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Abstract. In this paper, we introduce a novel Model Based Foggy Image Enhancement using
Levenberg-Marquardt non-linear estimation (MBFIELM). It presents a solution for enhancing im-
age quality that has been compromised by homogeneous fog. Given an observation set represented
by a foggy image, it is desired to estimate an analytical function dependent on adjustable vari-
ables that best cross the data in order to approximate them. A cost function is used to measure how
the estimated function fits the observation set. Here, we use the Levenberg-Marquardt algorithm,
a combination of the Gradient descent and the Gauss-Newton method, to optimize the non-linear
cost function. An inverse transformation will result in an enhanced image. Both visual assessments
and quantitative assessments, the latter utilizing a quality defogged image measure introduced by
Liu et al. (2020), are highlighted in the experimental results section. The efficacy of MBFIELM
is substantiated by metrics comparable to those of recognized algorithms like Artificial Multiple
Exposure Fusion (AMEF), DehazeNet (a trainable end-to-end system), and Dark Channel Prior
(DCP). There exist instances where the performance indices of AMEF exceed those of our model,
yet there are situations where MBFIELM asserts superiority, outperforming these standard-bearers
in algorithmic efficacy.
Key words: least squares problem, Levenberg-Marquardt, foggy images, image enhancement.

1. Introduction

Systems of nonlinear equations appear in the mathematical modelling of applications in
the fields of physics, mechanics, chemistry, biology, computer science and applied math-
ematics.

Newton method is used for solving systems of nonlinear equations when the Jacobian
matrix is Lipschitz continuous and nonsingular. The method is not well defined when the
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Jacobian matrix is singular. Levenberg-Marquardt algorithm was proposed to solve this
problem, by introducing a regularization variable var which switches between the Gra-
dient Descent method and the Gauss-Newton method under the condition of evaluating
a cost function. The difficulty of applying the Levenberg-Marquardt algorithm, in order
to be efficient for a large number of applications, lies in determining a strategy for cal-
culating the regularization variable at each iteration step. Thus, numerous solutions have
been proposed for this calculation by: Musa et al. (2017), Karas et al. (2016), Umar et
al. (2021). Ahookhosh Masoud implements an adaptive variable var and studies the lo-
cal convergence under Holder metric subregularity of the function defining the equation
and Holder continuity of its gradient mapping (Masoud et al., 2019). He also evaluates
the convergence under the assumption that the Lojasiewicz gradient inequality is valid.
Liang Chen proposes a new Levenberg-Marquardt method by introducing a novel choice
of the regularization variable var, incorporating an extended domain for its exponent coef-
ficient (Chen and Ma, 2023). He provides evidence that the new algorithm exhibits either
superlinear or quadratic convergence, depending on the value of the exponent coefficient.

When the number of equations is very large, solving the identified least-square problem
requires considerable resources, resulting in possible measurement redundancies. These
realities lead us to conclude that an accurate assessment of the cost function and the gra-
dient is not necessary to get the result of the problem. Jinyan Fan proposes a Levenberg-
Marquardt algorithm using the trust region technique, where at each iteration an ap-
proximate step is calculated in addition to the step towards the minimum of the func-
tion (Fan, 2012). The algorithm proposed by Stefania Bellavia is based on a control of
the level of accuracy for the cost function and the gradient, increasing the approximation
values when the accuracy is too low to continue the optimization (Bellavia et al., 2018).

