furthermore, considering that when predicting the next-day return, apart from
the value itself, it is also important to accurately predict the sign of the next-day return, it
was decided to analyse the obtained models from that perspective as well. Therefore, we
converted the dependent variables from continuous to discrete, i.e. binary values, using
the following rule:

ybin,t =
{

1, if yt � 0,

0, if yt < 0.
(16)

The above conversion was performed on both, the observed and predicted values, of the
dependent variable, as well as for train and test set. Accuracy (ACC) was used as a metric
to quantify the ability of models to predict the direction of price movements. It is the ratio
of number of correct predictions (i.e. true positive-TP and true negative-TN) to the total
number of input samples (T ).

ACC = TP + TN
T

. (17)

In addition, the Diebold-Mariano test (Diebold and Mariano, 1995) is used to test
the equality of predictive ability between the two models, i.e. to test whether there is a
statistically significant difference in the forecasting performances of the proposed models.
It enables finding the optimal NN that has the highest forecasting performances.
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4. Experimental Results

4.1. NNs Configuration

Three different NN architectures are used to build models: FFNN, LSTM and CNN.
FFNNs consist of input, hidden, and output neurons. Inputs and outputs are theoretically
driven and predefined by the researcher, while hidden neurons are one of the hyperpa-
rameters that have to be fine-tuned. Based on Patterson (1998), Moshiri and Cameron
(2000) and Hwarng (2001), the following five Working rules for determining the number
of hidden neurons are proposed:

• Patterson (1998): q1 = Ti

10(p+1)
;

• Moshiri and Cameron (2000): q2 = Ti

5(p+1)
and q3 = √

p;
• Hwarng (2001): q4 = p

2 and q5 = 3p
2 ,

where Ti stands for the number of observations in the train set, p for the number of inde-
pendent variables, and there is only one dependent variable. Considering that this research
is conducted on four different training sets, the value of Ti varies for each set, whereas
there are always p = 14 independent variables. Table 4 shows the observed number of
neurons calculated using each of the five above mentioned formulas and for each of the
four observed subsets. The set of neurons is given in Table 5. Table 6 presents the main
hyperparameters of NNs configurations.

The proposed NNs were trained on each of the four subsets and evaluated on the as-
sociated test sets for various parameter values, while the fixed seed was used for the re-
producibility of the results in one experimental run for each NN. The research identified
729 unique models. In addition, for each model, for the true and predicted values of the
dependent variable in the test set, equivalent binary values (signifying the direction of the
Bitcoin price) were generated and used to measure the accuracy of each model. Finally,
models were compared based on both MSE and accuracy (ACC).

Table 4
Number of neurons with different formulas for different subsets.

Subset 2 Subset 3 Subset 4 Subset 5

q1 4.73 7.83 10.18 12.62
q2 9.47 15.67 20.36 25.24
q3 3.74 3.74 3.74 3.74
q4 7 7 7 7
q5 10.5 10.5 10.5 10.5

Table 5
Set of observed neurons for different subsets.

Subset 2 Subset 3 Subset 4 Subset 5

Set of neurons 3, 4, 7, 9, 10, 11 3, 4, 7, 10, 11, 15 3, 4, 7, 10, 11, 20 3, 4, 7, 10, 12, 25
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Table 6
NNs configurations.

FFNN LSTM CNN

p = 14
learning algorithm is stochastic gradient descent

learning rates are 0.01, 0.001, 0.0001
loss function is mean square error

batch sizes are 2, 32, set size
number of epochs is 500

• one hidden layer,
• tangent hyperbolic activation

functions,
• set of neurons in Table 5.

• one LSTM layer,
• one dense layer,
• neurons in Table 5 multiplied

by 10.

• 1-dimensional convolutional layer,
• MaxPooling1D layer for the max-

pooling layer,
• tangent hyperbolic activation function,
• 32 filters,
• pool size with size 2,
• kernel sizes are 210, 330, 450 and 540

for the observed four subsets,1
• set of neurons in Table 5.

1Kernel size are calculated with formula setsize
100 · 30 (Cavalli and Amoretti, 2021).

Because the observed datasets differ in terms of the measure of attractiveness, models
containing Google Trends and models containing Tweets are compared independently.

4.2. Comparison of Models for Google Trends Dataset

Models on four partitions of a dataset that included Google Trends as an attractiveness
measure using three NNs architectures with different parameters set up are constructed.
For each NN structure and each subset, the best model with the lowest MSE was aimed
for. The best models obtained together with tuned hyperparameters are shown in Table 7.

