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Abstract. Due to the complexity and lack of transparency of recent advances in artificial intelli-
gence, Explainable AI (XAI) emerged as a solution to enable the development of causal image-based
models. This study examines shadow detection across several fields, including computer vision and
visual effects. Three-fold approaches were used to construct a diverse dataset, integrate structural
causal models with shadow detection, and apply interventions simultaneously for detection and in-
ferences. While confounding factors have only a minimal impact on cause identification, this study
illustrates how shadow detection enhances understanding of both causal inference and confounding
variables.
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1. Introduction

When considering any image, beyond seeing it as a container of objects, among other
things, it is natural for a human being to give it meaning or to infer the explanation of
some event of interest captured in it, but how can such an inference be reached through
artificial intelligence? Causal inference can be applied in many areas of science and tech-
nology, such as economics, epidemiology, image processing, and autonomous driving,
which are areas where it is crucial to make accurate decisions. Currently, there are widely
studied methods that, through correlation, recognize and classify objects using datasets
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such as (Deng et al., 2009) which has sufficient size and information to ensure high accu-
racy in such tasks (Zeiler and Fergus, 2014). However, in the last decade, as pointed out by
Saeed and Omlin (2021), explainable AI (XAI) has been proposed to respond to the need
raised by important contributions in artificial intelligence, which have led to an increasing
complexity of algorithms and lack of transparency of models, and to advance the adop-
tion of Al in critical domains. Then, to obtain the explanation we are looking for about an
event captured in an image, we would have to consider causal relationships that can either
be inferred through expert knowledge (Martin, 2018) or intervene such data sets through
experimentation, as indicated in He and Geng (2008), taking into account that, in proba-
bilistic language, not having a way to distinguish between giving value to a variable and
observing it, prevents modelling cause and effect relationships (Perry, 2003). Thus, taking
modelling as an essential step to achieve causal inference, Xin et al. (2022) discusses the
role of causal inference to improve the interpretability and robustness of machine learn-
ing methods, and highlights opportunities in the development of machine learning models
with causal capacity adapted for the analysis of mobility considering images or sequential
data. In the punctual case on causal inference applied to images, Lopez-Paz et al. (2017)
propose to use neural causality coefficients (NCCs) that are calculated by applying con-
volutional neural networks (CNNs) to the pixels of an image, so that the appearance of
causality between variables suggests that there is a causal link between the real-world
entities themselves, Lebeda et al. (2015) have proposed a statistical approach — transfer
entropy — to discover and quantify the relationship between camera motion and the mo-
tion of a tracked object to predict the location of the tracked object, Fire and Zhu (2013)
presented a Bayesian grammar (C-AOG) model for human-perceived causal relationships
that can be learned from a video, and Pickup et al. (2014) use the causality method, sup-
plemented with computer vision and machine learning techniques, to determine whether
a video is playing forward or backward by observing the “arrow of time” in a temporal
sequence.

This paper consists of four sections, in Section | we state the motivation of the study,
present some antecedents that have made important contributions in the area of causal
inference applied to images and define our contribution as a starting point to address a
problem area already detected by several authors. In Section 2, we present the method
used to generate the data, define the causal model and validate it with the NOTEARS al-
gorithm, and then query the model by means of interventions. In Section 3, we analyse
the results obtained in the applied causal discovery and causal inference processes and, fi-
nally, in Section 4, we conclude that the graphical representation of a causal model makes
it simpler to understand the problem, although for the validation using NOTEARS we had
to make restrictions based on expert knowledge. Likewise, we recognize the importance
of the structure of the dataset for causal inference in contrast to the structure of a ma-
chine learning dataset and, finally, thanks to the interventions and queries of the causal
model, it was possible to deduce, with a high level of certainty, the cause of the shadow
projection.
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1.1. Related Work

