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Abstract. ELECTRE III is a well-established outranking relation model used to address the ranking
of alternatives in multi-criteria and multi-actor decision-making problems. It has been extensively
studied across various scientific fields. Due to the complexity of decision-making under uncer-
tainty, some higher-order fuzzy sets have been proposed to effectively model this issue. Circular
Intuitionistic Fuzzy Set (CIFS) is one such set recently introduced to handle uncertain IF values.
In CIFS, each element of the set is characterized by a circular area with a radius, r and member-
ship/non-membership degrees as the centre. This paper introduces CIF-ELECTRE III, an extension
of ELECTRE III within the CIFS framework, for group decision analysis. To achieve this, we define
extensions for the group decision matrix and group weighting vector based on CIFS conditions, par-
ticularly focusing on optimistic and pessimistic attitudes. These attitudinal characters of the group
of actors are constructed using conditional rules to ensure that each element of the set falls within
the circular area. Parameterized by α ∈ [0, 1] for the net score degree, we conduct an extensive
analysis of group decision-making between optimistic and pessimistic attitudes. To illustrate the
applicability of the proposed model, we provide a numerical example of the stock-picking process.
Additionally, we conduct a comparative analysis with existing sets and perform sensitivity analyses
to validate the results of the proposed model.
Key words: ELECTRE III, group decision analysis, circular intuitionistic fuzzy set, optimistic and
pessimistic attitudes.

1. Introduction

Decision theory is a rapidly evolving field, particularly in the context of multi-criteria and
multi-actor (or group) decision-making processes. This process entails ranking, selecting,
or assigning a set of alternatives that are evaluated based on several conflicting criteria,
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typically performed by a group of individuals. The input data for this procedure can orig-
inate from various types of information, including quantitative and qualitative data. In
many cases, this information may be subject to imprecision, ambiguity, or uncertainty
due to measurement errors, imperfect knowledge, subjectivity, and other factors. Conse-
quently, many decision-making models in the literature have been proposed to incorporate
fuzzy set (FS) theory as a means of addressing this issue (Zadeh, 1965). In FS, each el-
ement of a set is characterized by a membership degree with a value in the unit interval
[0, 1], while the non-membership degree complements it. For instance, in the context of
a stock selection problem, when evaluating the potential of a particular stock, an investor
assigns a value of 0.89, signifying a favourable view on 89% of the stock’s potential,
while holding a contrary opinion on 11%. The value 0.89 denotes the membership degree,
whereas 0.11 represents the non-membership degree, with both initially defined as pre-
cise values. Subsequently, FS has expanded to include interval-valued FS (IVFS) (Zadeh,
1975), type-2 FS (T2FS) (Zadeh, 1965), and hesitant FS (HFS) (Torra and Narukawa,
2009), among others, to handle the issue of uncertain membership degrees instead of pre-
cise membership degrees. Some extensive reviews on the development of fuzzy set theory
and its application in decision analysis can be referred to in the works of Dubois (2011),
Abdullah (2013) and Kahraman et al. (2016).

In some other studies, researchers have argued that there are cases that go beyond the
complementary nature of membership and non-membership degrees, involving indeter-
minate or incomplete information. Atanassov (1986) introduced intuitionistic fuzzy set
(IFS) as an extension of FS, where membership and non-membership degrees can exist
independently within the unit interval, and the sum of the two degrees can be less than
one. Additionally, a hesitancy degree was introduced to complement the membership and
non-membership degrees. Similarly, IFS has undergone several developments, including
the proposal of interval-valued IFS (IVIFS) (Atanassov and Gargov, 1989), type-2 IFS
(T2IFS) (Zhao and Xiao, 2012), hesitant IFS (HIFS) (Beg and Rashid, 2014), among
others, to represent uncertain membership and non-membership degrees (i.e. IF values).
A substantial body of literature has reported on the expansion of multi-criteria and multi-
actor decision-making models using these sets (Yusoff et al., 2011; Taib et al., 2016; Ecer
et al., 2022).

Recently, Atanassov (2020) introduced another extension of IFS, aiming to enhance
the flexibility in interpreting and representing IF values. This extension is known as a
Circular Intuitionistic Fuzzy Set (CIFS). In CIFS, each element of a set is characterized
as a circle, with membership and non-membership degrees determining the centre and
radius, denoted as r , which represents the region of uncertainty. The primary distinction
between CIFS and IVIFS lies in their representation of imprecision. IVIFS is depicted
as a rectangle (bounded by lower and upper bounds of membership and non-membership
degrees) within the IFS interpretation triangle (IFIT). In contrast, CIFS expresses its un-
certainty region with equidistant boundaries from the centre. Fig. 1 provides a geometrical
interpretation of IVIFS and CIFS.

The development of the CIFS theory is still in its early stages, and therefore, limited
research has been conducted on it. In the initial paper, Atanassov (2020) introduced CIFS,
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Fig. 1. Geometrical interpretation of (a) IVIFS and (b) CIFS.

along with some fundamental operations and relations, where the radius was confined
to the range of r ∈ [0, 1]. Subsequently, Atanassov expanded the range of the radius
to [0,

√
2] in order to encompass the entire IFIT and also defined distance measures for

CIFS (Atanassov and Marinov, 2021). Since then, there have been several studies aimed
at advancing CIFS both in theory and practical applications. These include extensions
of present worth analysis within the CIFS framework (Boltürk and Kahraman, 2022),
distance and divergence measures tailored for CIFS (Khan et al., 2022), distance mea-
sure based on the theory of CIFS, considering the information of four aspects: member-
ship degree, non-membership degree, radius and the assignment of hesitation degree (Xu
and Wen, 2023), circular q-rung orthopair fuzzy set and some algebraic properties (Yu-
soff et al., 2023), generalized CIFS (Pratama et al., 2023), circular pythagorean fuzzy
sets (Bozyiğit et al., 2023) and its applications in decision-making models (Çakir and
Taş, 2023), particularly in Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) (Kahraman and Alkan, 2021; Alkan and Kahraman, 2022; Chen, 2023), as well
as Multicriteria Optimization and Compromise Solution (VIKOR) (Kahraman and Otay,
2021; Otay and Kahraman, 2021; Büyükselçuk and Sarı, 2023).

One of the intriguing developments in the context of CIFS in group decision-making
problem was introduced by Kahraman and Alkan (2021). Specifically, they proposed the
inclusion of psychological behaviours within TOPSIS model under the CIFS environment,
known as CIF-TOPSIS. These characteristics involve optimistic and pessimistic attitudes,
which are represented as IF values derived from CIF values. The optimistic value is de-
fined as the sum of the membership degree and the subtraction of the non-membership
degree, both adjusted by the radius, r . Conversely, the pessimistic value is defined in the
opposite manner. In general, the optimistic value reflects the group’s inclination toward
higher membership degrees (validity), while the pessimistic value indicates a tendency
toward higher non-membership degrees (non-validity). However, these operations have
shown certain limitations. Specifically, they may result in optimistic and pessimistic val-
ues falling outside the circular area. Ideally, all values should remain within the circular re-
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gion to accurately represent the data. Furthermore, Kahraman and Alkan (2021) restricted
the radius, r to the range [0, 1] in CIF-TOPSIS, which covers only a certain region within
the IFIT. This limitation may lead to incomplete representation and is not inclusive of the
entire dataset.

