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Abstract. Like other disciplines, machine learning is currently facing a reproducibility crisis that
hinders the advancement of scientific research. Researchers face difficulties reproducing key results
due to the lack of critical details, including the disconnection between publications and associated
models, data, parameter settings, and experimental results. To promote transparency and trust in
research, solutions that improve the accessibility of models and data, facilitate experiment track-
ing, and allow audit of experimental results are needed. Blockchain technology, characterized by
its decentralization, data immutability, cryptographic hash functions, consensus algorithms, robust
security measures, access control mechanisms, and innovative smart contracts, offers a compelling
pathway for the development of such solutions. To address the reproducibility challenges in ma-
chine learning, we present a novel concept of a blockchain-based platform that operates on a peer-
to-peer network. This network comprises organizations and researchers actively engaged in ma-
chine learning research, seamlessly integrating various machine learning research and development
frameworks. To validate the viability of our proposed concept, we implemented a blockchain net-
work using the Hyperledger Fabric infrastructure and conducted experimental simulations in several
scenarios to thoroughly evaluate its effectiveness. By fostering transparency and facilitating collab-
oration, our proposed platform has the potential to significantly improve reproducible research in
machine learning and can be adapted to other domains within artificial intelligence.
Key words: machine learning, reproducibility, reproducible research, blockchain, distributed
ledger technology, interoperability, blockchain-based platform, hyperledger fabric.

1. Introduction

In recent years, the field of machine learning (ML) has seen remarkable advances, with
algorithms achieving unprecedented levels of performance in various tasks such as im-
age analysis (Gudžius et al., 2021; Gudzius et al., 2022), voice (Mehrish et al., 2023),
and face recognition (Liu et al., 2023), planning (Usuga Cadavid et al., 2020), schedul-
ing (Bertolini et al., 2021), etc. The advent of ML, particularly deep learning (DL), has
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emerged as the cornerstone of artificial intelligence (AI) due to advances in computational
capabilities (Zhang and Lu, 2021). However, the widespread dependence on vast datasets
and intricate models presents a formidable challenge to reproducibility in ML research.
Regrettably, as ML and other AI domains continue to gain prominence, researchers face
a reproducibility crisis (RC) (Hutson, 2018). This crisis is characterized by the daunting
challenge of replicating critical findings, worsened by the gap between published results
and the underlying models, data, parameter configurations and other essential experimen-
tal components, frequently missing crucial details.

To address issues related to RC, both the research community and industry have ac-
tively explored a wide variety of solutions. Traditionally, researchers have often resorted
to depositing their code and data into repositories such as GitLab or GitHub. However,
this practice often proves insufficient, as it lacks crucial information, including runtime
environments, contextual details, and system information (Rowhani-Farid and Barnett,
2018). Furthermore, reliance on data stored in repository databases for journals may
be unreliable due to broken links (Pimentel et al., 2019). In response to these limita-
tions, recent advances in research technology have introduced open-access collabora-
tive cloud-based platforms such as Code Ocean (https://codeocean.com), Whole Tale
(https://wholetale.org), and Binder (https://mybinder.org). These platforms enable com-
prehensive capture of research environments, thus facilitating reuse, sharing, and repro-
ducibility of research processes. Furthermore, online platforms such as OpenML (Van-
schoren et al., 2014) and ModelDB (Vartak et al., 2016) have gained popularity within
the ML community by providing storage and sharing capabilities for datasets and experi-
mental results, thus fostering collaboration in open science. Furthermore, a myriad of tools
and frameworks specifically designed to facilitate open science collaboration in ML have
emerged, such as MLflow (https://mlflow.org) and Neptune.AI (https://neptune.ai), have
emerged. Although the functionalities of these tools vary, most of them allow researchers
and ML practitioners to execute, monitor, compare, and visualize their experimental re-
sults, encompassing the entire research process.

However, recent studies indicate that, while some of the reproducibility aspects re-
quired are adequately addressed by existing tools and platforms (Mora-Cantallops et al.,
2021), further development is necessary (Gundersen et al., 2022). In addition, these tools
and platforms often exhibit centralization, which can lead to issues such as limited opera-
tional transparency, traceability, and auditability of community-driven experiments. Ad-
ditionally, the centralized nature of these systems poses risks, such as single-point failure,
which undermines their overall reliability (Cao et al., 2022).

Decentralized alternatives offer a fresh perspective on the management of RC issues,
with the aim of avoiding the traditional pitfalls associated with centralized systems. These
alternatives take advantage of advancements such as transparency, traceability, tokeniza-
tion, consensus mechanisms, incentivization, codification of trust, and decentralized in-
frastructure (Juodis et al., 2024; Marcozzi et al., 2024). Using blockchain technology,
pioneered by Nakamoto (Nakamoto, 2008) and built on prior research (Bayer et al., 1993;
Haber and Stornetta, 1991; Lamport et al., 1982), effective decentralized solutions can
be implemented (Knez et al., 2022; Matulevičius et al., 2022; Sakalauskas et al., 2023).

https://codeocean.com
https://wholetale.org
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For more detailed information on blockchain technology aspects, we refer the reader to
(Filatovas et al., 2022; Paulavičius et al., 2019, 2021). The research community recog-
nizes the vast potential of blockchain technology in addressing RC challenges and related
issues across various research fields. Consequently, there is a growing development of
blockchain-enhanced research workflow solutions aimed at improving provenance, relia-
bility, and collaboration (Bag et al., 2022; Coelho et al., 2020; Hoopes et al., 2022; Meng
and Sun, 2021).

Several notable business-oriented projects are currently under development, aiming to
combine blockchain technologies and AI, with a primary focus on ML, to enhance the re-
search process, improve reproducibility, and foster business collaboration. SingularityNet
(https://singularitynet.io) seeks to establish a decentralized marketplace for AI algorithms
and federated learning (FL). Meanwhile, PlatON (https://www.platon.network) is dedi-
cated to building a decentralized and collaborative AI network and global brain to promote
the democratization of AI for safe general artificial intelligence. Additionally, FETCH.AI
(https://fetch.ai) is developing a decentralized collaborative ML platform customized for
various business applications. These solutions, geared towards business-oriented goals,
are currently in the active development stage. Furthermore, the research community is
increasingly intrigued by the intersection of ML and blockchain technologies as a means
of addressing reproducibility issues. A review and comparative analysis of state-of-the-
art works in this direction are provided in Secrion 2. It reveals that current solutions are
limited, and only specific aspects of ML reproducibility are considered.

Drawing from an analysis of existing proposals and recognizing the advantages of-
fered by blockchain technology in improving reproducibility alongside the capabilities of
current ML research tools, this paper introduces a novel concept: a community-driven
blockchain-based platform aimed at improving reproducibility in ML research. The plat-
form operates on a decentralized blockchain network, fostering collaboration among orga-
nizations and researchers actively involved in ML. It seamlessly integrates various existing
ML research frameworks and tools, leveraging blockchain features such as decentraliza-
tion, immutability, a community-driven consensus mechanism, and interoperability. Fur-
thermore, through the automation provided by smart contracts, the platform enhances the
auditability of experimental results, promotes transparency, and fosters trust within the
ML research community. In addition, it effectively stores experiment artifacts in a decen-
tralized and immutable manner, further enhancing the reliability and reproducibility of
ML research outcomes.