Regarding the explainability of events or phenomena captured in an image or video, taking
modelling as an essential step to achieve causal inference, Xin et al. (2022) discusses the
role of causal inference to improve the interpretability and robustness of machine learn-
ing methods, and highlights opportunities in the development of machine learning models
with causal capability adapted for mobility analysis considering images or sequential data.
In the punctual case on causal inference applied to image analysis, Lopez-Paz et al. (2017)
propose to use neural causality coefficients (NCCs) that are calculated by applying con-
volutional neural networks (CNNs) to the pixels of an image, so that the appearance of
causality between variables suggests that there is a causal link between the real-world
entities themselves, Lebeda et al. (2015) have proposed a statistical approach — transfer
entropy — to discover and quantify the relationship between camera motion and the mo-
tion of a tracked object to predict the location of the tracked object, Fire and Zhu (2013)
presented a Bayesian grammar (C-AOG) model for human-perceived causal relationships
that can be learned from a video, and Pickup et al. (2014) use the causality method, sup-
plemented with computer vision and machine learning techniques, to determine whether
a video is playing forward or backward by observing the “arrow of time” in a temporal
sequence.

1.2. Our Contribution

By taking into account the underlying causes of shadow formation, causal inference can
provide more accurate predictions and improve the overall realism of virtual environments.
By virtue of this, given the relevance of this topic and the need for experimentation on spe-
cific cases that would potentially be contributory to evolving fields such as 3D graphics
where shadow detection is an area where causal inference can be applied to improve accu-
racy and efficiency in this process, as opposed to traditional techniques such as ray tracing
which is computationally expensive in terms of handling complex scenes with many ob-
jects (Levoy, 1990), this challenge is equally recognized in novel solutions such as that
of Li et al. (2018) which computes derivatives of scalar functions on a rendered image
with respect to arbitrary scene parameters such as camera location, scene geometry, ma-
terials and lighting parameters using an edge sampling algorithm. Our study provides a
benchmark for addressing one aspect of this problem using causal inference to detect and
deduce the cause of a shadow cast on the surface of a 3D scene.

2. Materials and Method

Our objective was to explain, by means of causal inference, the appearance of a shadow
cast on the surface defined on the lower face of a 3D scene in which, in addition to being
illuminated, a sphere is present. For this we established 3 steps; in the first one we gener-
ated 1 x 10° scenes (images) in which 4 features can be observed: light, sphere, surface
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and shadow. There are numerous libraries that facilitate both statistical and causal estima-
tion and inference operations, therefore, we chose to use pgmpy (Ankan and Panda, 2015),
causalinference (Wong, 2016) and causalnex (Beaumont et al., 2021) for the development
of the experiment, thus, in the second step we define a structural causal model (SCM)
taking into account the relationships between these features, also identifying the indepen-
dence of the features, and then, through Causal Discovery, structurally validate the model
by applying the NOTEARS algorithm devloped by Zheng et al. (2018) which differs sig-
nificantly from other search approaches in the discrete space of directed acyclic graphs
(DAG). In the third, through conditional probability distributions (CPDs), it was possible
to calculate the probabilities of each variation in the observations and thus validate the
hypothesis that the appearance of the shadow is due to the presence of the sphere in an
illuminated scenario with a defined surface, all by means of “What if...” queries to the
model, as indicated in level 2 of the causal scale (DOING), which is reached when one
can predict the effect(s) of deliberate alterations of the environment and choose among
these alterations to produce a desired outcome (Pearl and Mackenzie, 2018). Then, we
intervened the model by removing the sphere and looked at, for a 95% confidence inter-
val, the average treatment effect (ATE) and p-value to have an estimate of how far our
hypothesis was from being null. Finally, we compare the performance of our experiment
with two conventional shadow detection techniques.

2.1. Data

As already stated, we considered 4 observable features for the confirmation of the dataset,
Table | shows the label used for each of them and the values they can take, with 1 indicating
that the feature is present in the scene and 0, otherwise.

Figure 1 shows the dataset based on a hypothetical scenario similar to that used by
Pearl and Mackenzie (2018) to demonstrate the importance of probabilities emphasizing
that a causal model involves more than drawing arrows, for behind these are probabilities.

Thus, by means of Algorithm 1, the data of 1 x 10° scenes were synthetically gener-
ated, of which all features are perceived in 99% (0), while in 70% of the remaining 1%
illumination and sphere are observed, but neither surface nor shadow (1); in half of the
images (15%) of the remaining 30% no feature can be observed (2), while, in the second
half, only illumination and surface are observed, but neither sphere nor shadow (3).