In addition to the models mentioned above, ELECTRE (ELimination Et Choix
Traduisant la REalité – elimination and choice expressing reality) is another well-
established approach for handling multi-criteria and multi-actor decision-making prob-
lems. It was developed in the late 1960 by Roy (1968). ELECTRE is a comprehensive out-
ranking relation model with several variants designed for different decision problems, in-
cluding ranking, selection, and assignment of alternatives. These variants include ELEC-
TRE I (Roy, 1968), ELECTRE II (Roy and Bertier, 1973), ELECTRE III (Roy, 1978),
ELECTRE IV (Hugonnard and Roy, 1982), and more. Numerous studies have explored
the use of ELECTRE models based on fuzzy concepts and their development, including
their application in FS (Mohamadghasemi et al., 2020), IFS (Rouyendegh, 2017; Qu et
al., 2018). Notably, ELECTRE III, which relies on fuzzy outranking relations, has been
widely utilized for its effectiveness in the ranking process. Numerous developments re-
lated to FS, IFS, and IVFS have been documented in the literature (Joshi, 2016; Hashemi
et al., 2016; Peng et al., 2019; Ramya et al., 2023; Forestal and Pi, 2022). To the best of
our knowledge, there has been no study proposing the integration of CIFS into ELECTRE
models, particularly ELECTRE III.

Given the aforementioned limitations and research gaps, the research contribution of
this paper is to achieve the following main objectives.

1. To explore the CIFS theory and integrate it with the ELECTRE III model for group
decision analysis, extending the model’s capabillities.

2. To redefine the operations used to generate optimistic and pessimistic IF values from
the group decision matrix and group weighting vector. Additionally, suggest condi-
tional rules to ensure that every element of the set remains within the circular area.

3. To demonstrate the applicabillity of the proposed model through a case study of stock-
picking process.

4. To conduct a comprehensive comparative analysis with existing models and then justify
sensitivity analyses to explore the impact of α-values, which reflect the linear combi-
nation of optimistic and pessimistic attitudes, criteria weights, and thresholds.

We employ several models from the literature, including IF-ELECTRE III, IVIF-
ELECTRE III (Hashemi et al., 2016), and CIF-TOPSIS (Kahraman and Alkan, 2021),
in our comparisons. Additionally, we propose further analysis using a tranquility mea-
sure to gauge confidence in selecting the final ranking of alternatives, particularly in the
comparison between CIF-TOPSIS and the proposed CIF-ELECTRE III model. These ob-
jectives collectively guide our research efforts to contribute to the field of decision-making
in the context of CIFS, offering valuable insights and practical applications.

The remainder of this paper is structured as follows: Section 2 provides fundamental
definitions and insights into IFS, CIFS, and ELECTRE III to clarify the proposed ap-
proach. In Section 3, we present a method for converting the group decision matrix and
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group weighting vector, based on CIF values, into optimistic and pessimistic forms of
IF values. Section 4 introduces the proposed CIF-ELECTRE III model. We illustrate the
application of this model with a numerical example in the context of stock selection in
Section 5. Section 6 covers sensitivity analyses and a comparative discussion. In the con-
clusion (Section 7), we offer recommendations for future research.

2. Preliminaries

This section recalls some basic definitions and related concepts of IFS, CIFS, and ELEC-
TRE III model prior to the development of the proposed CIF-ELECTRE III.

2.1. Intuitionistic Fuzzy Set

Definition 1 (Atanassov, 1986). Let X be a finite non-empty set. An Intuitionistic Fuzzy
Set A (denoted IFS A) in X is defined as:

A = {〈
x, μA(x), νA(x)

〉 ∣∣ x ∈ X
}
, (1)

where 0 � μA(x) + νA(x) � 1 for every x ∈ X and μA : X → [0, 1] and νA : X →
[0, 1] are membership and non-membership functions, respectively. Also πA(x) = 1 −
(μA(x)+ νA(x)) is the formula for hesitancy function corresponding to a pair of IF value
〈μA(x), νA(x)〉.

Several metric methods in terms of score and accuracy functions have been presented
to compare two or more IF values (see, for example, Garg, 2016). The formal definition of
these functions is given as the following. For brevity, the notation 〈μA, νA〉 is used instead
of 〈μA(x), νA(x)〉 to represent a pair of IF value.

Definition 2 (Chen and Tan, 1994; Xu, 2007). For IFS A, let A = 〈μA, νA〉 be a pair
of IF value, then a score function, s(A) and an accuracy function, h(A) of IFS A can be
defined as Eqs. (2) and (3), respectively:

s(A) = μA − νA, (2)
h(A) = μA + νA, (3)

where s(A) ∈ [−1, 1] and h(A) ∈ [0, 1].

Moreover, let A and B be two IF values, then relations of score function and accuracy
functions between A and B can be given as follows:

1. If s(A) < s(B), then B is higher than A (B � A).
2. If s(A) = s(B), and

a. if h(A) < h(B), then B is higher than A (B �A),
b. if h(A) = h(B), then A and B are indifferent (B = A).
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2.2. Circular Intuitionistic Fuzzy Set

Definition 3 (Atanassov, 2020). Let X be a finite non-empty set. A Circular Intuitionistic
Fuzzy Set Ar (denoted CIFS Ar ) in X can be defined as:

Ar = {〈
x, μA(x), νA(x); r

〉 ∣∣ dx ∈ X
}
, (4)

where 0 � μA(x)+νA(x) � 1 for every x ∈ X, functions μA : X → [0, 1] and νA : X →
[0, 1] are membership and non-membership degrees, respectively, and also r ∈ [0, 1] is a
radius of the circle around each element x ∈ X.

Similarly, the hesitancy function πA can be defined as πA(x) = 1 − (μA(x) + νA(x))

for every x ∈ X. Under the IFS interpretation triangle (IFIT), each element of CIFS is
represented by a circle with centre at 〈μA(x), νA(x)〉 and radius, r > 0. Note that, when
r = 0, CIFS is reduced to IFS (i.e. a single point). Alternatively, CIFS can also be defined
as the following.

Let L∗ = {(m, n) |m, n ∈ [0, 1] and m + n � 1}, be an expression of L-fuzzy set,
then Ar can be written in the form:

Ar = {〈
x,Or

(
μA(x), νA(x)

)〉 ∣∣ x ∈ X
}
, (5)

where:

Or

(
μA(x), νA(x)

)
=

{
(m, n)

∣∣m, n ∈ [0, 1] and
√(

μA(x) − m
)2 + (

νA(x) − n
)2 � r

}
∩ L∗

=
{
(m, n)

∣∣m, n ∈ [0, 1] and
√(

μA(x) − m
)2 + (

νA(x) − n
)2 � r

and m + n � 1
}
.

Remark 1. Note that Definition 3 with radius r ∈ [0, 1] is not exhaustive as the IFS
triangle is only partly covered.

Recently, Atanassov and Marinov (2021) expanded the radius to r ∈ [0,
√

2] with
consideration that if the centre is at 〈0, 1〉 or 〈1, 0〉, the smallest radius distance needed to
completely cover the IFS triangle is

√
2. The geometrical interpretation of CIFS for radii

r = 1 and r = √
2 are depicted in Fig. 2 (a) and (b), respectively.

Two different ways for constructing of CIFSs have been proposed recently (Atanassov,
2020): i) based on the geometrical interpretations of the standard IFSs (Atanassova, 2010),
and ii) based on hesitant IFS (Torra, 2010; Chen et al., 2016). In the following, the algo-
rithm for building the CIFS from IFSs is presented.
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Fig. 2. Geometrical interpretation of CIFS for (a) r = 1 and (b) r = √
2.