Fog is a suspension of water droplets or ice crystals in the air. These particles are
generally less than 50 microns in diameter and reduce visibility due to light scattering
to less than 1 km. In the literature, the atmospheric propagation and the distribution of
particles participating at effects such as light scattering corresponds to an atmospheric
model. Intense research efforts are currently being developed to improve the possibility
of detecting objects through fog. Kaiming He developed an algorithm predicated on the
concept of dark channel prior (DCP) to mitigate the effects of fog (He et al., 2011). His
observation elucidated that the majority of local patches in fog-free outdoor images en-
capsulate pixels exhibiting minimal intensity within at least one colour channel. In the
context of foggy images, these low-intensity pixels serve as accurate estimators of light
transmission. By implementing an atmospheric scattering model alongside a soft mat-
ting interpolation methodology, the image is defogged and restored to its original clarity.
Kyungil Kim proposes an image enhancement technique for fog-affected indoor and out-
door images combining dark channel prior (DCP), contrast limited adaptive histogram
equalization and discrete wavelet transform. Their algorithm employs a modified trans-
mission map to increase processing speed (Kim et al., 2018). Sejal and Mitul (2014) pro-
vide the results of enhancement algorithms based on homomorphic filtering (emphasizes
contours and reduces the influence of low-frequency components such as airlight), re-
spectively, on a method with a mask and local histogram equalization. A comprehensive
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study of existing enhancement algorithms for images acquired in fog is described by Xu
et al. (2016). He also addresses the processing of image sequences acquired under the
same bad weather conditions. Bolun Cai develops DehazeNet, a trainable system based
on convolutional neural networks (CNNs), whose layers are designed to incorporate as-
sumptions made in image dehazing. The algorithm takes in a foggy image and estimates
the transmission map of the environment, which is used for reconstructing the defogged
image using the mentioned arithmetic fog model (Cai et al., 2016). Adrian Galdran im-
plements an image defogging method that eliminates degradation without requiring the
model of the fog. The foggy image is first artificially underexposed through a sequence
of gamma correction operations. The resulting images contain regions of increased con-
trast and saturation. A Laplacian multiscale fusion scheme gathers the areas of the highest
quality from each image and combines them into a single fog-free image (Galdran, 2018).
Boyun Li introduced the “You Only Look Yourself” algorithm, an unsupervised and un-
trained neural network. It utilizes three subnetworks to decompose the foggy image into
three layers: scene radiance, transmission map, and atmospheric light. These individual
layers are then merged in a self-supervised manner, eliminating the time-consuming data
acquisition and image dehazing is done only based on the observed foggy image (Li et al.,
2021).

The aim of our work is the enhancing visibility when fog reduces it. The method
we propose uses a non-linear parametric model based on the extinction coefficient of
the atmosphere and the sky light intensity. Both parameters are estimated thanks to the
Levenberg-Marquard algorithm. An inverse transformation is applied to measured data
(observations) to reconstruct the clear image. We described in Section 2 the “least squares
problem” that determines an analytic function that traverses as well as possible a set of
observations. Section 3 describes the Levenberg-Marquardt algorithm we use to estimate
the components of the vector of unknown parameters of a model describing the process
under analysis. The mathematical model for the acquisition process of homogeneous fog
time images is described in Section 4, a more complex approach is given in Curilă et al.
(2020). In Section 5 we propose an algorithm for improving fog degraded images (using
simulated foggy images). Experimental results are presented in Section 6 and Section 7
presents discussions on the proposed method and the obtained results.

2. Non-Linear Least Squares Problem

Data modelling is an interpolation between some observations that belong to a continu-
ous function, while the other observations approach the function with a certain tolerance
(see Fig. 1). A model that has the parameters pi , i = 1, . . . , K and which fits a Luv

observations, u = 1, . . . , N , v = 1, . . . ,M , provides an analytical function:

L(u, v; p), p = [p1 . . . pK ], (1)

whose variables p are adjustable. Here, we consider that L(u, v; p) depends non-linearly
on the components of the vector p.
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Fig. 1. The set of observations Luv (represented by O) and the model’s analytical function L(u, v; p) (repre-
sented by a solid gray line).

The least squares problem’s scope is to estimate a mathematical model that fits a set
of observations using the cost function minimization given by the sum of the squares
of the errors between the data set and the model’s analytical function. The optimization
algorithm is iterative because, as we mentioned, the model is non-linear in its parameters.
At each step the parameters are modified to obtain a minimum of the cost function.

As the data is in most cases affected by noise, measurement errors are generated in the
fitting process referred to as residues. Thus, for a fixed value of the vector p at a given
time, the residues will be estimated as follows

χuv = Luv − L(u, v; p). (2)

The objective is to find pmin, where the cost function χ2(p), given by the second-order
norm of the residues ‖χuv‖2, will take the minimum value.

χ2(p) = 1

2

N∑
u=1

M∑
v=1

(
Luv − L(u, v; p1, . . . , pK)

)2
. (3)

With a certain number of Luv observations and a model that provides an analytical
function that fits them, there are parameters for which the fitting is very well made (those
parameters are unique), and for other parameter values the model’s analytical function
L(u, v; p) does not resemble the data at all.