The first section of the table shows the values of variable hyperparameters, while the
second section shows the values of various performance measures for each model, along
with Diebold-Mariano test of predictive performances for the models in pairs. Models are
ranked according to the MSE value on the test set. The first fifty percent of the ranks are
allocated to the models developed with Subsets 3 and 4. These Subsets are characterized by
an upward trend in Bitcoin prices, which is well predicted by all NN models. In Subsets 3
and 4, CNN has the lowest MSE, which is significantly lower than both FFNN and LSTM.

There is no statistically significant difference between LSTM and FFNN based on the
DM test. The models constructed on Subset 2 ranked the worst, followed by models built
on Subset 5. In these two Subsets, i.e. the bearish market, FFNN has the best predictive
performance in terms of MSE. In both Subsets, the DM test shows that there is no sig-
nificant difference between FFNN and LSTM models, while they both outperform CNN.
Clearly, NNs could not capture the slump in Bitcoin prices at the end of 2017 and in the
beginning of the year 2021. The best two models, when comparing MSE on the test set,
are CNNs for the Subsets 3 and 4. Cavalli and Amoretti (2021), Zhang et al. (2021) and
Šestanović and Kalinić Milićević (2023) conclude similarly.
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Table 7
The optimal models for each subset (S2 to S5) for Google Trends along with tuned hyperparameters,

performance measures and Diebold-Mariano test.

Subsets Nmb. of
neurons

Learning
rate

Batch
size

Test
MSE

Test
ACC

Test MSE
rank

Test ACC
rank

FFNN LSTM

S2-FFNN 7 0.001 32 0.00506 48.57% 10 11 / /
S2-LSTM 40 0.0001 32 0.00511 54.29% 11 6 1.2736 /
S2-CNN 9 0.001 710 0.00535 61.54% 12 5 2.6778** 2.2926**

0.00517 0.54799
S3-FFNN 7 0.0001 32 0.00157 63.79% 4 3 / /
S3-LSTM 70 0.01 2 0.00155 65.52% 3 1 0.8786 /
S3-CNN 10 0.01 1175 0.00131 65.31% 1 2 2.3097** 2.2330**

0.00148 0.64872
S4-FFNN 3 0.0001 32 0.00181 63.16% 5 4 / /
S4-LSTM 40 0.01 1527 0.00201 48.68% 6 10 2.1783** /
S4-CNN 3 0.001 32 0.00154 49.25% 2 9 2.4464** 2.2327**

0.00179 0.53699
S5-FFNN 25 0.001 2 0.00211 46.81% 7 12 / /
S5-LSTM 250 0.001 2 0.00213 51.06% 8 8 0.7360 /
S5-CNN 12 0.001 32 0.00227 51.76% 9 7 4.1886*** 4.1958***

0.00217 0.49879

Note: *, ** and *** indicate significance at the 0.1, 0.05 and 0.01 levels respectively.
Source: The authors’ calculations in Python and R.

If the accuracy (ACC) of models is analysed (Table 7), the top three models come
from the Subset 3, characterized by a slow and steady increase in Bitcoin prices. Excellent
results come from CNN in the Subset 2, which means that CNN was able to capture the
direction of Bitcoin prices in a downturn period at the end of 2017 and the beginning of
2018. In similar conditions in Subset 5, CNN performed slightly better than other models.
Additionally, FFNN was able to capture the direction of Bitcoin prices movement in the
Subset 4, characterized by a significant slump in Bitcoin prices at the beginning of the
Covid-19 crisis followed by a sharp increase in Bitcoin prices. FFNNs are proved to have
good generalization power in Spilak (2018), while the same is confirmed in this paper
for the extremely volatile period of Bitcoin returns. The optimal model when considering
the accuracy measure is the LSTM in Subset 3 reaching the accuracy of 65.52%. This
confirms the finding of several researches about superiority of LSTM models (Lahmiri
and Bekiros, 2019; Ji et al., 2019; Spilak, 2018).

The most commonly used learning rate across all models is 0.001. Using a learning
rate of 0.001 allows the convergence of the learning algorithm (Šestanović and Arnerić,
2020). In addition, the LSTM model used the largest number of neurons and the smallest
batch size, whereas the CNN model utilized the second largest number of neurons and a
batch size of 32. All three models conducted on the largest subset are the ones that used
the largest number of neurons. However, the predictive performances of those models are
among the worse. It is confirmed that using a lower number of hidden neurons leads to
optimal models with good predictive performances.
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Table 8
The optimal models for each subset (S2 to S5) for Tweets along with tuned hyperparameters, performance

measures and Diebold-Mariano test.