Definition 4 (Atanassov, 2020). Let gj be an element formed by a set of kj intuitionis-
tic fuzzy pairs

{
(m1

j , n
1
j ), (m

2
j , n

2
j ), . . . , (m

kj

j , n
kj

j )
}
, where j = 1, 2, . . . , n. The mem-

bership function μ(gj ) and non-membership function ν(gj ) of CIFS can be obtained as
follows:

〈
μ(gj ), ν(gj )

〉 =
〈
�

kj

h=1m
h
j

kj

,
�

kj

h=1n
h
j

kj

〉
, (6)

and the radius, rj is the maximum of the Euclidean distance such that:

rj = max
1�h�kj

∣∣∣√(
μ(gj ) − mh

j

)2 + (
ν(gj ) − nh

j

)2
∣∣∣, (7)

where kj is the number of input sources for gj . Then, for universe F = {g1, g2, . . . , gn},
the CIFS can be represented in the following form:

Ar = {〈
gj , μ(gj ), ν(gj ); r(gj )

〉 ∣∣ gj ∈ F
}

= {〈
gj ,Or

(
μ(gj ), ν(gj )

)〉 ∣∣ gj ∈ F
}
.

(8)

The above expressions, under the group decision setting, can simply be assumed as the
aggregated values of a group of actors h = 1, 2, . . . , k with respect to each criterion j =
1, 2, . . . , n. The radius r can be considered as the bounded uncertain region between the
collective value of group (centre of a circle) and the individual actors’ values. Kahraman
and Alkan (2021) then proposed the conversion of CIF values to IF values by defining the
concept of optimistic and pessimistic values, i.e. the attitudinal characters of the group of
actors. By taking the effect of radius r on both membership and non-membership degrees,
the IF values for optimistic and pessimistic can be generated.
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Definition 5 (Kahraman and Alkan, 2021). Let A = 〈μj , νj ; rj 〉 be a CIF value. Then
the conversion of CIF value to IF values can be obtained as follows:

Ao = 〈
μo

j , ν
o
j

〉 = 〈μj + rj , νj − rj 〉, (9)

Ap = 〈
μ

p
j , ν

p
j

〉 = 〈μj − rj , νj + rj 〉, (10)

where Ao and Ap are termed optimistic IF value and pessimistic IF value, respectively.

Remark 2. Note that Definition 5 has a limitation as these optimistic and pessimistic IF
values are not within the circular area (or radius r) in the IFS triangle.

For example, the distance between the optimistic value and the centre of CIF value is
obtained as:√(

μo
j − μj

)2 + (
νo
j − νj

)2 =
√

(μj + rj − μj )2 + (νj − rj − νj )2

=
√

(rj )2 + (−rj )2 = rj
√

2 
= rj .

Analogously, this also applies to the pessimistic value, where
√

(μ
p
j − μj )2 + (ν

p
j − νj )2

=
√

(−rj )2 + (rj )2 = rj
√

2 
= rj .

2.3. ELECTRE III Model

ELECTRE III is a preference model for ranking purposes. In a general case, it is used
for multi-criteria decision-making problem (single actor). However, it also can be directly
extended to the case of multi-actor (or group) problem. The following are the important
notations related to the basic data and the construction of ELECTRE III model.

Let A = {a1, a2, . . . , am} be a set of m potential actions (or alternatives), F =
{g1, g2, . . . , gn} be a set of criteria, and gj (ai ) is the performance of action ai ∈ A on
criterion gj ∈ F , thus an m × n performance (or decision) matrix D can be formed, with
gj (ai ) in row i and column j (i = 1, 2, . . . , m; j = 1, 2, . . . , n). In addition, let wj

denotes a weight or relative importance of criterion gj , for all gj ∈ F , where wj ∈ [0, 1].
Without loss of generality, we assume that gj (ai ) is based on the increasing direction of
preference (i.e. the higher the preference value, the better the performance).

Moreover, under the group decision setting, let E = {e1, e2, . . . , ek} be a set of actors
(or decision makers), then Dh represents an individual decision matrix of actor h (h =
1, 2, . . . , k).

The main feature of ELECTRE III compared to the other variants of ELECTRE family
is a type of preference so-called pseudo-criterion. Pseudo-criterion is a multilevel thresh-
old approach, as can be defined in the following.

Definition 6 (Roy and Vincke, 1984). A pseudo-criterion is a function gj associated with
two threshold functions defined as indifference qj (.) and preference pj (.), respectively.
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If (a, a′) ∈ A × A are alternatives, then:

aPa′ ⇔ gj (a) > gj

(
a′) + pj

(
gj

(
a′)),

aQa′ ⇔ gj

(
a′) + qj

(
gj

(
a′)) < gj (a) � gj

(
a′) + pj

(
gj

(
a′)),

aIa′ ⇔ gj

(
a′) � gj (a) � gj

(
a′) + qj

(
gj

(
a′)),

where P denotes a strict preference, Q denotes a weak preference, and I denotes indif-
ferent. The weak preference is used to express the actor’s hesitation between indifference
and strict preference.

The main process in ELECTRE III is the pairwise comparison of alternatives with
respect to each criterion. These pairwise comparisons are presented in concordance and
discordance indices. The concordance index C(a, a′) of alternatives a and a′ is the esti-
mated value of pairs a and a′ for each criterion. These estimates range from 0 to 1, where
1 indicates that a is better than a′ for all criteria, and vice versa. The concordance index
is calculated based on the weighted degree wj of each criterion as given in the following
expression:

C
(
a, a′) = 1

W

n∑
j=1

wj .cj

(
a, a′), (11)

where W = �n
j=1wj and cj (a, a

′) is the outranking degree of alternatives a and a′ under
criterion gj ∈ F , such that:

cj

(
a, a′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if gj (a) + qj (gj (a)) � gj (a
′),

0, if gj (a) + pj (gj (a)) < gj (a
′),

pj (gj (a)) + gj (a) − gj (a
′)

pj (gj (a)) − qj (gj (a))
, otherwise.

(12)

On the other hand, the concept of discordance utilizes a veto threshold such that the out-
ranking of a′ by a is refused if:

gj

(
a′) � gj (a) + vj

(
gj (a)

)
. (13)

This resulted in the appearance of the discordance index dj (a, a
′) for each criterion j .

Like concordance, discordance index also has a value between 0 and 1.

dj

(
a, a′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if gj (a) + pj (gj (a)) � gj (a
′),

1 if gj (a) + vj (a) < gj (a
′),

−pj (gj (a)) − gj (a) + gj (a
′)

−pj (gj (a)) + vj (gj (a))
, otherwise.

(14)
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Then, the credibility degree of outranking a over a′ denoted as σ(a, a′) is defined as fol-
lows:

σ
(
a, a′) =

⎧⎪⎨
⎪⎩

c(a, a′), if dj (a, a
′) � C(a, a′), ∀j ∈ J ,

c(a, a′) ×
∏
j∈J

1 − dj (a, a
′)

1 − C(a, a′)
, otherwise,

(15)

where J ⊂ F is set of criteria for which dj (a, a
′) > C(a, a′).

3. Group Decision Matrix and Group Weighting Vector Based on CIFS

This section is devoted to the conversion of group decision matrix and group weighting
vector to optimistic and pessimistic forms. In the previous work, Kahraman and Alkan
(2021) proposed the formulation in Eqs. (9) and (10) to transform the CIF value to op-
timistic and pessimistic IF values, respectively. However, as stated in Remark 2, these
values are not within the circular area of radius r in the IFS interpretation triangle. Hence,
this formulation needs to be redefined. In the following, the definitions of group decision
matrix and group weighting vector based on CIFS and their conversion to optimistic and
pessimistic IF values are presented.

Definition 7. Let D = [dij ]m×n be a group decision matrix (or CIF decision matrix)
of dimension m × n such that i denotes alternative (i = 1, 2, . . . , m) and j criterion
(j = 1, 2, . . . , n). Each element of D is represented by CIF value dij = 〈μij , νij ; rij 〉.
The optimistic decision matrix and pessimistic decision matrix of D denoted Do and Dp,
respectively can be defined as follows:

Do =

⎛
⎜⎜⎜⎜⎝

do
11 do

12 · · · do
1n

do
21 do

22 · · · do
2n

...
...