To sum up, the main contributions of this work are:

• It reviews the current state-of-the-art blockchain-based proposals for enhancing repro-
ducibility in machine learning research.

• It introduces a novel concept of a community-driven blockchain-based decentralized
platform designed for reproducible and auditable research in various machine learning
domains.

• It proposes a metadata schema designed to extract experiment artifacts, securely storing
them on a blockchain and enabling retrieval on demand, ensuring the complete repro-
ducibility of experiments.

https://singularitynet.io
https://www.platon.network
https://fetch.ai
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• It experimentally evaluates the platform’s blockchain performance across diverse sce-
narios using Hyperledger Fabric infrastructure, confirming its suitability for real-world
development.

The remainder of the paper is organized as follows. A review of the literature on ex-
isting blockchain-based proposals to enhance reproducibility in ML research is presented
in Section 2. The concept of the blockchain-based platform designed to facilitate collabo-
rative and reproducible research in ML is introduced in Section 3. Section 4 presents the
concepts of the Hyperledger Fabric framework and describes the setup of the experimental
environment. Subsequently, Section 5 evaluates the platform’s blockchain performance.
Finally, Section 6 discusses the results obtained, concludes the work, and offers perspec-
tives on future platform development.

2. Related Work

This section reviews and compares the current state-of-the-art literature on blockchain-
based proposals aimed at enhancing reproducibility in ML research. We used backward
and forward snowballing (Wohlin, 2014) as the primary approach to identify relevant lit-
erature, with searches carried out in September 2023. Additionally, we provide concise
descriptions of the publications that were obtained, focusing on their key contributions.

Schelter et al. (2017) introduces a system architecture and presents a database schema
for storing ML artifact metadata and experimentation data provenance. The authors dis-
cuss metadata extraction functionality for parameterized pipelines in SparkML and Scikit-
learn to meet various production use cases at Amazon. Harris and Waggoner (2019) pro-
poses a framework for training and sharing models and collecting data on a blockchain.
The authors also discuss several incentive mechanisms to encourage contributors to submit
data that improve the model’s accuracy. Lu et al. (2019) introduces a data sharing archi-
tecture for privacy-preserving federated learning (FL). The paper proposes the Proof-of-
Training-Quality consensus protocol, which combines the data model with the consensus
process to better utilize computing resources. Sarpatwar et al. (2019) presents a vision
to build a generic blockchain library that enables trust in distributed AI applications and
processing. The authors discuss requirements for enabling trusted AI via blockchain and
define key blockchain constructs and a provenance model to track training model prove-
nance. Weng et al. (2019) presents a decentralized framework for training collaborative
model ML and sharing local gradients in FL. The paper also introduces an incentive mech-
anism for participants and adapts a consensus protocol from Algorand to ensure consensus
finality. Kannan et al. (2020) presents a decentralized trusted platform for collaborative
AI. The authors propose a model for cross-organization data and resource sharing with
various policy scenarios. Lüthi et al. (2020) proposes a graph-based provenance tracking
model for managing AI assets and relationships in FL. They designed a smart contract for
the Ethereum blockchain to implement the provenance model, adapted for a medical use
case. Li et al. (2021) designs a decentralized FL framework and introduces the commit-
tee consensus mechanism to validate local gradients before appending them to the chain.
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Mothukuri et al. (2021) proposes a decentralized framework for permissioned FL, with the
aim of developing a secure application integrated to seal and sign-off asynchronous and
synchronous collaborative tasks. Bathen and Jadav (2022) introduces a framework that
combines AutoML techniques with blockchain to fully decentralize the design and train-
ing process, with the aim of introducing trust in AutoML pipelines without trusting the
nodes performing various design, training, and testing steps. Coelho et al. (2022) proposes
a blockchain platform architecture for collaborative research and reproducibility of experi-
ment results, evaluating it using a scenario about genomic sequencing of the SARS-CoV-2
coronavirus. Khoi Tran et al. (2022) designs a decentralized platform based on blockchain
and smart contracts for disseminating, storing, and updating ML provenance. They pro-
pose a novel architectural approach called Artefact-as-a-State-Machine to manage ML
provenance on a blockchain. Lo et al. (2022) presents a blockchain-based trustworthy FL
architecture, developing a data sampler algorithm to enhance fairness in training data and
designing a smart contract-based data-model provenance registry. Stodt et al. (2022) aims
to ensure the identity of ML models when solving security attacks, insufficient documen-
tation, and traceability. The authors propose that the ML birth certificate and ML family
tree be secured by blockchain technology. Ullah et al. (2023) proposes a blockchain-based
FL approach for permissioned networks, integrating the Proof of Authority consensus pro-
tocol to improve scalability.

A summary of the main features of the described studies is provided in Table 1. Here,
we highlight the analysed reproducibility aspects, application areas in ML, considered
blockchain systems for implementation, integration or development of specific consensus
protocols, foreseen integration with other ML tools/platforms, and implementation lev-
els. Most solutions focus on specific reproducibility aspects, focusing primarily on the
“model”, “data”, and “provenance”, with less attention paid to the “parameters” and “re-
sults”. Notably, environmental reproducibility remains largely overlooked across propos-
als. The first related publications emerged in 2017, most of them at the “idea” imple-
mentation level. However, recent proposals have progressed to higher levels, including
“concept” or even “prototype”. Public and private blockchain systems are considered for
implementation, with solutions at the level of “idea” often lacking platform specification.
Significant focus is placed on federated learning solutions, utilizing blockchain to improve
fairness and protect data privacy. In this work, we emphasize studies that propose solu-
tions focused on reproducibility through blockchain technology, while directing the reader
to Beltrán et al. (2023) for a broader survey on decentralized FL. Permissioned systems,
mostly Hyperledger Fabric, are frequently chosen for their suitability in FL processes that
involve small groups of authorized actors. Efforts have been made to develop platforms for
reproducible research in ML across various application areas, with both public Ethereum
and private Hyperledger Fabric systems considered. Only a few solutions propose or inte-
grate specific consensus protocols to improve the validation of developed models, data, or
obtained results, indicating a need for further investigation in this area. Integration with
other tools or platforms for model, data management, and sharing of experiment results is
not considered extensively. Only Schelter et al. (2017) considers limited integration with
SparkML and Scikit-learn for an Amazon use-case. Integrating with widely used ML tools
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Table 1
Main features of the proposed state-of-the-art blockchain-based solutions to enhance reproducibility in ML

research.