Starting with an initial value of the vector p, we will implement an optimization algo-
rithm that will adapt p by a difference �p until the procedure stops based on predetermined
constraints described below.

3. Optimization Algorithm

Using the established values of the parameters, the non-linear optimization algorithm de-
termines step by step a series of values of p that converge towards a pmin corresponding
to the minimum of the cost function χ2(p) (Musa et al., 2017; Karas et al., 2016).



Levenberg-Marquardt Algorithm Applied for Foggy Image Enhancement 51

Fig. 2. Moving on the slope to the minimize function (low slope, respectively high slope).

From the Taylor series, the cost function is approximated by a polynomial that has a
value very close to that of the function in a specified neighbourhood:

χ2(p) = χ2(p0) +
K∑

i=1

∂χ2

∂pi

∣∣∣∣
p=p0

(p − p0)

+ 1

2

K∑
i=1

K∑
j=1

∂2χ2

∂pi∂pj

∣∣∣∣
p=p0

(p − p0)
2 + . . .

≈ χ2(p0) + ∇χ2(p0)(p − p0) + 1

2
(p − p0)

T ∇2χ2(p0)(p − p0). (4)

In the above equation the vector ∇χ2(p0) is called the Gradient at p = p0 and the
matrix ∇2χ2(p0) is the Hessian matrix at p = p0. In our approach, we will assume that
the cost function is described by a parabola in the neighbourhood of its minimum value.

3.1. Gradient Descent Method

The gradient descent method finds the minima of a function. The essence of the method
is to move one step at a time on the slope to the function that we minimize. In each step
the parameters of the cost function are updated by the following relation:

pi+1 = pi − var · ∇χ2(pi ). (5)

The var coefficient is chosen so that the moving �p = pi+1−pi leads to the maximum
decrease of the minimization function.

In order to reach the minimum of the cost function, large steps must be taken in the area
where the slope is low and small steps where the slope is high (see Fig. 2). But in relation
to (5) the calculation is inverse to this principle, generating convergence difficulties.

3.2. Gauss-Newton Method

The Gauss-Newton method achieves a safe convergence appealing to the second-order
derivative. Using the Taylor series development in the neighbourhood of the current value
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pi for the cost function, Gauss-Newton’s method calculates the gradient of the function
as follows:

∇χ2(p) = ∇χ2(pi ) + (p − pi )
T ∇2χ2(pi ) + . . . (6)

The Gradient vector is zero when the function reaches a minimum (∇χ2(p) = 0). As
we mentioned χ2(p) is described by a parabola in the neighbourhood of its minimum, so
high order terms in Eq. (6) are neglected and the retained expression is zero. Thus, solving
the equation ∇χ2(p) = 0 in a single step determines the parameters pmin corresponding
to the minimum of the cost function.

Finding the solution pmin becomes difficult for non-quadratic functions due to the com-
plexity of the calculation for the Hessian matrix and the high-order terms. Because of the
overlooked values made in the Taylor series development, the calculated corrections no
longer ensure the complete displacement from the pi approximation to the exact solution
pmin, but to its new approximation. Therefore, the parameters update relation in Gauss-
Newton’s method is the following:

pi+1 = pi − (∇2χ2(pi )
)−1 · ∇χ2(pi ). (7)

On the other hand, the identity matrix can be used to estimate the Hessian matrix
((∇2χ2(pi ))

−1 = I ), thus obtaining the quasi-Gauss-Newton method:

pi+1 = pi − var · I · ∇χ2(pi ), var ∈ (0, 1). (8)

Eqs. (5) and (7) require the calculation of the gradient of the cost function, moreover,
Eq. (7) involves the calculation of the Hessian matrix. Both the calculations of the gradi-
ent vector and of the Hessian matrix of the χ2(p) are feasible, the model function being
known.