. . .
...

do
m1 do

m2 · · · do
mn

⎞
⎟⎟⎟⎟⎠ and Dp =

⎛
⎜⎜⎜⎜⎝

d
p

11 d
p

12 · · · d
p

1n

d
p

21 d
p

22 · · · d
p

2n
...

...
. . .

...

d
p

m1 d
p

m2 · · · d
p
mn

⎞
⎟⎟⎟⎟⎠ , (16)

where:

do
ij = 〈

μo
ij , ν

o
ij

〉 =
〈
μij + rij

2

√
2, νij − rij

2

√
2

〉
,

d
p
ij = 〈

μ
p
ij , ν

p
ij

〉 =
〈
μij − rij

2

√
2, νij + rij

2

√
2

〉
,

such that μo
ij , ν

o
ij ∈ [0, 1] and μ

p
ij , ν

p
ij ∈ [0, 1].
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Upon checking the above definition, do
ij and dp

ij clearly satisfy the condition of standard
IFS, as can be demonstrated below:

0 � μo
dij

+ νo
dij

=
(

μij + rij

2

√
2

)
+

(
νij − rij

2

√
2

)
= μij + νij � 1,

0 � μ
p
dij

+ ν
p
dij

=
(

μij − rij

2

√
2

)
+

(
νij + rij

2

√
2

)
= μij + νij � 1.

Based on the Definiton 7, the concept of optimistic and pessimistic for weighting vector
can be defined accordingly.

Definition 8. Let W = [wj ]n×1 is vector dimension n × 1 where j is a criterion (j =
1, 2, . . . , n). Each element of W is represented by CIF value wj = 〈μj , νj ; rj 〉. The
optimistic weighting vector and pessimistic weighting vector of W , denoted Wo and Wp,
respectively, can be defined as follows:

Wo =

⎛
⎜⎜⎜⎝

wo
1

wo
2
...

wo
n

⎞
⎟⎟⎟⎠ and Wp =

⎛
⎜⎜⎜⎝
w

p

1
w

p

2
...

w
p
n

⎞
⎟⎟⎟⎠ , (17)

where:

wo
j = 〈

μo
j , ν

o
j

〉 =
〈
μj + rj

2

√
2, νj − rj

2

√
2

〉
, and

w
p
j = 〈

μ
p
j , ν

p
j

〉 =
〈
μj − rj

2

√
2, νj + rj

2

√
2

〉
,

such that μo
j , ν

o
j ∈ [0, 1] and μ

p
j , ν

p
j ∈ [0, 1].

Likewise, the condition for standard IFS is fulfilled for wo
j and w

p
j such that: 0 �

μo
j + νo

j � 1 and 0 � μ
p
j + ν

p
j � 1. The difference between the proposed conversion IF

values and the one used in Kahraman and Alkan (2021) is depicted in Fig. 3.
Moreover, it can easily be shown that the distance between the optimistic IF value,

do
ij = 〈μo

ij , ν
o
ij 〉, such that μo

ij , ν
o
ij ∈ [0, 1], and the centre of the CIF value dij = 〈μij , νij 〉

is exactly rij , which satisfies the boundary condition:
√

(μdo
ij

− μij )2 + (νdo
ij

− νij )2

=
√(

μij + rij

2

√
2 − μij

)2

+
(

νij − rij

2

√
2 − νij

)2

=
√(

rij

2

√
2

)2

+
(

− rij

2

√
2

)2

= rij .
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Fig. 3. Comparison of optimistic-pessimistic IF values for the proposed approach and Kahraman and Alkan’s
approach.

Analogously, it can be shown for d
p
ij = 〈μp

ij , ν
p
ij 〉, such that μ

p
ij , ν

p
ij ∈ [0, 1], its

distance from the centre of the CIF value dij = 〈μij , νij 〉 is also rij . The same are true
for wo

j ,w
p
j ∈ Orj (μj , νj ), which results in optimistic and pessimistic in the range of

Orj (μj , νj ). However, there are two cases in optimistic and pessimistic IF values that the
above condition is not satisfied. Specifically, either one of the degrees is not within [0, 1]
or both degrees are not elements of [0, 1]. Let do

ij = 〈μo
ij , ν

o
ij 〉 be an optimistic IF value

(or dp
ij = 〈μp

ij , ν
p
ij 〉 be an pessimistic IF value), then:

Case (1): there is a possibility that ϕ � μo
ij � 1, but νo

ij < 0 occurs in the case of
optimistic (or μ

p
ij < 0, but ϕ � ν

p
ij � 1 in the case of pessimistic), where ϕ = rij

2

√
2.

For example, dij = 〈0.4, 0.3; 0.5〉, then do
ij = 〈μo

ij , ν
o
ij 〉 = 〈0.75,−0.05〉. This clearly

contradicts the condition of IFS which is νo
ij 
= [0, 1].

Case (2): there is possibility that μo
ij > 1 and νo

ij < 0 occur in case of optimistic (or in
case of pessimistic: μ

p
ij < 0 and ν

p
ij > 1).

For example, dij = 〈0.7, 0.3; 0.5〉, then do
ij = 〈μo

ij , ν
o
ij 〉 = 〈1.05,−0.05〉. This also

contradicts the condition of IFS, which is μo
ij , ν

o
ij /∈ [0, 1]. Fig. 4 demonstrates these two

cases.
This leads to the following theorems for the elements of Do and Dp, as well as the Wo

and Wp.

Theorem 1. Let do
ij ∈ Do, μij , νij ∈ [0, 1] and rij ∈ [0,

√
2], then do

ij can be determined
as follows:

1. If μo
ij , νo

ij ∈ [0, 1], then do
ij = 〈

μo
ij , ν

o
ij

〉
.

2. If νo
ij < 0, then:
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Fig. 4. Special cases for optimisitic decision element, when (a) νo
ij

< 0 and (b) μo
ij

> 1, νo
ij

< 0.

do∗
ij =

⎧⎨
⎩

〈
μij +

√
r2
ij − ν2

ij , 0
〉
, for (1 − μij )

2 + ν2
ij � r2

ij ,

〈1, 0〉, for (1 − μij )
2 + ν2

ij < r2
ij .

Proof. It is clear that, for μo
ij , ν

o
ij ∈ [0, 1], then do

ij = 〈μo
ij , ν

o
ij 〉, which is the point

inside the IFS interpretation triangle. For νo
ij < 0 (Case (1)), the point do

ij = 〈μo
ij , ν

o
ij 〉

occurs outside the IFS interpretation triangle. Thus, the revised IF value do∗
ij = 〈μo∗

ij , νo∗
ij 〉

needs to be determined such that μo∗
ij , νo∗

ij ∈ [0, 1]. It can be shown that the point do∗
ij

with μo∗
ij = μij +

√
r2
ij − ν2

ij and νo∗
ij = 0 is the only point that gives the highest score

function s(do∗
ij ) inside the IFS triangle. Assume that there is another point d′

ij = 〈μ′
ij , ν

′
ij 〉

with μ′
ij , ν

′
ij ∈ [0, 1], such that s(d′

ij ) > s(do∗
ij ), then:

μ′
ij − ν′

ij > μo∗
ij − νo∗

ij ,

μ′
ij − ν′

ij − μij >

√
r2
ij − ν2

ij , (18)(
μ′

ij − ν′
ij − μij

)2 + (0 − νij )
2 > r2

ij .