Source Reproducibility aspect Application
area in ML

Blockchain
platform

Specific
consensus

Integration Implemen-
tation level

Schelter et al. (2017) Model, data, parameters,
results

General N/S∗ ✗ ✓ Concept

Harris and Waggoner
(2019)

Model, data, provenance General N/S∗ ✗ ✗ Idea

Lu et al. (2019) Model, data, parameters Federated
Learning

N/S ✓ ✗ Idea

Sarpatwar et al.
(2019)

Model, data, parameters,
provenance

Federated
Learning

N/S ✗ ✗ Idea

Weng et al. (2019) Model, parameters Federated
Learning

Corda ✓ ✗ Concept

Kannan et al. (2020) Model, data,
provenance, results

General Hyperledger
Fabric

✗ ✗ Concept

Lüthi et al. (2020) Data, provenance General Ethereum ✗ ✗ Concept
Li et al. (2021) Model, parameters,

provenance, results
Federated
Learning

FISCO-
BCOS

✓ ✗ Concept

Mothukuri et al.
(2021)

Model, parameters Federated
Learning

Hyperledger
Fabric

✗ ✗ Concept

Bathen and Jadav
(2022)

Model, data, parameters,
results

General Hyperledger
Fabric

✗ ✗ Concept

Coelho et al. (2022) Provenance, results Federated
Learning

Hyperledger
Fabric

✗ ✗ Prototype

Khoi Tran et al.
(2022)

Model, data, parameters,
provenance

General Ethereum ✗ ✗ Concept

Lo et al. (2022) Model, data,
provenance, results

Federated
Learning

Parity ✗ ✗ Concept

Stodt et al. (2022) Model, provenance General N/S ✗ ✗ Idea
Ullah et al. (2023) Model, parameters Federated

Learning
N/S ✓ ✗ Idea

This study Model, data,
provenance, parameters,
results

General Hyperledger
Fabric

✓ ✓ Concept

∗N/S – Not Specified.

could significantly enhance platform efficiency, attract more participants, and support the
sharing of experiment results and reproducibility.

The review conducted underscores a recent surge in attention from the research com-
munity towards developing and applying blockchain-based solutions to enhance repro-
ducibility and data provenance in ML research. However, existing solutions are notably
limited in scope, often focusing solely on specific aspects such as model and data sharing
or provenance tracking. Some only address local gradients in FL, while others offer a gen-
eral vision of how blockchain-based solutions could enhance trust and transparency in ML
research. Furthermore, there is a glaring absence of consideration for interoperability with
existing or emerging ML solutions. This highlights a pressing need for the research com-
munity to delve deeper into resolving research reproducibility challenges in the ML field
and advancing the research cycle. To tackle the identified issues, our proposed solution
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(see Section 3) involves the development of an ML community-driven blockchain-based
decentralized platform that is scalable, interoperable, integrates with existing ML research
tools, and adaptable across various AI research domains.

3. Proposed Concept of the Platform

This section is dedicated to presenting the concept of a community-driven blockchain-
based platform designed to enhance reproducible research in ML. Firstly, we introduce a
high-level architecture for developing such a platform, outlining and describing its main
components and their interaction. Then, we dive into the metadata schema, a core com-
ponent for extracting and storing experiment artifacts on the blockchain to ensure full
reproducibility.

3.1. High-Level Architecture

In Fig. 1, we present a high-level architecture of the ML community-driven blockchain
platform, focusing on key modules. It has been based on a realistic design principle, in
which a consortium of stakeholders, including researchers from various organizations with
expertise in ML, collaboratively conduct research and exchange experimental findings.
The architecture consists of two primary modules: the AI Blockchain Network and AI
Research, seamlessly integrated for enhanced functionality. The AI blockchain Network
module serves as the infrastructure through which ML researchers can audit, validate ex-
periment results, and store essential experimental artifacts (metadata) in a decentralized
manner. All the metadata collected during the experiments are stored in blocks and dis-
tributed among peers. It can also be retrieved upon authorized request. The AI Research
module of the architecture pertains to the integration of external ML tools and related data
or ML model sources with the platform. In practice, this integration can be achieved via
REST (representational state transfer) web services. To ensure high-level reproducibility
of experiments carried out within the AI Research module, essential experimental meta-
data are extracted using the metadata schema via the transition script component of the

Fig. 1. High-level architecture of a blockchain-based platform designed to enhance research reproducibility
in ML.
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workflow tools (see Section 3.2), and subsequently stored on the blockchain in the form
of a transaction. Integration with other blockchain platforms for AI research (for example,
SingularityNet) is also planned through the external blockchain module, which could be
facilitated using a variety of blockchain interoperability approaches. A detailed descrip-
tion and comparative analysis of these approaches are provided in Appendix A.

Additionally, we offer a comprehensive description of all main components and their
interactions, placing particular emphasis on the platform’s blockchain aspect.

• Peer: In the platform’s blockchain network, a peer represents an entity within the plat-
form’s ecosystem, such as an ML research institution or a group of researchers or de-
velopers (referred to as an organization). Each peer operates a dedicated node on the
network, storing a full local version of the blockchain ledger. This setup enables data
processing, auditing, and transparent querying by various ML workflow tools. Organi-
zations can utilize their own computing resources or cloud-based services to participate
in the blockchain network. Peers also play a crucial role in validating and executing
transactions.

• Consensus protocol: The consensus protocol facilitates agreement among all peers in
the blockchain network to accept a transaction containing experimental artifacts in the
form of metadata on the blockchain, ensuring reliability and trust among participants.
In the context of the platform, a protocol like Proof-of-Authority (PoA), which relies on
a group of approved validators, could be employed. Additionally, to enhance the quality
and validity of data stored on the blockchain, a specifically designed community-driven
consensus protocol, such as Proof-of-Validity (PoV), could be utilized. The PoV proto-
col would ensure the validity of metadata related to experimental results stored on the
blockchain, relying on proofs regarding data quality, characteristics of learning models
and parameters, computational resources utilized, and achieved results. The consensus
process for the PoA or PoV protocols is executed by a selected committee comprising
the chosen researchers through dedicated nodes, which form a subset of all participants.

• Incentive mechanism: The consensus protocol takes into account the user’s reputation
and includes an incentive mechanism. This integrated mechanism serves as a motivating
factor for participants to participate actively and honestly in the validation of the results
of the collaborative experiment. The primary objective of the incentive mechanism is
to generate and distribute value, ensuring that participants receive rewards or penalties
based on their contributions to the validation of experimental results.

• Ledger: In a distributed and decentralized blockchain network, blocks containing trans-
actions of experimental metadata are recorded using an immutable and traceable mech-
anism, ensuring privacy, security, and transparency. The blockchain ledger serves as a
decentralized database that records all transactions across the network, guaranteeing
transparency and security by cryptographically linking each block to previous ones,
forming an immutable chain. Each transaction is considered completely immutable and
verified using the consensus protocol. In the context of the platform, transactions store
the results of experiment executions and all experiment artifacts in the form of a meta-
data schema (see Fig. 2).

• Smart contract: Smart contracts automate processes and improve participant trust by
managing user relationships, overseeing data access, and verifying data validity before



Advancing Research Reproducibility in Machine Learning through Blockchain Technology 235

Fig. 2. Metadata schema for storing experiments artifacts in blockchain for ensuring full reproducibility.

storing them on the blockchain. Essentially, a smart contract is a program that auto-
matically enforces consistent data management logic within the blockchain network.
Additionally, smart contracts are transparent to all users based on the blockchain’s per-
mission settings, thereby enhancing trust and fairness. Once deployed, a smart contract
is immutably recorded on the blockchain, with every peer in the network maintaining
a copy in its local ledger and executing the smart contract based on transaction input.
Smart contracts operate on the basis of data management functions that can be invoked
by submitting a transaction to them. When a transaction is entered into the smart con-
tract to fulfill certain conditions, the contract’s implementation is executed immediately,
fostering trust and transparency among participants in the blockchain network. In the
context of our platform, smart contract functionality encompasses metadata manage-
ment functions (such as experiment record, update, query, etc.), which receive requests
from workflow tools upon the completion of a specific experiment run or when request-
ing experimental metadata from previously performed experiments.