The Gradient vector of the cost function has the following components:

∂χ2

∂pi

= −
N∑

u=1

M∑
v=1

(
Luv − L(u, v; p1, . . . , pK)

) · ∂L(u, v; p1, . . . , pK)

∂pi

,

i = 1, . . . , K. (9)

Next, we calculate the components of the Hessian matrix:

∂2χ2

∂pi∂pj

=
N∑

u=1

M∑
v=1

[
∂L(u, v; p1, . . . , pK)

∂pi

· ∂L(u, v; p1, . . . , pK)

∂pj

− (
Luv − L(u, v; p1, . . . , pK)

) · ∂2L(u, v; p1, . . . , pK)

∂pi∂pj

]
,

i, j = 1, . . . , K. (10)
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The approximation used in Eq. (10) is linearity of the (Luv − L(u, v; p)) so that
∂2L(u,v;p1,...,pK)

∂pi∂pj
are small. The term [Luv − L(u, v; p1, . . . , pK)] · ∂2L(u,v;p1,...,pK)

∂pi∂pj
is

generally uncorrelated to the model and can be a destabilizing factor if the fitting is poor
or if there are observations that do not belong to the model’s analytical function. This term
is eliminated compared to the first term that uses the first derivative, and the components
of the Hessian matrix are given by:

∂2χ2

∂pi∂pj

=
N∑

u=1

M∑
v=1

[
∂L(u, v; p1, . . . , pK)

∂pi

· ∂L(u, v; p1, . . . , pK)

∂pj

]
,

i, j = 1, . . . , K. (11)

This operation does not affect the vector pmin corresponding to the minimum value of
the cost function, but only occurs on the way to reach that minimum.

The next iterative algorithm will generally use the Gauss-Newton method, the Gradi-
ent Descent method being used only when Eq. (7) does not ameliorate the fit, noting an
erroneous quadratic polynomial approximation in Eq. (4).

3.3. Levenberg-Marquardt Algorithm

Depending on the value of the variable var, the Levenberg-Marquardt algorithm (L-M)
utilizes in the optimization process either the Gradient Descent method or the Gauss-
Newton method (Umar et al., 2021). If the cost function decreases from one step to the
next one, a correct quadratic approximation is used in Eq. (4) and we will reduce the
value of the variable var by a factor of 10 to reduce the input of the Gradient Descent
method. Otherwise, if the cost function increases from one step to the next one, we are far
from the minimum, and therefore the function should not be approximated by a parabola,
requiring a large input of the Gradient Descent method by increasing 10 time the value of
the variable var.

pi+1 = pi − (∇2χ2(pi ) + var · I)−1 · ∇χ2(pi ). (12)

Starting with initial values assigned to unknown parameters, the algorithm will follow
the next steps:

Step 0. With pi = p0, evaluate χ2(pi ) from Eq. (3);
Step 1. Initialize var = 10−3;
Step 2. Calculate pi+1 from Eq. (12) and evaluate χ2(pi+1);
Step 3. If χ2(pi+1) � χ2(pi ), increase the value of the variable var by a factor of 10 and

go to Step 2;
Step 4. If χ2(pi+1) < χ2(pi ), reduce the value of the variable var by 10, update the pi

parameters by values pi+1 and go to Step 2.

Predetermined constraints
If one of the following conditions is met, the iterative algorithm will stop:
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1. Gradient convergence, the gradient of the cost function decreases below a pre-
established threshold: ∇χ2(pi ) < ε1;

2. Convergence of the parameters, the parameter updates become very small: |pi+1 −
pi | < ε2;

3. Cost function convergence, when it has reached a certain threshold: χ2(pi+1) < ε3;
4. The number of iterations is greater than an established limit MaxIterations.

4. A Mathematical Model for Fog

It is assumed that a collimated beam of light with a unitary cross-section traverses the
dispersive environment of thickness dz (fog dispersion, see Fig. 3) (Curilă et al., 2020).
The radiative transfer through fog is expressed by Schwarzschild’s equation as follows:

dLλ = −βλ · Lλ(z)dz + βλ · LSλdz, (13)

where Lλ(z) is the intensity of radiation, βλ is the extinction coefficient of the atmosphere
and LSλ is the sky light intensity.

The fractional change in intensity of radiation, the first term of Eq. (13), expresses a
relationship between the light intensity and the properties of the dispersive environment.

As represented in the radiative transfer scheme, the aerosol particles capture the sky
light and radiate it back in all directions. Some of the scattered light passes into the direct
transmission path and raises the pixel intensity value acquired by the camera. Taking into
account the increase (z, z + dz) of the direct transmission path, the fractional change in
the radiation intensity due to the scattering of sky light is given by the second term of
Eq. (13). This process, the emission of thermal radiation via the direct transmission path,
is typically called airlight. When the distance in the z-direction grows, the minus sign in
the above equation denotes a reduction in Lλ(z), while the plus points to an increase.