Subsets Nmb. of
neurons

Learning
rate

Batch
size

Test
MSE

Test
ACC

Test MSE
rank

Test ACC
rank

FFNN LSTM

S2-FFNN 3 0.0001 32 0.00506 57.14% 10 6 / /
S2-LSTM 100 0.0001 32 0.00530 54.29% 12 9 0.3717 /
S2-CNN 11 0.0001 32 0.00523 61.54% 11 4 1.2283 1.2542

0.00520 0.57656
S3-FFNN 16 0.001 1175 0.00153 65.52% 2 1 / /
S3-LSTM 80 0.01 2 0.00159 65.52% 3 1 0.4819 /
S3-CNN 8 0.01 1175 0.00127 63.27% 1 3 2.1081** 2.1710**

0.00146 0.64767
S4-FFNN 20 0.01 1527 0.00178 56.58% 5 7 / /
S4-LSTM 70 0.001 32 0.00209 48.68% 7 11 0.4705 /
S4-CNN 10 0.0001 2 0.00172 40.30% 4 12 2.9165*** 2.5437**

0.00187 0.48521
S5-FFNN 12 0.01 1893 0.00208 56.38% 6 8 / /
S5-LSTM 30 0.001 2 0.00214 50.00% 8 10 1.5761 /
S5-CNN 10 0.0001 32 0.00225 58.82% 9 5 4.2440*** 3.7034***

0.00216 0.55069

Note: *, ** and *** indicate significance at the 0.1, 0.05 and 0.01 levels respectively.
Source: The authors’ calculations in Python and R.

4.3. Comparison of Models for Tweets Dataset

Three NN architectures with different parameter settings are estimated on four subsets of a
dataset that includes Tweets as an attractiveness measure. The best models with the lowest
MSE for each NNs structure and subset are sought, and along with tuned hyperparameters,
performance measures and Diebold-Mariano test for predictive performances are shown
in Table 8.

Based on the lowest MSE in the test set, three lowest ranks are again assigned to mod-
els developed with Subset 2, i.e. in the downturn of cryptocurrency market. In this Subset,
FFNN has the best predictive performances in terms of MSE. However, there is no sig-
nificant difference between the NN models according to DM test. The best results are ob-
tained by models associated with Subset 3, i.e. in bullish market conditions, where CNN
has the lowest MSE which is significantly lower than both FFNN and LSTM according to
DM test. There is no statistically significant difference between FFNN and LSTM. Other
ranks are divided between models conducted on Subsets 4 and 5, with Subset 4 models
slightly predominating. In Subset 4, i.e. upward market conditions, CNN has the best pre-
dictive performances and it is slightly better than both FFNN and LSTM, while there is
no statistically significant difference between FFNN and LSTM. Finally, in Subset 5, i.e.
the downturn period, FFNN has the lowest MSE. DM test shows that it is not significantly
different from LSTM. However, they both outperform CNN.

From the standpoint of accuracy, nine out of twelve models reach an accuracy on the
test set higher than 50%, i.e. they have good predictive power. The best among them are
FFNN and LSTM for the Subset 3 reaching an accuracy of 65.52%. Comparable results
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Table 9
Diebold-Mariano test for comparison of Google

Trends and Tweets through subsets.

Google Trends
v. Tweets

FFNN LSTM CNN

S2 0.7141 1.3319 1.1741
S3 0.1654 0.0195 0.1654
S4 0.8715 1.5630 0.1183
S5 0.2376 1.7107* 1.5155

Note: * indicates significance at the 0.1 level.
Source: The authors’ calculations in Python and R.

are achieved in the same Subset with CNN. In contrast, during another bullish period
covered by Subset 4, FFNN achieves the highest accuracy, whereas the other two models
have the worst results overall. In Subsets 2 and 5, which represent periods of downturn,
CNN outperforms the other models.

The most common learning rate is 0.0001 while in the previous section, it was 0.001
The most common batch size in both sections is 32. Neither of these models has the largest
amount of available neurons in its configuration, which leads to the conclusion that using
a lower number of hidden neurons leads to optimal models with good predictive perfor-
mances.