• Transition scripts: These scripts serve as an intermediate transformation component
to aggregate all essential experimental investigation artifacts generated by a workflow
tool, including other relevant information about models, datasets, and computing infras-
tructure, into metadata form. Transition scripts are also responsible for extracting all the
required information from the metadata saved on the blockchain as a transaction to re-
produce a specific experiment within a workflow tool. As different workflow tools are
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foreseen to be used on the platform, transition scripts for each tool must be developed
to aggregate and retrieve all necessary experimental data, ensuring full reproducibility.

• Clients: Clients refer to registered and authenticated users, primarily researchers, who
interact with peers within their respective organizations through a client application.
The platform users extend beyond researchers, including developers and companies
wanting to enhance collaboration and exchange research knowledge. The platform op-
erates in such a way that clients’ applications submit transaction proposals to store or
request experiment metadata through peers and subsequently receive transaction up-
dates once the process is completed. Clients conducting ML experiments utilize the
ML research module based on externally developed and linked products.

• Workflow tools: Workflow tools are the primary interface between clients and the AI
Research module. These tools facilitate the experimental investigation of ML by pro-
viding a platform with which clients can interact. Numerous tools, such as OpenML,
MLflow, and Neptune.AI, have been developed to facilitate open science collabora-
tion in ML. Although the functionality of these tools varies, most of them allow re-
searchers and ML practitioners to execute, monitor, compare, and visualize their ex-
periment results, covering the entire research process. Additionally, these tools often
come with built-in integration with popular ML libraries or frameworks (such as Ten-
sorFlow, Keras, PyTorch, and Scikit-learn) and provide storage for datasets and ML
models, or can integrate them from external sources, whether centralized or decen-
tralized. Furthermore, they offer integration with external computing facilities such as
Amazon Web Services (AWS) or Google Cloud Platform (GCP), allowing researchers
to leverage the most suitable infrastructure for their experiments.

3.2. Metadata Schema

To efficiently store and retrieve reproducible experimental information on the decentral-
ized blockchain network, we have developed a metadata schema (refer to Fig. 2) depicted
in a database relation style. This schema is based on conducted experiments and covers
various aspects of experimentation, including details about the researcher, trained model,
parameters and hyperparameters settings, utilized dataset, environment and computing
infrastructure, obtained experimental results, and other relevant investigation conditions.
Such a structure allows platform participants to store experiment artifacts within transac-
tions efficiently, as well as to verify conducted experiments and ensure full reproducibility.
One of the main challenges in designing an experimentation metadata schema is finding
the right balance between its generality and specificity, especially considering the antici-
pated integration of the platform with various ML workflow tools, each with differences
in how they describe and export experimentation data. Therefore, we propose a middle-
ground schema that addresses this concern. It is essential to note that the blockchain is not
intended for storing large volumes of data, such as datasets, but rather for recording and
regularizing sensitive information in the form of metadata. Therefore, we store metadata
for the experimental artifacts, but not codes or datasets.

As the smart contract that implements data and transaction management was devel-
oped using JavaScript, the metadata schema also employs appropriate data types. Next,
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we detail the components of the model, explaining their significance and relationships,
and emphasizing the most crucial aspects while omitting descriptions of some fields that
can be easily understood from their names.

• Experiment: The cornerstone of the metadata schema, this component aggregates data
from all linked components. Each experiment is associated with a hash value (Experi-
mentHash), providing an immutable record of the experiment conducted and its related
artifacts. Timestamps (StartTime and EndTime) are stored to denote the evaluation pe-
riod of each experiment. The Description field, which is also serialized in other com-
ponents of the metadata schema, serves to provide additional information about the
experiment, including important details or the investigator’s insights not covered by
other fields.

• Model: This component describes the ML model used for training, including details
such as its architecture, parameters, and configurations. Only authorized users may ac-
cess the model when it is not publicly available. Therefore, only pointers (field Source)
to the actual models are stored, along with hashes to verify the versions. The model’s
structure, particularly in deep learning, can vary widely, so its data are stored in JSON
format extracted from the Workflow tool used for experiments.

• Dataset: This component provides details about the dataset used for training, validation,
and testing. Similarly to the model, access to datasets may be restricted to certain users
or groups. Therefore, only pointers (field Source) to the actual datasets are stored, along
with hashes to verify the versions. Additionally, the field Type describes the type of data
stored, such as text or images.

• Parameters: This component stores variables specific to the selected model, which are
estimated by fitting the given data to the model. Examples include weights and biases
in neural networks. These parameters are stored in JSON format and extracted from the
workflow tool used for experiments.

• Hyperparameters: This component includes configurations for the model’s experi-
ments that are set before the experimental runs and remain unchanged during training.
Examples include the data train-validation-test split ratio, learning rate, activation func-
tion, dropout rate, number of epochs, and batch size. Like parameters, hyperparameters
are also stored in JSON format and extracted from the workflow tool.

• Environment: This component describes the programming languages (e.g., Python),
libraries, and ML frameworks (such as Keras, NumPy, TensorFlow, Scikit-learn, and
PyTorch) utilized in the experiment, also indicating the corresponding versions. To en-
sure flexibility, this information is stored in JSON format.

• Hardware: This component provides a description of the computing infrastructure uti-
lized for ML experiments, including details such as the operating system, CPU, GPU,
and RAM. This information is stored in JSON format for easy access and flexibility.

• Results: This component captures the results of the experiments carried out. It includes
sets of validation and test results, such as accuracy and loss function values, stored in
JSON format for efficient storage and retrieval.

• Researcher: This component corresponds to the description of the researcher or de-
veloper who conducted the experiment and initiated the transaction with the metadata
stored on the blockchain.
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In summary, a community-driven platform based on the concept described offers
mechanisms that ensure trust, traceability, auditability, and full reproducibility in scien-
tific experiments. This is achieved by leveraging blockchain technology to enhance the
provenance of ML models and datasets, as well as computing infrastructure, and securely
store experimentation metadata. The use of such a platform could improve the sharing
of knowledge of experiments, resulting in a faster innovation cycle by facilitating collab-
oration and knowledge exchange between researchers, developers, and business entities.
Next, we experimentally assess the blockchain implementation of the platform’s concept
within the Hyperledger Fabric infrastructure.

4. Experimental Infrastructure and Setup

In the upcoming section, we provide a brief overview of the fundamental concepts of the
Hyperledger Fabric framework, which is utilized to implement the blockchain network.
In addition, we will describe the experimental environment and its setup.

4.1. Hyperledger Fabric

In the current landscape of blockchain technology, along with the widely known Ethereum
public blockchain system – credited as the first to support smart contracts – a variety of al-
ternative systems have emerged, including Cosmos, Solana, Cardano, Polkadot, etc. (Ray,
2023). These blockchain systems boast scalability and robust development tools, catering
to a diverse range of needs. The proposed platform is planned to operate on the principles
of Proof-of-Authority (PoA) or Proof-of-Validity (PoV) consensus algorithms, facilitat-
ing a permissioned blockchain environment where only specific entities are authorized to
participate. Hyperledger Fabric (HF) (Androulaki et al., 2018) emerged as the preferred
choice developed by IBM as a distributed ledger solution under the Linux Foundation. HF
stands out for its robust support of strong identities and smart contracts, enabling organi-
zations to share data across a distributed database without the need for individual users to
place trust in others. It should be noted that HF’s user-friendly nature and its declared satis-
factory performance, thanks to its modular architecture tailored to business needs, ensure
rapid transaction processing. Key features include permissioned access, high scalability,
confidentiality, and flexibility. A Hyperledger Fabric blockchain network, composed of
three organizations, is illustrated in Fig. 3, highlighting its key components.