It follows from the fact that d′
ij = 〈μ′

ij , ν
′
ij 〉 is inside the Orij (μij , νij ), so:

(
μ′

ij − μij

)2 + (
ν′
ij − νij

)2 � r2
ij . (19)

From the Eqs. (18) and (19), it can be obtained that:

(
μ′

ij − μij

)2 + (
ν′
ij − νij

)2
<

(
μ′

ij − ν′
ij − μij

)2 + (0 − νij )
2.



894 B. Yusoff et al.

This implies μ′
ij < μ′

ij − ν′
ij and ν′

ij < 0, which contradict the IFS condition. Therefore,

do∗
ij = 〈

μij +
√

r2
ij − ν2

ij , 0
〉
.

For μo
ij > 1 and νo

ij < 0 (Case (2)), it can be shown that do∗
ij = 〈1, 0〉 is point

with the highest score function inside the IFS triangle. Using the same assumption that
s(d′

ij ) > s(do∗
ij ), then μ′

ij − ν′
ij > 1. This again contradicts with the IFS condition, where

μ′
ij , ν

′
ij ∈ [0, 1] and s(d′

ij ) ∈ [0, 1]. Thus, do∗
ij = 〈1, 0〉.

Theorem 2. Let dp
ij ∈ Dp, μij , νij ∈ [0, 1] and rij ∈ [0,

√
2 ], then dp

ij can be determined
as follows:

1. If μ
p
ij , ν

p
ij ∈ [0, 1], then d

p
ij = 〈

μ
p
ij , ν

p
ij

〉
.

2. If μ
p
ij < 0, then:

d
p∗
ij =

⎧⎨
⎩

〈
0, νij +

√
r2
ij − μ2

ij

〉
, for μ2

ij + (1 − νij )
2 � r2

ij ,

〈0, 1〉, for μ2
ij + (1 − νij )

2 < r2
ij .

Proof. For μ
p
ij , ν

p
ij ∈ [0, 1], then d

p
ij = 〈μp

ij , ν
p
ij 〉. It is straightforward. For μ

p
ij < 0, the

point dp
ij = 〈μp

ij , ν
p
ij 〉 occurs outside the IFS triangle. It can be demonstrated that the point

d
p∗
ij with μ

p∗
ij = 0 and ν

p∗
ij = νij +

√
r2
ij − μ2

ij is the only point that gives the lowest score
function s(d

p∗
ij ) inside the IFS triangle. Suppose that there is other point d′′

ij = 〈μ′′
ij , ν

′′
ij 〉

with μ′′
ij , ν

′′
ij ∈ [0, 1] such that s(d′′

ij ) < s(d
p∗
ij ), then:

μ′′
ij − ν′′

ij < μ
p∗
ij − ν

p∗
ij ,√

r2
ij − μ2

ij < −μ′′
ij + ν′′

ij − νij , (20)

r2
ij < (0 − μij )

2 + (−μ′′
ij + ν′′

ij − νij

)2
.

From the fact that d′′
ij = 〈μ′′

ij , ν
′′
ij 〉 is inside the Orij (μij , νij ), so:

(
μ′′

ij − μij

)2 + (
ν′′
ij − νij

)2 � r2
ij . (21)

From Eqs. (20) and (21), it can be obtained that:
(
μ′′

ij − μij

)2 + (
ν′′
ij − νij

)2
< (0 − μij )

2 + (−μ′′
ij + ν′′

ij − νij

)2
.

This implies μ′′
ij < 0 and ν′′

ij < −μ′′
ij +ν′′

ij , which contradict the IFS condition. Therefore,

d
p
ij = 〈

0, νij +
√

r2
ij − μ2

ij

〉
.

For μ
p
ij < 0 and ν

p
ij > 1, it can be shown that dp∗

ij = 〈0, 1〉 is the point with the lowest
score function inside the IFS triangle. By the same assumption, s(d′′

ij ) < s(d
p∗
ij ), then

μ′′
ij − ν′′

ij < −1. This again contradicts with the IFS condition, such that μ′′
ij , ν

′′
ij ∈ [0, 1]

and s(d′′
ij ) ∈ [−1, 1]. Thus, dp∗

ij = 〈0, 1〉.
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Theorem 3. Let wo
j ∈ Wo and w

p
j ∈ Wp, also μj , νj ∈ [0, 1] and rj ∈ [0,

√
2], then

the rules for determining the value of wo and wp are as follows:

1. If μo
j , ν

o
j , μ

p
j , ν

p
j ∈ [0, 1], then wo

j = 〈
μo

j , ν
o
j

〉
and w

p
j = 〈

μ
p
j , ν

p
j

〉
.

2. If νo
j < 0, then

w∗o
j =

⎧⎨
⎩

〈
μj +

√
r2
j − ν2

j , 0
〉
, for (1 − μj )

2 + ν2
j � r2

j ,

〈1, 0〉, for (1 − μj )
2 + ν2

j < r2
j .

3. If μ
p
j < 0, then

w
p∗
j =

⎧⎨
⎩

〈
0, νj +

√
r2
j − μ2

j

〉
, for μ2

j + (1 − νj )
2 � r2

j ,

〈0, 1〉, for μ2
j + (1 − νj )

2 < r2
j .

Proof. The proof of this theorem is straightforward based on proofs of Theorem 1 and
Theorem 2 with some adjustments. Instead of matrix, here vector is considered.

The final outranking procedure in the CIF-ELECTRE III model is significantly influ-
enced by the aformentioned definitions and theorems. For both the optimistic and pes-
simistic scenarios, separate scores underlie the ranking process. After identifying the op-
timistic and pessimistic scores, the composite ratio is defined. This ratio parameterizes
the attitudinal character of the group of actors in order to determine the final score before
the ranking process.

Definition 9. Let α ∈ [0, 1], φo(ai ) is an optimistic score of ai and φp(ai ) is a pes-
simistic score of ai (showing how ai dominates all the other alternatives a′

i ∈ A), then the
overall score degree of ai denoted φ(ai ) is defined as follow:

φ(ai ) = αφo(ai ) + (1 − α)φp(ai ), ∀ai ∈ A. (22)

At the end, this composite ratio, α ∈ [0, 1] determines the final ranking of alternatives.
Moreover, it can be used as a sensitivity analysis to determine the stability level of the
proposed model. Next, in the subsequent section, the CIF-ELECTRE III model based on
several concepts proposed in this section is developed.

4. CIF-ELECTRE III Model for Group Decision Analysis

In this section, a novel CIF-ELECTRE III is presented. The framework of the proposed
model is demonstrated in Fig. 5. The algorithm of the CIF-ELECTRE III is detailed in the
following steps.

Step 1: Determine the list of potential alternatives, criteria, and actors to be imple-
mented in the developed model. Let A = {a1, a2, . . . , am} be a set of alternatives,
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Fig. 5. Framework of CIF-ELECTRE III.

F = {g1, g2, . . . , gn} be a set of criteria, and E = {e1, e2, . . . , ek} be a set of actors.
Note that, in this model, only the homogeneous case of group decision-making is pro-
posed where all actors are assumed to have equal degrees of importance.

Step 2: Generate the decision matrix Dh = [dh
ij ] for each actor Eh, h = 1, 2, . . . , k,

where dh
ij refers to the preference of actor for alternative ai , i = 1, 2, . . . , m with respect

to criterion gj , j = 1, 2, . . . , n. At this stage, each actor provides his/her preferences
using the predefined linguistic scale such as in Table 1(a). For the computational purpose,
the linguistic terms are directly converted to their associated IF values.
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Step 3: Calculate the CIF decision matrix D = [dij ]m×n (or group decision matrix) by
aggregating the decision matrix Dh of all actors with respect to each criterion gj . Note
that dij = 〈μij , νij ; rij 〉 is the CIF value constructed from IF values dh

ij = 〈mh
ij , n

h
ij 〉

using the Eqs. (6)–(8).