Our approach uses a linear first-order Eq. (13) whose solution was presented in Sokolik
(2021). This results in the following mathematical model of the image acquisition during

Fig. 3. Radiative transfer scheme.
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Fig. 4. The distance maps for the three aforementioned images, which are included in the test dataset.

homogeneous fog, which includes both object radiation attenuation and atmospheric veil
superposition:

Lλ

(
M(u, v)

) = Lλ

(
O(X, Y,Z)

) · e−βλd(u,v) + LSλ

(
1 − e−βλd(u,v)

)
, (14)

where Lλ(M(u, v)) is the intensity of the pixel, Lλ(O(X, Y,Z)) is the radiant intensity
of corresponding point on the scene, d(u, v) is the distance map, βλ is the extinction co-
efficient and LSλ is the sky light intensity both mentioned above, and LSλ(1− e−βλd(u,v))

is the atmospheric veil.
The distance map expresses the distances between the camera and the points on the

scene. This matrix recording was obtained by: a) FRIDA image database (as the first one
in Fig. 4) (Tarel et al., 2010); b) using approximate measurements and perspective pro-
jection system for real images (the other two distance maps in the same figure). Real-life
atmospheric impressions are simulated by choosing the type of fog and adding an atmo-
spheric veil by suitably establishing the local distances. Next, we present distance maps
for LIMA-000011, ship and bridge images (Curilă et al., 2020; Tarel et al., 2010).

5. Model Based Foggy Image Enhancement Using L-M (MBFIELM)

The algorithm we propose in this section relies on applying an inverse transformation to
the degradation process during fog time image acquisition in order to obtain an enhanced
image. We use the mathematical model described in Section 4 to estimate an analytic
function that best approximates an image acquired in foggy conditions. We avoid arriv-
ing at an indeterminate problem, where the number of data is less than the number of
unknowns, by setting the unknown parameters: μλ the mean of the radiant intensities of
the scene points, βλ the extinction coefficient of the atmosphere and LSλ the sky light in-
tensity (p =[μλ βλ LSλ]). In this way, the following pseudo-model is generated for foggy
images:

L(u, v; p1, p2, p3) = μλ · e−βλd(u,v) + LSλ

(
1 − e−βλd(u,v)

)
, (15)

where p1 = μλ, p2 = βλ, p3 = LSλ, μλ = mean(Lλ(O(X, Y,Z))).
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The optimization algorithm that will estimate the pseudo-model L(u, v; p1, p2, p3)

parameters is Levenberg-Marquardt (see Section 3.3).
We have the following description of the cost function that is minimized to determine

the parameter vector pmin = [μλ min βλ min LSλ min]:

χ2(p) = 1

2

N∑
u=1

M∑
v=1

(
Luv − μλ · e−βλd(u,v) − LSλ

(
1 − e−βλd(u,v)

))2
. (16)

The estimated parameter μλ min is not used in the degraded image enhancement equa-
tion, it only provides information about the mean of the radiant intensities of the scene. The
enhanced image is determined by the following equation, applicable to each wavelength
(red, green, blue):

Lλ enhanced(u, v) = Luv − LSλ min(1 − e−βλ mind(u,v))

e−βλ mind(u,v)
. (17)

6. Experimental Results

We validate the proposed algorithm using a dataset of sixteen simulated foggy images.
Testing on real images would have meant having the set of reference images L0 acquired
in the absence of the dispersive environment (fog), the set of images acquired in foggy
conditions Lfog_real and the corresponding set of distance maps d . The three data matrices,
corresponding to an image enhancement, must be synchronized (for each pixel that records
a point in the scene in the L0 matrix, there must be a pixel that records the same point
in the scene in the presence of fog in the Lfog_real matrix and in the d matrix we should
find the distance between the camera and the point in the scene – with no offsets present).
This synchronization requires a camera attached to a tripod that is not moved until both
the reference image L0 and the foggy image Lfog_real are acquired. The duration of the
capture of the two moments can be very long. Furthermore, to test the robustness of the
algorithm we should have made these pairs of acquisitions (reference image, foggy image)
in different locations to capture different scenes while also ensuring that the distance map
is synchronized.