In addition, we provide a brief description of the main Hyperledger Fabric compo-
nents used in the paper, outlining their purposes and interactions. HF comprises several
essential components, including peer nodes, ordering nodes, ledger, chaincode, Member-
ship Service Provider (MSP), channels, Fabric Software Development Kit (SDK), and
Fabric Certificate Authority (CA). Within HF, the ledger is divided into two elements:
the world state and the blockchain. The world state contains the current state or latest
values, with each node/peer maintaining an individual copy. Changes to the world state
are synchronized across all peer nodes. The blockchain records transaction logs, captur-
ing every change made to the world state. Access to the ledger is restricted to authorized
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Fig. 3. A Hyperledger Fabric blockchain network, composed of three organizations.

smart contracts. Channels serve as private subnetworks facilitating secure communica-
tion among a subset of network participants, governed by pre-agreed rules outlined in the
channel configuration. The peer nodes are responsible for maintaining the ledger copies
associated with the network channels, executing chaincode, and validating transactions.
The peer nodes can perform various roles, such as committing, endorsing, or ordering.
Endorsing peers provide a seal of approval to transactions that are then submitted to the
blockchain along with the endorsement. Committing peers store the transaction in their
ledger upon submission. Additionally, they order nodes sequence and package validated
transactions into blocks before transmitting them to peer nodes for validation and ledger
commitment. Chaincode, also known as smart contracts, handles transactions among net-
work participants and can be written in various programming languages. The MSP man-
ages the identities of the network, registers new identities, and authenticates users. HF
SDK, available in languages such as Node.js, Java, and Python, offers developers APIs to
interact with the HF network. The CA issues and revokes digital certificates for network
participants used for authentication and authorization. Transactions in HF undergo mul-
tiple stages, including execution, consensus-based ordering, and validation, before being
stored in the ledger. The configtx.yaml file in HF serves as a configuration file used to
define network parameters, including organizations, orderers, channels, and policies, es-
sential for network initialization and operation. For a more detailed Hyperledger Fabric
description, we refer to the official documentation (Fabric, 2024).
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4.2. Environment and Setup

The concept of the platform revolves around two integrated modules: the AI Research
module, which utilizes existing ML tools for experimentation, and the AI Blockchain
Network, proposed in this study to enhance reproducibility in the ML research lifecycle.
Therefore, in our experimental investigation, we focus on exploring the AI Blockchain
Network components and evaluating the influence of Hyperledger Fabric parameters on
system performance to identify optimal settings and potential bottlenecks within the
blockchain infrastructure.

To experimentally evaluate the platform’s blockchain performance, we constructed
a blockchain network using the Hyperledger Fabric environment (v2.4.9), deployed as
Docker (v24.0.6) containers on a local computer with an Intel(R) Core(TM) i5-10300H
CPU running at 2.50 GHz and 8 GB of RAM. This network consists of three organizations
(as depicted in Fig. 3), each with a peer and an ordering service represented by ordering
nodes utilizing the RAFT consensus protocol. Configured to allow all organizations to val-
idate transactions, the network’s distributed ledger relies on the CouchDB database. We
employed Hyperledger Caliper (v0.4.2) to monitor the network’s performance, with trans-
actions generated by clients, where users in Hyperledger Fabric correspond to these clients
(ML researchers) interacting with the system via a client application. A smart contract, or
chaincode, written in JavaScript, manages the developed metadata model and transactions,
with performance evaluation focusing on three main transaction types: record, update,
and query. Each transaction includes simulated metadata extracted from an ML workflow
tool, specifically Neptune.AI, representing experiments carried out on the MNIST dataset
(Deng, 2012) using various ML models. The record function creates new ledger entries,
the update function modifies existing information, and the query function retrieves re-
quired data, where record and update transactions are submitted by application clients
through peer nodes to the world-state database, while query transactions target the world
state without involving the Orderer. Upon transaction verification, new blocks are added
to the blockchain, with a send rate set at 100 TPS (transactions processed per second)
and up to one hundred thousand transactions simulated in each round. We monitored the
network’s performance in terms of latency (measured in seconds), representing the time
from transaction submission to response, and throughput, corresponding to the average
number of transactions processed per second (TPS), while also assessing the workload on
the main system components like Organizations, Orderers, and the Ledger.

5. Experimental Evaluation

This section presents the results and their analysis of the performance evaluation of the
constructed and blockchain network. Three distinct scenarios were examined to assess the
system’s performance across various aspects, including the impact of block configuration,
scalability, and workload fluctuations due to variations in main system parameters. Within
each scenario, multiple test cases were explored, each adjusting key system parameters,
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with each test case executed over 10 rounds, capped at a maximum duration of 1 hour
per experiment. Subsequently, average values were calculated for each test case to gauge
overall performance.

5.1. Scenario 1: Impact of Block Size and Time on System Performance

Block size (BS) and batch timeout (BT) (block creation time) are critical parameters with
significant implications for system performance. Initially, their impact on system perfor-
mance was assessed. BT denotes the waiting time after the first transaction arrives before
creating a block, while BS represents the maximum number of transactions that can fill
a block. Scenario 1 examined three BT cases – 0.5, 1, and 2 seconds – based on previ-
ous experiments and four BS cases – 10, 100, 1000, and 10000 transactions per block.
Such a wide range of transaction sizes to be included in a block was investigated to fully
explore the impact of their number and pinpoint potential bottlenecks. Throughout this
scenario, the number of system clients remained fixed at 5. Refer to Fig. 4 for the results
in 10 different test cases.

Figure 4a illustrates the average latency of the record, update, and query functions.
Notably, the latency for the query function consistently remains low, with a stable value
of 0.02 seconds across all test cases, attributed to its read-only nature. The latency of
the record and update functions exhibits slight variations among test cases, but maintains
consistency overall. The lowest latency values were observed with a batch timeout of 0.5
seconds and a block size of 10 transactions, producing latencies of 0.33 seconds for the
record and 0.35 seconds for update functions. However, as BT increases to 1 and 2 seconds
with BS fixed at 10 transactions, latency increases slightly to 0.47 seconds for both func-
tions. In contrast, increasing BS to 100 transactions results in higher latency, peaks at 1.6
seconds for the record and 1.64 seconds for update functions with BT set to 1 second. No-
tably, latency is highest with BS = 100 and BT = 0.5 seconds, reaching 0.75 seconds for
record and 0.71 seconds for update functions. However, increasing BS to 1000 and 10000
transactions leads to a drop in latency values for record and update functions, maintaining
consistency within the same BT groups.