Step 4: Calculate the optimistic decision matrix Do = [do
ij ] and the pessimistic decision

matrix Dp = [dp
ij ], respectively using Eq. (16). This step focuses on transforming the

elements of group decision matrix from CIF values to IF values by considering not only
the membership and non-membership degrees, but also the radius r . The conditional rules
(Theorems 1–2) must be checked to guarantee that every element of matrix is confined
under the circular area.

Step 5: Calculate the deterministic form of optimistic decision matrix s(do
ij ) and pes-

simistic decision matrix s(d
p
ij ) using the score function such in Eq. (2). At the same time,

determine the indifferent (qj ), preference (pj ) and veto (vj ) thresholds for every crite-
rion gj . This also can be done by using the predefined linguistic scale in Table 1(a). Sim-
ilarly, generate the deterministic form for all the thresholds: indifferent s(qj ), preference
s(pj ), and veto s(vj ) using Eq. (2).

Step 6: Next, determine the weighting vector of criteria for each actor eh ∈ E using the
linguistic scale in Table 1(b). Similarly, obtain the group weighting vector W = [wj ]n×1

consisting of wj = 〈μj , νj ; rj 〉, j = 1, 2, . . . , n. The CIF values are constructed in the
similar way using the aggregated IF values dh

j = 〈mh
j , n

h
j 〉 in Eqs. (6)–(8).

Step 7: Calculate the optimistic weighting vector Wo = [wo
j ]n×1 and the pessimistic

weighting vector Wp = [wp
j ]n×1, respectively, from the CIF weighting vector W using

Eq. (17). Similarly, the conditional rule (Theorem 3) must be checked to guarantee that ev-
ery element of vector is confined under the circular area. Then, compute the deterministic
format of weighting vectors

...
Wo and

...
Wp using the following expressions:

...
Wo = [...wo

j ]n×1

for the optimistic weight, where
...
w

o
j = 1+s(wo

j )

2 and
...
Wp = (

...
w

p
j )n×1 for the pessimistic

weight, where
...
w

p
j = 1+s(w

p
j )

2 . Note that s(wo
j ) and s(w

p
j ) are score functions of optimistic

weight and pessimistic weight, respectively, that can be calculated using the Eq. (2).

Step 8: Construct the optimistic concordance index Co(ai , a
′
i ) and the pessimistic con-

cordance index Cp(ai , a
′
i ), based on the outranking degree cj (ai , a

′
i ) for every pair of

alternatives ai , a
′
i ∈ A under criterion gj ∈ F . This can be done using Eqs. (11)–(12).

Step 9: Determine the optimistic discordance index do
j (ai , a

′
i ) and pessimistic discordance

index d
p
j (ai , ai′) for each set of alternatives ai , a

′
i ∈ A under criterion gj ∈ F using

Eqs. (13)–(14).

Step 10: Compute the credibility matrix σ(ai , a
′
i ) for both optimistic and pessimistic

based on the degree of outranking using Eq. (15).

Step 11: Finally, calculate the net score degree (i.e. a composite ratio score) using Eq. (22),
where the optimistic score degree φo(ai ) and pessimistic score degree φp(ai ) are given
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as follows:

φo(ai ) = �a′
i∈A

[
σo

(
ai , a

′
i

) − σo
(
a′
i , ai

)]
, ∀a′

i ∈ A, (23)

φp(ai ) = �a′
i∈A

[
σp

(
ai , a

′
i

) − σp
(
a′
i , ai

)]
, ∀a′

i ∈ A. (24)

The net score degree φ(ai ) represents a value function, where a higher value reflects higher
attractiveness of the alternative ai ∈ A. This allows for a ranking of these options in
decreasing importance.

5. Numerical Example

As a case study of the stock-picking process, this section shows how the suggested strategy
was put into practice. Specifically, an investor intends to invest in one of the pre-screened
stocks in Bursa Malaysia (i.e. under the technology sector). To finalize the decision, a set
of criteria based on the fundamental analysis is considered for the further appraisal of
stocks, i.e. using the forward-looking scenario analysis. The details of the decision-making
process are demonstrated as follows.

Three financial analysts E = {e1, e2, e3} with a vast experience in investment un-
der the technology sector were selected to evaluate the five pre-screened stocks A =
{a1, a2, . . . , a5}. There were four criteria F = {g1, g2, g3, g4} under the consideration,
namely, market value of firm (g1), return on equity (g2), debt to equity (g3), and price per
earnings ratio (g4). In this instance, the importance of each analyst was made to be equal.

Initially, using the predetermined linguistic scale such in Table 1(a), each analyst was
asked to provide his/her preferences for all alternatives according to each criterion. The
decision matrix of the performance rating by analysts is shown in Table 2.

At this stage, the linguistic data provided by analysts are converted to their correspond-
ing IF values to compute the group decision matrix D = [dij ] (using Eqs. (6)–(8)). Ta-
ble 3 shows the group decision matrix or the aggregated judgment of analysts. Note that,

Table 1
Linguistic scale for (a) rating of alternatives and (b) weighting of criteria.

Linguistic terms IFVs for alternatives
m n

VVG/VVH 0.9 0.1
VG/VH 0.7775 0.0625
G/H 0.6775 0.1625
MG/MH 0.5775 0.2625
F/M 0.4775 0.3635
MB/ML 0.3775 0.4625
B/L 0.2188 0.5438
VB/VL 0.0688 0.6938
VVB/VVL 0.1 0.9

(a)

Linguistic terms IFVs for alternatives
m n

VI 0.9 0.1
I 0.5813 0.1058
M 0.3313 0.3563
U 0.1813 0.5063
VU 0.1 0.9

(b)
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Table 2
Linguistic decision matrix for each analyst.

Criteria Decision makers a1 a2 a3 a4 a5

g1 e1 VG MG VG F B
e2 VG G VG MB B
e3 G MG VG F B

g2 e1 VG VG MG MB B
e2 G VG G F F
e3 MG VG MG MG B

g3 e1 G F VG F F
e2 F G VVG MG MG
e3 G MG VG F MG

g4 e1 F G MG G F
e2 F VG VG F MG
e3 F G G F G

Table 3
Group decision matrix D.

g1 g2 g3 g4

a1 (0.744, 0.096; 0.094) (0.678, 0.163; 0.141) (0.611, 0.229; 0.189) (0.478, 0.363; 0)

a2 (0.611, 0.229; 0.094) (0.778, 0.063; 0) (0.578, 0.263; 0.141) (0.711, 0.129; 0.094)

a3 (0.778, 0.063; 0) (0.611, 0.229; 0.094) (0.778, 0.063; 0) (0.678, 0.163; 0.141)

a4 (0.444, 0.396; 0.094) (0.478, 0.363; 0.141) (0.511, 0.329; 0.094) (0.544, 0.296; 0.189)

a5 (0.219, 0.544; 0) (0.305, 0.483; 0.211) (0.544, 0.296; 0.094) (0.578, 0.263; 0.141)

Table 4
Optimistic decision matrix, Do and Pessimistic decision matrix, Dp .