4.4. Comparative Analysis of Google Trends and Tweets

This section provides a comparative analysis of two attractiveness measures. The last rows
of Tables 7 and 8 present the average values of the observed measures for models with all
three NNs architecture. Comparing the average test performances of models run on these
two datasets whose attractiveness measures differ, the dataset with Tweets as the attrac-
tiveness has dominance in the downturn periods, i.e. Subsets 2 and 5, as it predicted the
direction of Bitcoin prices on average better than Google Trends. However, the highest
accuracy reached is in Subset 3 and it is the same for both variables. Moreover, the aver-
age accuracy of models in Subset 3 is nearly identical for both attractiveness measures.
Google Trends significantly outperforms Tweets only in Subset 4. Therefore, the dataset
with Tweets as the attractiveness measure enabled the models to attain superior perfor-
mance in terms of accuracy. In terms of MSE, according to DM test, there is no statisti-
cally significant difference between the two attractiveness measures. The results of DM
test are given in Table 9.

5. Discussion

The models with the best forecasting performances on both observed performance mea-
sures are those in Subset 3, which is characterized by an increase in price but lower volatil-
ity. This confirms the findings of previous research, in which models tested during periods
of stable Bitcoin price growth performed well. Subset 4 was characterized by a significant
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slump in Bitcoin prices due to the uncertainty of the Covid-19 crisis, followed by a more
volatile price increase. Thus, on average, all NNs predicted the movement properly. How-
ever, predicting direction was more challenging for more complex NNs. Namely, FFNN
outperformed other NNs in direction forecasting. This result comes as a surprise since
it contradicts previous research findings that CNN outperforms other NN architectures
(Cavalli and Amoretti, 2021; Zhang et al., 2021; Šestanović and Kalinić Milićević, 2023).
In Subsets 2 and 5, which cover the significant downturn period in Bitcoin prices, includ-
ing extremely volatile periods, CNN managed to capture price fluctuations, while FFNN
dominated on average in predicting Bitcoin returns. CNNs have the advantages inherent in
their architecture, incorporating FFNN model after the convolutional layer. This enables a
lower number of hidden neurons and higher predictive performances, while avoiding the
overfitting problem in the process. CNNs are robust and need less training time compared
to RNNs or FFNNs, and can reduce the complexity of the model (Madaeni et al., 2022).
Based on accuracy, the model with LSTM architecture is superior to all others, confirming
the findings in Ji et al. (2019) and Spilak (2018). CNN outperforms other models in down-
turn period, while FFNN outperforms the other models in bullish market conditions. This
means that simpler NNs can be used for predictions in bullish market, while more com-
plex NNs should be used for predictions in bearish market. The results of MSE produce
diametrically opposed conclusions. Namely, MSE and accuracy do not always agree when
it comes to identifying the optimal prediction model. Since MSE is composed of both bias
and variance, if one estimator has lower MSE than another, it is not known whether this
is due to lower bias or lower variance (i.e. higher precision). Therefore, further investiga-
tion is needed to determine whether it is more appropriate to observe regression models
through these two perspectives or to simply use classification models to find the model
which has better prediction of price direction.

6. Conclusion

In this paper, the predictive performances of three commonly used NN models were com-
pared using different performance measures on different subsets of datasets, differenti-
ated by two attractiveness measures. These subsets entail different market conditions, i.e.
bearish or bullish periods. Thus, this paper examined the ability of these machine learning
models in all types of environments, including bullish, bearish, and stable periods, as well
as periods characterized by high volatility. All NNs performed best in an environment of
bullish market, where CNN stood out as the optimal NN model using MSE, while FFNN
and LSTM emerged as optimal models in direction forecasting. However, based on accu-
racy, CNN outperformed other models in downturn periods, while FFNN outperformed
other models in bullish market conditions. The results of MSE produced diametrically op-
posed conclusions. Moreover, based on accuracy, the dataset with Tweets as the attractive-
ness measure outperformed Google Trends, whereas based on MSE the results did not dif-
fer significantly. Finally, using a lower number of hidden neurons, as well as lower learning
rate values and lower batch size values yielded optimal results. Future research direction
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includes forecasting the cryptocurrency returns using the sentiment-enriched data. Addi-
tionally, since cryptocurrency prices are increasingly reactive to macroeconomic shocks,
it is proposed to examine which macroeconomic variables have the greatest influence on
their movement. Finally, sophisticated neural network models can be used for the predic-
tion of cryptocurrency prices, returns, direction and volatility in a comprehensive manner.
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