In Fig. 4b, the average values of the measured throughput are presented. Notably, the
throughput for the query function fluctuates from approximately 250 TPS to 410 TPS,
significantly higher than the throughput for the record and update functions, which varies
from around 5 TPS to 25 TPS. The highest throughput values for the record and update
functions were obtained in the test cases with BS = 10, resulting in 25 TPS for the record
and 24.1 TPS for the update function with BT = 0.5, 19.4, and 19.1 TPS with BT = 1,
and 16.5 and 21.5 TPS with BT = 2. In the case of BS = 10, the query function exhibited
optimal performance only in cases with BT = 0.5 and BT = 2, resulting in 407.4 and
412.5 TPS, respectively. Conversely, similar to latency, the lowest throughput results for
the record and update functions within each BT group were observed when the block size
was set to 100 transactions. For this BS = 100, in the case of BT = 0.5, the update and
record functions resulted in 13.8 TPS, while in the case of BT = 1, the record function
achieved 4.8 TPS and the update function achieved 4.6 TPS.
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Fig. 4. Scenario 1. Latency and throughput values of record, query, and update chaincode functions for different
investigated test cases with varying block size and time.

Overall, we notice an inverse correlation between network throughput and latency.
Smaller block sizes, despite exhibiting lower throughput, require less time to fill the block
with data, resulting in reduced latency. The choice between prioritizing latency reduc-
tion or increasing network throughput depends on the system developers’ preferences. In
conclusion, while the system performance in most analysed cases was satisfactory, this
scenario helps identify more efficient block size and batch timeout values.

5.2. Scenario 2: Impact of Number of Clients on System Performance

When developing a platform with the potential for user growth, it is essential to assess
the system’s scalability capabilities. In this scenario, we examine how the system’s per-
formance is affected by the number of clients interacting with the system and initiating
transactions. Here, the block size and batch timeout values were fixed at BS = 10 and
BT = 0.5, respectively, as they demonstrated optimal performance in terms of latency
and throughput in Scenario 1.

Figure 5 presents the system performance results for five different test cases varying
the number of clients from 5 to 200. Similarly to Scenario 1, we observe that the latency
values for the record and update functions are similar and significantly differ from those of
the query function. As shown in Fig. 5a, for a relatively small number of clients (C = 5 and
C = 10), latency is minimal. For instance, with C = 5, record, update, and query functions
yielded latency values of 0.33, 0.35, and 0.02 seconds, respectively. With C = 10, these
values were 0.35, 0.32, and 0.03 seconds, respectively. However, as the number of clients
increases significantly, the latency also increases, reaching its highest values for the test
case with 200 clients, resulting in 3.41, 3.48, and 0.36 seconds for the record, update and
query functions, respectively. This represents a 10.33-fold increase for record functions, a
9.94-fold increase for the update function, and an 18-fold increase for the query function.

We observe a consistent decrease in throughput for the query function (see Fig. 5b)
with the increase in the number of clients, which decreased from 407.4 to 125 TPS, re-
sulting in a 3.26-fold decrease. Interestingly, there is no consistent decrease in throughput
for the record and update functions. The lowest throughput values were obtained in the
C = 10 case, with 25 and 24.1 TPS for record and update functions, respectively, while the
highest throughput values were recorded in the C = 50 case, with the record and update
functions reaching peaks at 45 and 43.7 TPS, respectively.
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Fig. 5. Scenario 2. Latency and throughput values for record, query, and update chaincode functions for different
tested cases investigated with varying numbers of clients.

We can conclude that the increase in the number of clients in the blockchain network
has a much greater impact on latency than on throughput. As the number of clients in-
creases, the network is more likely to become overloaded, although the tests that were
conducted have demonstrated respectable system performance even with a relatively high
number of clients. In practice, if necessary, even greater network growth and overload can
be overcome by expanding network resources, such as network channels and peer nodes.

5.3. Scenario 3: CPU and Memory Usage Analysis

The blockchain operations executed by the peer nodes require noticeable computing power
and memory resources. Therefore, it is crucial to assess system performance from a re-
source usage perspective. In this scenario, we conduct an analysis of CPU and RAM uti-
lization to pinpoint bottlenecks, identify the most computationally intensive components,
and highlight any memory leakage issues. Our thorough examination reveals that peer
nodes from different organizations consume comparable amounts of resources. Therefore,
in Fig. 6, we present resource utilization metrics for key node roles, including Organiza-
tion, Orderer, and Ledger, in all previously investigated test cases.

Organization In the Organization (refer to Fig. 6a), CPU usage is predominantly allocated
to the query function, ranging from 48.95% to 88.31%. Both the record and update func-
tions exhibit similar CPU usage values in all test cases, ranging from 4.33% to 41.55%.
Lower block timeout values (BT = 0.5) result in increased CPU usage for record and up-
date compared to higher BT values (BT=1 and BT=2) with the same number of clients
(C = 5). An increase in the number of clients from 5 to 200 (observed in test cases with
BT = 0.5 and BS = 10) reveals a consistent increase in CPU usage, from 21. 21% to 40.
54% for the record function and from 20.74% to 41% for the update function. Further-
more, smaller block sizes (BS = 10) generally require more CPU usage for record and
update functions compared to higher BS values, with the lowest CPU values observed
when BS = 100. However, such dependencies are not observed for the query function.

Regarding RAM usage in the Organization (refer to Fig. 6b), it ranges from approxi-
mately 113 MB to 357 MB for the record function, from approximately 141 MB to 366
MB for the update function, and from approximately 157 MB to 372 MB for the query
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Fig. 6. Scenario 3. CPU and RAM utilization by Organization, Orderer, and Ledger for record, query, and update
chaincode functions across all investigated test cases.

function. Unlike CPU usage, all functions (record, update, and query) exhibit similar RAM
usage values across all test cases. In most cases, the update function utilizes slightly more
RAM, with an average difference of 8.23%. Additionally, the query function tends to use
the most RAM, averaging 12.57% more compared to the record function and 4% more
compared to the update function. However, this trend for the query function diminishes as
the number of clients increases. Furthermore, an increase in the number of clients from
5 to 200 (observed in test cases with BT = 0.5 and BS = 10) results in a consistent in-
crease in RAM usage, from 115 MB to 357 MB for the record function, from 141 MB
to 362 MB for the update function, and from 157 MB to 329 MB for the query function.
Overall, increasing the number of clients from 5 to 200 resulted in a 2.58-fold increase in
RAM utilization on average. In particular, there is no significant influence of BT and BS
on RAM usage, except in the case BT = 2, BS = 10, C = 5.

Orderer In contrast to the Organization, the Orderer primarily utilizes CPU computing
power for the record and update functions (refer to Fig. 6c). The workload of the query in
the Orderer is negligible, reaching a CPU usage value of only 0.37% with a large number
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of clients (C = 200). The record and query functions exhibit comparable CPU usage values
across all test cases. For a fixed number of clients (C = 5), the highest CPU usage values
are observed for the record and update functions in test cases with BS = 10, resulting
in 5.37% for the record and 4.46% for the update function in the case BT = 0.5, 4.21%
and 3.81% in the case BT=1, and 3.25% and 3.93% in the case BT = 2. An increase
in the number of clients (observed in test cases with BT = 0.5 and BS = 10) results in
a constant CPU usage increase for all functions – from 5.37% to 15.37% for the record
function, from 4.76% to 14.16% for the update function, and from 0.05% to 0.37% for
the query function.