Optimistic decision matrix, Do Pessimistic decision matrix, Dp

g1 g2 g3 g4 g1 g2 g3 g4

a1 (0.811, 0.029) (0.778, 0.063) (0.744, 0.096) (0.478, 0.363) (0.678, 0.163) (0.578, 0.263) (0.478, 0.363) (0.478, 0.363)

a2 (0.678, 0.163) (0.778, 0.063) (0.678, 0.163) (0.778, 0.063) (0.544, 0.296) (0.778, 0.063) (0.478, 0.363) (0.644, 0.196)

a3 (0.778, 0.063) (0.678, 0.163) (0.778, 0.063) (0.778, 0.063) (0.778, 0.063) (0.544, 0.296) (0.778, 0.063) (0.578, 0.263)

a4 (0.515, 0.329) (0.578, 0.263) (0.578, 0.263) (0.678, 0.163) (0.378, 0.463) (0.378, 0.463) (0.444, 0.396) (0.411, 0.429)

a5 (0.219, 0.544) (0.454, 0.334) (0.611, 0.229) (0.678, 0.163) (0.219, 0.544) (0.156, 0.632) (0.478, 0.363) (0.478, 0.363)

dij = 〈μij , νij ; rij 〉 is the CIF value constructed from IF value, dh
ij = 〈mh

ij , n
h
ij 〉, for

h = 1, 2, 3.
From the group decision matrix (Table 3), Do and Dp can be formed using Eq. (17).

These two decision matrices are shown in the Tables 4. The analysts also were requested
to determine the (q, p, v) tresholds to set the limits that need to be applied to the rating.
Instead of individually determined, these were subjected to the consensus among analysts
(see Table 5). Then, the deterministic format of optimistic and pessimistic decision ma-
trices, as well as the tresholds, can be generated as shown in Table 6. Next, determine
the group weighting vector of criteria, W based on preferences by analysts (see Table 7).
The linguistic scale, such as in Table 1(b), was used for this purpose. Following the same
procedure (Eqs. (6)–(8) and Eq. (18)), two weighting vectors can be obtained, namely,
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Table 5
Indifferent, preference and veto thresholds.

g1 g2 g3 g4

q L L M M
p MH ML MH H
v VH H VH VH

Table 6
Deterministic format of optimistic-pessimistic decision matrix and thresholds.

s(do
ij

) s(d
p
ij

)

g1 g2 g3 g4 g1 g2 g3 g4

a1 0.782 0.715 0.648 0.115 0.515 0.315 0.115 0.115
a2 0.515 0.715 0.515 0.715 0.248 0.715 0.115 0.448
a3 0.715 0.515 0.715 0.715 0.715 0.248 0.715 0.315
a4 0.191 0.347 0.315 0.515 −0.085 −0.085 0.048 −0.018
a5 −0.325 0.120 0.382 0.515 −0.325 −0.476 0.115 0.115
q −0.325 −0.325 0.115 0.115 −0.325 −0.325 0.115 0.115
p 0.315 −0.085 0.315 0.515 0.315 −0.085 0.315 0.515
v 0.715 0.515 0.715 0.715 0.715 0.515 0.715 0.715

Table 7
Linguistic preferences for criteria weights

provided by analysts.

g1 g2 g3 g4

e1 VI I I U
e2 VI I M M
e3 I I I U

Table 8
Optimistic weight and pessimistic weight for criteria.

g1 g2 g3 g4

wj (0.794,0.102;0.213) (0.581,0.106;0) (0.498,0.189;0.236) (0.231,0.456;0.141)
wo

j
(0.98,0) (0.581,0.106) (0.665,0.02) (0.33,0.355)

w
p
j

(0.643,0.252) (0.581,0.106) (0.331,0.356) (0.131,0.556)
...
Wo 0.99 0.738 0.821 0.487
...
Wp 0.696 0.738 0.488 0.287

the optimistic weighting vector Wo and the pessimistic weighting vector Wp. Then, the
deterministic format of both optimistic and pessimistic weighting vectors,

...
Wo and

...
Wp,

can be obtained using Eq. (2), as shown in the Table 8.
After that, determine the optimistic concordance index Co(ai , a

′
i ) and pessimistic con-

cordance index Cp(ai , a
′
i ) using Eqs. (11)–(12). Similarly, calculate the discordance in-

dices for both optimistic and pessimistic decision matrices using Eqs. (13)–(14). The re-
sults are provided in Tables 9–11, respectively. Then, the comparisons between the con-
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Table 9
Optimistic and pessimistic concordance indices.

Co(a, a′) a1 a2 a3 a4 a5 Cp(a, a′) a1 a2 a3 a4 a5

a1 1 0.567 0.581 0.886 0.886 a1 1 0.566 0.159 1 1
a2 0.431 1 0.491 1 1 a2 0.709 1 0.464 1 1
a3 0.557 0.693 1 0.873 1 a3 0.604 0.66 1 1 1
a4 0.161 0.282 0.126 1 0.869 a4 0.345 0.236 0.059 1 0.952
a5 0.226 0.372 0.126 0.431 1 a5 0.351 0.280 0.103 0.388 1

Table 10
Optimistic discordance indices for each criterion.

Criteria 1 Criteria 2 Criteria 3 Criteria 4
a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

a1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0.425 0.425 0 0
a2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
a3 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
a4 0.713 0.046 0.546 1 0 0.713 0.046 0.546 1 0 0.046 0 0.213 1 0 0 0 0 1 0
a5 1 1 1 0.479 1 1 1 1 0.479 1 0 0 0.046 0 1 0 0 0 0 1

Table 11
Pessimistic discordance indices for each criterion.

Criteria 1 Criteria 2 Criteria 3 Criteria 4
a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

1 0 0 0 0 1 0.808 0.059 0 0 1 0 0.713 0 0 1 0 0 0 0
0 1 0.379 0 0 0 1 0 0 0 0 1 0.713 0 0 0 1 0 0 0
0 0 1 0 0 0.253 0.919 1 0 0 0 0 1 0 0 0 0 1 0 0
0.713 0.046 1 1 0 0.808 1 0.697 1 0 0 0 0.879 1 0 0 0 0 1 0
1 0.646 1 0 1 1 1 1 0.794 1 0 0 0.713 0 1 0 0 0 0 1

cordance and discordance indices are conducted, and the credibility index σ(ai , a
′
i ) can be

determined using Eq. (15). The value of σ(ai , a
′
i ) = 1 means that the concordance value

is greater than any discordance value for each criterion, such that C(ai , a
′
i ) � dj (ai , a

′
i )

for j ∈ F . While, if σ(ai , a
′
i ) = 0, then there is a case where discordance value on a cri-

terion is greater than the concordance value. Next, the credibility matrices for optimistic
σo(ai , a

′
i ) and pessimistic σp(ai , a

′
i ) are shown in Table 12. In the final step, by using

α = 0.5, the final ranking of alternatives can be generated, and the result is displayed in
Table 13.

Based on the result, the first ranking is stock, a3 followed by a2, a1, a4, and a5, respec-
tively. Stock a3 is ranked first due to the highest score which is 2.22 compared to the other
alternatives and this indicates that it is a good stock to invest.

6. Sensitivity and Comparative Analyses

To check the robustness and stability of the proposed model, some sensitivity analyses,
as well as a comparison analysis are carried out. These analyses are conducted to analyse
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Table 12
The credibility index for (a) optimistic and (b) pessimistic.

σo a1 a2 a3 a4 a5

a1 1 0.567 0.587 0.887 0.886
a2 0.431 1 0.491 1 1
a3 0.557 0.693 1 0.873 1
a4 0.013 0.075 0.036 1 0.869
a5 0 0 0 0.369 1

σp a1 a2 a3 a4 a5

a1 1 0.25 0.054 1 1
a2 0.709 1 0.289 1 1
a3 0.604 0.156 1 1 1
a4 0.044 0 0 1 0.952
a5 0 0 0 0.131 1

(a) (b)

Table 13
Final ranking and score.