Therefore, at this point, we are left with the quick solution of testing the enhancement
algorithm on images with the presence of simulated fog Lfog_simul using the mathematical
model in Eq. (14) and the corresponding real reference image L0. The set of Luv obser-
vations is determined by the simulated Lfog_simul image based on the reference image L0

and the parameters βred, LS red, βgreen, LS green, βblue, LS blue:

Luv = Lfog_simul. (18)

We applied the Levenberg-Marquardt optimization algorithm on the dataset of sixteen
test images, a representative selection of which are evaluated here. We worked on each
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Table 1

Image Parameters used in the simulation Estimated parameters
Red Green Blue Red Green Blue

LIma11 L0 r L0 g L0 b μr min = 92.4392 μg min = 93.8712 μb min = 84.3013
βr = 0.3 βg = 0.3 βb = 0.3 βr min = 0.2820 βg min = 0.2711 βb min = 0.2705
LS r = 260 LS g = 260 LS b = 260 LS r min = 263.8087 LS g min = 264.7210 LS b min = 264.5776

ship L0 r L0 g L0 b μr min = 57.9859 μg min = 91.5837 μb min = 108.4424
βr = 0.4 βg = 0.4 βb = 0.4 βr min = 0.3710 βg min = 0.3177 βb min = 0.2752
LS r = 170 LS g = 170 LS b = 170 LS r min = 172.4667 LS g min = 173.7974 LS b min = 175.0974

bridge L0 r L0 g L0 b μr min = 115.2789 μg min = 110.8441 μb min = 107.3712
βr = 0.4 βg = 0.4 βb = 0.4 βr min = 0.3054 βg min = 0.3166 βb min = 0.3272
LS r = 220 LS g = 220 LS b = 220 LS r min = 223.3607 LS g min = 223.4535 LS b min = 223.3768

channel separately in the RGB (red-green-blue) colour space, as this is how the simu-
lated fog was introduced. Table 1 shows the parameters used to simulate the images in
foggy conditions (Lfog_simul – LIma-000011, ship, bridge) and the parameters estimated
by minimizing the cost function in Eq. (16).

We will make a visual inspection of the degree of fit of the estimated foggy image
Lfog_estim, obtained with the mathematical model defined by Eq. (14) using L0 and the
estimated parameters (βred min, LS red min, βgreen min, LS green min, βblue min, LS blue min), to
the simulated image Lfog_simul, obtained with the same equation and the parameters L0 red,
βred, LS red, L0 green, βgreen, LS green, L0 blue, βblue, LS blue, representing in 3D the absolute
value of the difference of the two images:

difλ = ∣∣Lfog_estim(:, :, λ) − Lfog_simul(:, :, λ)
∣∣. (19)

The better the fit, the smaller the difference dif is, so the parameters [βλ minLSλ min] are
better estimated and the enhancement algorithm gives a consistent result (ideally dif = 0
and the enhanced image becomes L0 – this result will never be obtained since the pseudo-
model used in the optimization operation has as parameter p1 an average of the L0 lumi-
nances). As it can be seen from Fig. 5 for both images (ship and bridge), the mean value
of the dif is equal to 5 at almost all wavelengths. The exception is only in Fig. 5a) where
for the red wavelength, in the case of the ship image, the mean value of the dif is equal
to 2.

We assess the algorithm’s performance using both visual subjective inspection and a
quantitative criterion. In order to compare our results with those from other algorithms
in the relevant literature, we utilize an adapted metric to the quality of defogged images
introduced by Liu et al. (2020).

Regarding the visual inspection, we present six representative images from the test
dataset in the following order: LIma-000011, ship, bridge, LIma-000013, LIma-000015
and LIma-000006 (Tarel et al., 2010). The results of the Model-Based Foggy Image En-
hancement using Levenberg-Marquardt non-linear estimation (MBFIELM) are depicted
in Fig. 6. The enhanced image Lenhanced is obtained according to Eq. (17).
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Fig. 5. Absolute value of the difference between the estimated foggy image Lfog_estim and the simulated image
Lfog_simul (a, b, c the rgb components of the ship image; d, e, f the rgb components of the bridge image).