Regarding RAM usage, the Orderer exhibits a narrower range (refer to Fig. 6d) com-
pared to the Organization. RAM usage varies from approximately 95 MB to 124 MB for
the record function, from approximately 114 MB to 162 MB for the update function, and
from approximately 139 MB to 160 MB for the query function. For a fixed small number
of clients (C = 5), compared to the record function, the update function requires 49.47%
more RAM, and the query function requires 50.76% more RAM. There is no significant
impact of block size and block timeout on RAM usage. When increasing the number of
clients from 5 to 200 (test cases with BT = 0.5 and BS = 10), some RAM usage increase
is observed, but it is not as significant compared to the Organization and results in a 50%
increase in RAM utilization on average.

Ledger Similarly to the Orderer, the Ledger primarily utilizes CPU computing power for
the record and update functions (refer to Fig. 6e). The workload of the query function is
small, averaging 1.08%, and reaches a CPU usage value of 2.34% only with a large number
of clients (C = 200). However, the update function consistently exhibits the highest CPU
load in all test cases, averaging 51.75% more compared to the record function. Similarly
to the Organization case, for lower block timeout values (BT = 0.5), the CPU usage for
the record and update is higher compared to test cases with higher BT values (BT = 1
and BT = 2) when considering appropriate BS values (BS = 10; BS = 100; BS = 1000;
BS = 10000) and the same number of clients (C = 5). The increase in the number of
clients requires significantly more CPU resources (observed in test cases with BT = 0.5
and BS = 10) – when comparing cases with 5 and 50 clients, there is a 3.24 times increase
for the record function and a 2.84 times increase for the update function. However, a stable
growth trend in CPU usage is not observed – starting from C = 50, CPU usage begins to
stabilize.

In terms of RAM usage, the Ledger requires the least amount compared to the Organi-
zation and the Orderer (refer to Fig. 6f). On average, the record function requires 96 MB,
the update function requires 118 MB, and the query function requires 107 MB. There is
no significant impact of the number of clients on RAM usage – the increase from 5 to
200 clients resulted in only a 25.33% increase on average. Similarly, block size and block
timeout have no significant impact on RAM usage.

Overall, within the Organization, CPU computing power is predominantly utilized for
the query function, reaching the highest workload values among all nodes. On the contrary,
the workload of the query function at the Orderer and Ledger is minimal. However, the
scenario is reversed for the record and update functions, as they require much more CPU
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computational power on the Orderer and Ledger. Interestingly, these functions exhibit a
similar level of CPU workload on a node. It is worth noting that both the Organization
and the Ledger require more CPU resources than the Orderer. Additionally, across all
node types, CPU workload appears to be less influenced by block size and block timeout,
but more affected by the number of clients. When considering RAM utilization, there are
no significant differences between functions and neither block size nor block timeout have
a substantial impact on RAM usage. The number of clients has a greater impact on the
Organization, although its influence diminishes in the case of the Orderer and Ledger. In
summary, RAM usage across all cases remains relatively low and feasible for the majority
of modern computers.

In conclusion, the CPU and RAM resource analysis conducted underscores the suit-
ability of the Hyperledger Fabric infrastructure for the developed blockchain-based repro-
ducibility platform at the real-world application level.

6. Conclusions and Challenges

This paper introduces a novel concept: a blockchain-based platform designed to facilitate
reproducible research in machine learning, adaptable to various domains within artificial
intelligence. The platform operates on a decentralized blockchain network, comprising or-
ganizations and researchers actively engaged in ML, and seamlessly integrates various ML
research frameworks and tools. Using blockchain features such as decentralization, im-
mutability, and a community-driven experiment validation consensus mechanism, along
with automation through smart contracts, the platform enhances transparency and trust
in ML research. It ensures the immutable storage of experiment artifacts within transac-
tions and facilitates their retrieval by other researchers. Experimental results examining the
performance of the blockchain network demonstrate that most block configurations pro-
vide sufficient latency and throughput for transactions. Moreover, experiments involving
varying numbers of clients showcase a commendable level of scalability for the platform.
Additionally, resource usage analysis reveals that running a node on the platform is afford-
able for a standard modern computer. In conclusion, the Hyperledger Fabric infrastructure
proves to be well-suited for developing the platform at a real-world application level.

Although the platform built on the architecture presented holds significant potential,
several challenges must be addressed to ensure its effectiveness. Integration with existing
ML tools emerges as a critical priority, facilitating experimental metadata extraction, its
storage on the blockchain network, and subsequent retrieval. This integration is essential
for streamlining research processes and ensuring seamless adoption of the platform. Es-
tablishing a community-driven consensus protocol, complemented by robust reputation
management mechanisms, becomes imperative to guarantee the accurate validation of re-
sults. This framework will maintain the integrity of the research results and foster trust
within the ML community. Moreover, implementing appropriate incentive mechanisms is
essential to incentivize ML investigators to actively participate in model and experiment
validation. Finally, integration with other AI research-oriented blockchains will increase
the platform’s attractiveness and usability. These incentives will encourage engagement
and collaboration, driving the platform’s growth and impact.
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A. Appendix. Review and Comparative Analysis of Blockchain Interoperability
Approaches

In this section, we provide a description and comparative analysis of the main blockchain
interoperability approaches, as well as indicate potential approaches that could be used to
implement the platform’s interoperability with other AI research-oriented blockchains.

In many practical applications, there arises a need to interact with data and assets
across different blockchains (Li et al., 2023). However, various application scenarios and
use cases entail different requirements for blockchain access control, throughput, scala-
bility, etc. To address this, numerous interoperability approaches and solutions have been
proposed to enable communication, interaction and information sharing among differ-
ent blockchain networks (as seen in the survey papers Belchior et al., 2021; Ren et al.,
2023; Wang et al., 2023). Based on the literature, blockchain interoperability approaches
can be classified into seven categories: (1) Side-chains, (2) Notary schemes, (3) Hash
locking, (4) Trusted relays, (5) Blockchain engines, (6) Blockchain of blockchains, and
(7) Agnostic protocols. We further provide a description of each approach, highlighting
its specificity.

• Side-chains. A side-chain is a separate blockchain linked to the main blockchain, that
typically enhances its functionality by offering a mechanism to conduct transactions off
the main blockchain and enabling scalability and enhanced functionality. These side-
chains operate by pegging assets from the main blockchain, facilitating independent
transaction processing with tailored consensus mechanisms. Additionally, assets from
the main chain can be seamlessly transferred to the side-chain for processing and vice
versa, fostering interoperability. Main blockchains can host multiple side-chains, each
dedicated to specific use cases or applications, thus accommodating diverse needs.

• Notary schemes. The primary objective of a notary scheme is to establish a trusted
mechanism to validate events within a blockchain and attest their validity to another
blockchain. Within the notary mechanism, a trusted third party or a consortium of par-
ties can oversee multiple chains, facilitating transactions on one chain in response to
valid events or specific requests, such as those initiated through smart contracts. Notary
schemes verify the integrity of cross-chain transactions by employing techniques such
as Merkle trees, digital signatures, and timestamping. Although notary schemes may
face challenges related to decentralization, their implementation remains straightfor-
ward.

• Hash locking. Hash locking, also known as hash time locking contracts (HTLCs), uti-
lizes hash functions and delayed transaction execution on the blockchain. These smart
contracts facilitate asset exchanges between different blockchains by locking assets
and establishing the corresponding time and unlocking conditions to ensure atomic-
ity. Transactions remain locked until both parties agree on their obligations, ensuring
secure and trustless exchanges. Through hash-locking, atomic swaps enable asset ex-
changes between different blockchains without intermediary intervention, enhancing
efficiency and decentralization in cross-chain transactions.