Alternatives Score Rank

a1 1.43 3
a2 2.09 2
a3 2.22 1
a4 −2.14 4
a5 −3.60 5

Table 14
The score alternatives with different α.

Degree of optimisitic attitude (α)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a1 0.95 1.04 1.14 1.24 1.34 1.43 1.53 1.63 1.72 1.82 1.92
a2 2.59 2.49 2.39 2.29 2.19 2.09 1.99 1.89 1.79 1.69 1.59
a3 2.42 2.38 2.34 2.40 2.26 2.22 2.18 2.14 2.10 2.06 2.02
a4 −2.13 −2.13 −2.13 −2.13 −2.13 −2.14 −2.14 −2.14 −2.14 −2.14 −2.14
a5 −3.82 −3.78 −3.73 −3.69 −3.65 −3.60 −3.56 −3.52 −3.47 −3.43 −3.39

various scenarios that might amend the result of the proposed model. First, a sensitivity
analysis with respect to α-value is conducted for α ∈ [0, 1]. This value represents a ratio of
combined decision for the attitudinal character of analysts (as a group), ranging from op-
timistic to pessimistic attitudes. Based on Eq. (22), the closer α to 1, the more optimist the
analysts toward sureness or validity of membership degrees compared to non-membership
degrees as the source of preferences. The result of this analysis with respect to α-values
can be seen in Table 14 and Fig. 6.

In Table 14 and Fig. 6 below, it can be noticed that the ranking for top three alternatives
is slightly reversed for α ∈ [0, 1], but the rest of the alternatives are consistent. For exam-
ple, a2 � a3 � a1 � a4 � a5 for α → 0 (or toward pessimistic attitude). While for α → 1
(or toward optimistic attitude), the ranking is a3 � a1 � a2 � a4 � a5. However, it can
be observed that a2 is dominated by a3 for α > 0.2. Hence, this analysis justifies a3 as the
best alternative. Moreover, to further validate this result, another sensitivity analyses with
respect to criteria weights and thresholds are conducted (see Fig. 7). As can be noticed,
a3 and a2 still ranked as the best alternatives. Nevertheless, a3 dominates a2 in most of
the cases. To conclude, a change in α-value influences the score of alternatives, but this
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Fig. 6. Result of CIF-ELECTRE III.

Fig. 7. Sensitivity analysis of CIF-ELECTRE III based on (a) criteria weights and (b) thresholds.

does not contribute to major changes in the rankings. However, the inclusion of α-value
is significant to model the attitudinal character of group and to provide a vast analysis of
different scenarios before making a final decision.

Furthermore, we compare the ranking results of our proposed model with ELECTRE
III under two different sets: IF-ELECTRE III and IVIF-ELECTRE III (Hashemi et al.,
2016). Additionally, we conduct a comparison with CIF-TOPSIS (Kahraman and Alkan,
2021).

In Table 15, it is evident that a3 maintains its top ranking across all the compared
models, followed by either a1 or a2. The only variation occurs in the pessimistic sce-
nario, where a2 attains the top rank in our proposed model (i.e. α � 2). This suggests
that employing CIFS in ELECTRE III offers a justifiable approach and introduces a fresh
perspective to modelling multi-criteria and multi-actor decision-making problems.
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Table 15
Comparison of ELECTRE III under different sets and CIF-TOPSIS.

Model Information Ranking

Proposed model α = 0.1 a2 � a3 � a1 � a4 � a5
α = 0.5 a3 � a2 � a1 � a4 � a5
α = 0.9 a3 � a1 � a2 � a4 � a5

IF-ELECTRE III – a3 � a2 � a1 � a4 � a5

IVIF-ELECTRE III – a3 � a1 � a2 � a4 � a5

CIF-TOPSIS α = 0.1 a3 � a2 � a1 � a5 � a4
α = 0.5 a3 � a2 � a1 � a4 � a5
α = 0.9 a3 � a1 � a2 � a4 � a5

Table 16
Tranquillity measures on CIF-TOPSIS and CIF-ELECTRE III for α ∈ [0, 1].

T (D,A) α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1

CIF-TOPSIS 0.2649 0.2714 0.2778 0.2843 0.2907 0.2937 0.2946 0.2913 0.2879 0.2846 0.2812
CIF-ELECTRE III 0.3676 0.3589 0.3498 0.3417 0.3437 0.3457 0.3478 0.3500 0.3522 0.3463 0.3363

Moreover, for a more in-depth analysis of the effect of the final decision concerning the
optimistic and pessimistic attitudes, we apply the tranquillity measure proposed by Yager
(1982) using the following formula:

T (D,A) =
∫ γmax

0

1

CardDγ

dγ, T (D,A) ∈ [0, 1],

where γmax is the maximal grade of membership of any element of A in D and CardDγ is
the cardinality of the γ -level set of D. This function demonstrates the degree of tranquil-
lity or confidence it provides when selecting the best alternative. Specifically, the closer
T (D,A) to one, the higher the confidence in selecting the best alternative, while the closer
it is to zero, the more anxiety there may be in choosing the best alternative, especially when
there is small difference between alternatives or a tie. This analysis exclusively compares
the results of CIF-TOPSIS and CIF-ELECTRE III. To do so, we conduct a normalization
process for the final ranking in both models, specifically using linear scale transformation
to convert the results to the unit interval [0,1]. The comparison of tranquillity values for
the CIF-TOPSIS and CIF-ELECTRE III models is given in Table 16.

As shown in Table 16, the tranquillity measures for CIF-ELECTRE III consistently
yield higher values compared to CIF-TOPSIS across all the specified α values. This
demonstrates that the decisions made with CIF-ELECTRE III are associated with a better
psychological ease or confidence when selecting the best alternative.

7. Conclusion

In this paper, we propose an extension of the ELECTRE III model within the context of
the CIFS environment for group decision analysis. We introduce several extensions to the
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group decision matrix (referred to as the CIF decision matrix) and the group weighting
vector (referred to as the CIF weighting vector). These extensions specifically address
CIFS conditions, focusing on optimistic and pessimistic attitudes. We construct these atti-
tudinal attributes based on a set of conditional rules, ensuring that every element remains
confined within a circular area defined by a radius r . We also introduce the concept of the
net score degree, which serves as a unified formulation incorporating both optimistic and
pessimistic scores for ranking alternatives. The net score degree is based on the parameter
α ∈ [0, 1], enabling a comprehensive analysis of group decision-making, considering both
optimistic and pessimistic attitudes. To illustrate the applicability of the CIF-ELECTRE
model, we provide a numerical example involving the stock-picking process. We conduct
sensitivity analyses, considering variations in α-value, criteria weights, and thresholds,
to validate the results of our proposed model. Furthermore, we perform a comparative
analysis with ELECTRE III under IFS and IVIFS environments, as well as CIF-TOPSIS.
In summary, our proposed model offers flexibility in data representation within the CIFS
framework, allowing for the incorporation of a group of actors’ attitudes to address com-
plex decision-making challenges.

However, our model has certain limitations and room for future development. Firstly,
the model currently represents the attitudinal character of the entire group and does not
account for individual actor attitudes. Secondly, it focuses exclusively on homogeneous
group decision-making scenarios. Thirdly, in this model, CIF data is simplified to IF data
for computational convenience. Future work could involve addressing individual actor atti-
tudinal characteristics separately, accommodating heterogeneous group decision-making,
and developing an algorithm that does not require converting CIF information to IF values.
Lastly, it is essential to note that this study primarily deals with a simplified case involv-
ing a small group of just three experts. Discrepancies in final rankings may arise in large-
scale group decision-making (LS-GDM) and more complex decision-making scenarios.
Therefore, further application and analysis of our proposed method under LS-GDM are
warranted.
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