Fig. 6. Visual inspection of the enhancing algorithm: a-reference images L0 without dispersive environment,
b-images with simulated fog Luv(Lfog_simul), c-enhanced colour images Lenhanced.

The FRFSIM (Fog-Relevant Feature Similarity) indicator introduced by Wei Liu takes
into account both fog density, measured by the Dark channel feature and the Mean Sub-
tracted Contrast Normalized (MSCN) feature, as well as artificial distortion, measured by



Levenberg-Marquardt Algorithm Applied for Foggy Image Enhancement 59

the Gradient feature (which refers to texture changes) and the ChromaHSV feature (which
refers to colour distortion). Assessing the quality of the defogged image in relation to the
reference image involves utilizing a single score that integrates four similarity maps: Dark
Channel Similarity (DS), Mean Subtracted Contrast Normalized Similarity (MS), Gradi-
ent Similarity (GS) and Colour Similarity (CS), as detailed by Liu et al. (2020). First DS
and MS are grouped into a single score to measure fog density, and then GS and CS are
grouped into another score to measure texture and colour distortions artifacts. Both scores
are merged into FRFSIM ∈ (0, 1), index which takes on higher values as the quality of
the defogged image increases.

Our method assumes the availability of a 3D component (distance map). In order to
be able to compare our results with those of other methods that do not have this data, we
define the following relative quantitative measure based on the FRFSIM indicator:

enhcFRFSIM = FRFSIM2 − FRFSIM1

FRFSIM2
· 100 [%], (20)

where FRFSIM1 represents the indicator calculated for the foggy image Luv relative to
reference image L0 and FRFSIM2 represents the indicator calculated for defogged image
Lenhanced relative to the same reference image L0.

We used classical contrast enhancement algorithms, linear and non-linear contrast
stretching and histogram equalization, working with simulated foggy images alongside
with their corresponding reference images. In these cases, for the entire test dataset, the
measure expressed by Eq. (20) indicates either a decrese in the quality of the processed
image or an irrelevant enhancement with a maximum enhcFRFSIM = 4.8%.

Here, we present a comparative analysis of the results obtained by our algorithm versus
the best results of foggy image enhancement algorithms discussed in Liu et al. (2020). The
values of the FRFSIM1 and FRFSIM2 indicators for the enhancement algorithm based on
the Levenberg-Marquardt method (MBFIELM) are displayed below in each of the six
representative images of the test dataset in Fig. 6.

Also, the results of four sets of images taken from the article referenced above are
presented below. Figures 7a1, 7a2, 7a3 and 7a4 represent reference images acquired un-
der normal atmospheric conditions (no fog), Fig. 7b1 shows a real foggy image with
FRFSIM1 = 0.2904 (moderately foggy), the next four figures show images with dif-
ferent fog densities: Fig. 7b2 Slightly, Fig. 7b3 Moderately, Fig. 7b4 Highly, Fig. 7b5
Extremely, then two other foggy images: Fig. 7b6 with FRFSIM1 = 0.1278 and Fig. 7b7
with FRFSIM1 = 0.3630.

A first performance reported in Liu et al. (2020) on the defogged images is that of
the DCP algorithm (He et al., 2011) with FRFSIM2 = 0.5105 (Fig. 7c1) and DehazeNet
algorithm (Cai et al., 2016) with FRFSIM2 = 0.5202 (Fig. 7c2) compared to the foggy
image with FRFSIM1 = 0.2904. For the set of four images with different fog densi-
ties in the same article, the DCP algorithm is also highlighted with the following results:
Fig. 7c3 with FRFSIM2 = 0.456 compared to FRFSIM1 = 0.385 (Slight fog), Fig. 7c4
with FRFSIM2 = 0.404 compared to FRFSIM1 = 0.304 (Moderate fog), Fig. 7c5
with FRFSIM2 = 0.377 compared to FRFSIM1 = 0.228 (High fog), Fig. 7c6 with
FRFSIM2 = 0.327 compared to FRFSIM1 = 0.215 (Extreme fog) (Liu et al., 2020).
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Fig. 7. Visual inspection of some results presented by Liu et al. (2020): a-reference images L0, b-real foggy
images Lfog_real, c-enhanced colour images Lenhanced.