• Trusted relays. A trusted relay serves as a bridge, enabling the seamless provision of
smart contract services across various blockchains. Through this approach, essential
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block information, such as block headers, is replicated from the source blockchain to
the target blockchain via verifiable smart contracts. Contracts in one chain effectively
assume the role of clients in another chain, enabling recipient chains to verify activities
that occur in other chains. This approach allows the target blockchain to independently
validate the existence of data on the source blockchain. Notably, trusted relays oper-
ate at a chain-to-chain level, bypassing the need for trust in distributed nodes, thereby
distinguishing them from notary schemes.

• Blockchain engines. A blockchain engine is a sophisticated framework designed to
offer reusable components across various layers—data, network, consensus, incen-
tive, and contracts—to enable the creation of tailored blockchains. These blockchains,
in turn, power decentralized applications that seamlessly interact with one another.
Typically, an engine requires a shared infrastructure that supports services across
multiple layers, including network and consensus mechanisms. Unlike mere relays
among blockchains, this infrastructure integrates all necessary components, foster-
ing enhanced availability and compatibility. However, despite their potential, many
blockchain engine-based solutions remain in the early stages of development due to
the complexities involved in their implementation.

• Blockchain of blockchains. The blockchain of blockchains can be defined as a frame-
work for building decentralized applications that seamlessly interact across multiple
blockchains, enabling each blockchain to function autonomously. These frameworks
offer core components such as the mainchain, network infrastructure, consensus mech-
anisms, incentives, and smart contracts to facilitate the development of application-
specific custom blockchains, also known as subchains, that can interconnect with each
other. In contrast to side-chain solutions, where all operations are centrally coordi-
nated by the mainchain, the blockchain of blockchains employs a notary scheme. Here,
the mainchain acts as a notary, documenting activities occurring on subchains. This
approach ensures interoperability while maintaining decentralization and scalability
across the network.

• Agnostic protocols. These protocols address the challenges of interoperability that
arise from the diversity of blockchain platforms by establishing a standardized set of
rules and interfaces. A blockchain agnostic protocol usually denotes a unified platform
that facilitates the simultaneous operation of multiple blockchains, providing a layer
of abstraction to enable cross-chain communication among distributed ledgers. Such a
platform empowers end-users to conduct transactions across different blockchains and
facilitates the transfer of assets and data between these networks. However, due to their
nature, agnostic protocols may not ensure backward compatibility, meaning that exist-
ing blockchains need to modify their source code to integrate with these protocols.

All described interoperability approaches are rooted in a trust model that can be
broadly classified into two categories: trusted third party (TTP) and synchrony (Zamy-
atin et al., 2021). In a TTP model, a trusted third party can serve as the coordinator to
ensure accurate execution of cross-chain communications. On the other hand, synchrony
relies on the assumption of synchronous communication among participants and utilizes
locking mechanisms, typically in the form of smart contracts, to facilitate interoperability.
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Table 2
Comparative analysis of interoperability approaches.

Approach Type Decentra-
lization

Scalability Security Connected
chains

Communication Trust
model

Use case

Side-chains Chain-based Medium High Medium Two Bidirectional Synchrony Asset transfer
Notary schemes Chain-based Low High High Two Unidirectional,

Bidirectional
TTP Atomic Swap,

Asset transfer,
Cross-chain
oracles

Hash locking Chain-based High Low High Two Bidirectional Synchrony Atomic Swap,
Asset transfer

Trusted relays Bridge-based High Medium Medium Two Unidirectional,
Bidirectional

TTP Atomic Swap,
Asset transfer,
Chain relay,
Cross-chain
Oracles

Blockchain
engines

Bridge-based Medium Medium High Multiple Bidirectional TTP Atomic swap,
Asset transfer,
Chain relay,
Cross-chain
oracles

Blockchain of
blockchains

DApp-based Medium High Medium Multiple Bidirectional TTP Asset transfer,
Cross-chain
oracles

Agnostic
protocols

DApp-based Medium Medium Medium Multiple Bidirectional TTP Asset transfer,
Cross-chain
oracles

Blockchain interoperability facilitates a wide range of use cases. Atomic swaps enable
the direct exchange of cryptocurrencies or assets between two blockchain systems without
the need for intermediaries. Asset transfer involves relocating assets from one blockchain
to another, typically involving locking or burning the asset in the original blockchain be-
fore releasing a corresponding representation on the destination blockchain. Cross-chain
oracle facilitates seamless data transfer or provision between different blockchains. Unlike
asset transfers, data transfers via cross-chain oracles can occur across multiple blockchains
without locking or burning the original blockchain. While in chain relay, the communica-
tion between blockchain networks is based on intermediary nodes.

Based on the state-of-the-art literature, we present a summary of the main compared
features of the described interoperability approaches in Table 2. In addition to categorizing
the type of approach, we analyse three prominent and conflicting aspects of the blockchain
trilemma: decentralization, scalability, and security (Buterin, 2017). Moreover, we ascer-
tain the potential number of connected chains, specify communication direction, examine
the trust model, and present used cases.

We can observe three distinct types of approaches utilized for interoperability:
chain-based, bridge-based, and decentralized application-based (DApp-based). Chain-
based blockchain interoperability approaches are primarily dedicated to homogeneous
blockchain systems where assets are of the same type. On the contrary, bridge-based
approaches aim to interconnect heterogeneous blockchain systems, while DApp-based
approaches focus on exchanging information between applications built on top of
blockchains. Considering the blockchain trilemma aspect, each solution proposes a trade-
off between decentralization, scalability, and security, suggesting specific approach con-
siderations depending on the developed system’s aims and purposes. More recent interop-
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erability approaches, such as blockchain engines, blockchain of blockchains, and agnostic
protocols, offer the possibility of connecting and exchanging information between more
than two blockchains. In particular, all approaches support bidirectional communications.
Moreover, with the exception of side-chains, each offers different use cases.

Various interoperability solutions have been developed for different types of ap-
proaches across various blockchains, including the widely popular public blockchain
Ethereum (for more details, refer to (Belchior et al., 2021; Ren et al., 2023)). Considerable
attention has been paid to interoperability solutions for permissioned blockchains such as
Hyperledger Fabric, which is utilized in this study to build a blockchain network. For ex-
ample, Hyperledger Cacti (Cacti, 2024) serves as a multi-faceted pluggable interoperabil-
ity framework designed to connect networks built on different blockchain technologies and
facilitate transactions that span multiple networks. This project emerged from the merger
of the Weaver Lab project with Hyperledger Cactus. Another example is Hyperledger Fire-
fly (FireFly, 2023), a pluggable framework that aims to transact on multiple blockchains.
It is an open-source project that aims to provide a decentralized, adaptable, and secure
integration between blockchains and various platforms. Additionally, Hyperledger YUI
(YUI, 2022) is an open-source project of Hyperledger Labs that targets blockchain inter-
operability using the inter-blockchain communication (IBC) protocol by Cosmos (Kwon
and Buchman, 2015). Lastly, Wecross (WeCross, 2019) is an open-source blockchain in-
teroperability platform that supports popular permissioned blockchains, including Hyper-
ledger Fabric. These solutions can be considered to implement interoperability between
the platform and other blockchains oriented to AI research.
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