Next, there are two other images where the AMEF algorithm (Galdran, 2018) achieves
the best results: Fig. 7c7 with FRFSIM2 = 0.3733 compared to FRFSIM1 = 0.1278 and
Fig. 7c8 with FRFSIM2 = 0.4208 compared to FRFSIM1 = 0.3630 (Liu et al., 2020).

The performances of the enhancement algorithms, based on criterion two (Eq. (20),
are shown in Table 2.

We utilise the enhcFRFSIM relative measure to rank the analysed foggy image enhance-
ment algorithms. Thus, the best result, as shown in Table 2, is achieved by I) AMEF
(No. 13, enhcFRFSIM = 65.764) followed by: II) MBFIELM (No. 2, enhcFRFSIM =
52.577), III) MBFIELM (No. 3, enhcFRFSIM = 44.447), IV) DehazeNet (No. 8,
enhcFRFSIM = 44.175), V) DCP (No. 7, enhcFRFSIM = 43.114), VI) MBFIELM (No. 5,
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Table 2

No. Enhancement
algorithm

Images
(reference-foggy-enhanced)

enhcFRFSIM
[%]

1 MBFIELM Fig. 6a1–Fig. 6b1–Fig. 6c1
LIma-000011

33.041

2 MBFIELM Fig. 6a2–Fig. 6b2–Fig. 6c2
ship

52.577

3 MBFIELM Fig. 6a3–Fig. 6b3–Fig. 6c3
bridge

44.447

4 MBFIELM Fig. 6a4–Fig. 6b4–Fig. 6c4
LIma-000013

32.41

5 MBFIELM Fig. 6a5–Fig. 6b5–Fig. 6c5
LIma-000015

40.36

6 MBFIELM Fig. 6a1–Fig. 6b1–Fig. 6c1
LIma-000006

14.821

7 DCP Fig. 7a1–Fig. 7b1–Fig. 7c1 43.114
8 DehazeNet Fig. 7a1–Fig. 7b1–Fig. 7c2 44.175
9 DCP Fig. 7a2–Fig. 7b2–Fig. 7c3 15.570

10 DCP Fig. 7a2–Fig. 7b3–Fig. 7c4 24.752
11 DCP Fig. 7a2–Fig. 7b4–Fig. 7c5 39.522
12 DCP Fig. 7a2–Fig. 7b5–Fig. 7c6 34.258
13 AMEF Fig. 7a3–Fig. 7b6–Fig. 7c7 65.764
14 AMEF Fig. 7a4–Fig. 7b7–Fig. 7c8 13.735

enhcFRFSIM = 40.36) etc. The larger FRFSIM2 is compared to FRFSIM1, the higher the
quality of the defogged image. The enhcFRFSIM measure of the MBFIELM algorithm is
significant (52.577%, 44.447%).

7. Discussion

This work focuses on a mathematical method to determine a two-dimensional analytic
function that best approximates a set of measured data, called observations. Starting from
the well-known “Least-squares problem”, we proposed, adapted and implemented the
Levenberg-Marquardt algorithm that is used to determine the unknown parameters of the
mathematical model describing the image acquisition process under foggy conditions.
The non-linear form of the model, the observations and the unknown parameters lead to
the iterative solution of an overdetermined equation system. The algorithm for improving
the quality of these images, based on the determined parameters, involves applying an
inverse transformation that removes the “atmospheric veil” from the measured data and
compensates for the attenuation of the scene radiance. An effective enhancement in the
region of interest is found for almost all test images, but small undesirable colour deviation
problems occur in areas where the distances in the d-matrix are large (sky).

The mentioned classical algorithms used to improve image contrast do not obtain mea-
sures enhcFRFSIM that indicate an improvement in the quality of the processed image. This
is due to the fact that these general algorithms do not take into account the physics of ra-
diative transfer.
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The algorithm we have proposed gives comparable results to the established algo-
rithms such as AMEF, DehazeNet, and DCP. While it is outperformed by AMEF in certain
cases, there are situations where it prevails over the mentioned algorithms (to see Table 2).

We should mention that in the implementation of the experiment we have encountered
an obstacle that we have not overcome at this moment. Specifically, we could not test
the MBFIELM algorithm on real foggy images. In a later approach we will extend the
database used for testing the enhancement algorithm by obtaining all the resources needed
to use images in real foggy conditions. Furthermore, we will work on how to choose the
regularization variable in order to increase convergence performance.
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