Table 1
Labelling of the observed features.
Feature Label Posible values
Light A [1,0]
Sphere B [1,0]
Surface C [1, 0]
Shadow Y [1,0]
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Fig. 1. Observations considered in the data set.
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Algorithm 1: Data generation

1
2
3
4
5

10
11

12
13

14
15
16
17

DS <« createDataset()

DS.columns < ['A’,) B’ C',)Y'];

DS.size < 1000000 ;

idxAllColumnsSample <— DS.sample(990000) ;
foreach idx in idxAllColumnsSample do

foreach col in DS.columns do

L DSlidx][col] < 1;

Filter < DS[A] =0 & DS[B] =0 & DS[C] =0 & DS[Y] = 0;
sublistLightSphere <— DS.sublist(Filter);
idxLightSphereColumnsSample < sublistLightSphere.sample(7000);
foreach idx in idxLightSphereColumnsSample do

Dslidx][A] < 1;

Dslidx][B] < 1;
Filter <— DS[A] =0 & ds[B] = 0 & ds[c] =0 & ds[y] = 0;
sublistLightSurface <— DS.sublist(Filter);
idxLightSurface ColumnsSample < sublistLightSurface.sample(1500);
foreach idx in idxLightSurface ColumnsSample do

DS[idx][A] < 1;
DS[idx][C] < 1;
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Fig. 2. SCM and variables independencies.

2.2. Structured Causal Model SCM

According to Pearl et al. (2019), an SCM is a way of describing the relevant features of
the world and how they interact with each other. Specifically, a structural causal model
describes how nature assigns values to variables of interest. Causal inference usually re-
quires specialized knowledge and untestable hypotheses about the causal network linking
treatment, outcome, and other variables. By summarizing knowledge and hypotheses in
an intuitive way, graphs help clarify conceptual issues and improve communication be-
tween researchers (Herndn and Robins, 2020). Accordingly, we model an SCM in which
each node corresponds to each observable feature and all edges point to a single collider
node -Y-. Figure 2 shows the SCM and the independence of the variables that comprise it.

2.3. Causal Inference

Once the model is built, we calculate the conditional probability distributions (CPD)
which are defined for a set of discrete and mutually dependent random variables to show
the conditional probabilities of a single variable with respect to the others (Murphy, 2012).
These are calculated by applying the chain rule as illustrated in (1), where X; is an event
and N is the number of events considered in the model, hence 0 <i < N.

P(xy) = P(x1)P(x2|x1) P(x3]x1, x2) ... P(xplx1, X2, X3. . . X(u—1))- e

As shown in Fig. 3, we calculate the probability of each possible value of each variable
knowing the values taken by the other variables.

Then, to strengthen our hypothesis, we asked the model what would happen if no
sphere had been detected, in other words, we intervened the model by not detecting the
sphere in order to obtain the probability of detecting the shadow. To provide clarity on
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B(0) |0.003

B(1) |0.997
C(0) [0.0085 A(0) [0.0015
C(1) | 0.9915 A(1) | 0.9985
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B(O) [B(O) [B(1) | B(1) [B(Q) | BO) [B(1) |B()
CO)y |C() |CO) | c(1) [CO) | 1) |CO) |C()
0) 1.0 0.5 0.5 0.5 0.5 1.0 1.0 0.0
1) 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0

<|X|O|®m(>

Fig. 3. CPD for each variable of the model.

Table 2
Role of SCM variables in the
Causal Inference process.

Label Variable
Treatment B
Confounders [A, C]
Outcome Y

what role the SCM variables play in the causal inference process we follow, among oth-
ers, Chiappa and Isaac (2019), Guo et al. (2020) and Dague and Lahey (2019) who explain
that a causal inference process is determined by a treatment, a set of confounders and an
outcome. Table 2 shows the role of each MCS variable in the causal inference process.

Subsequently, considering this intervention, we calculated for the whole set of cases
(N) the treatment effect to measure the average difference between the cases in which the
treatment was applied (Y1) and the control cases (Y2) by applying (2).

N

1
ATE = — > (¥1G) - Yo)). )

i=1

Finally, to contrast the treatment results and thus obtain the estimate of how far the
hypothesis was from being null, i.e. that there was no relationship between the sphere and
the shadow, for a 95% confidence interval, we calculated a table of z-scores by apply-
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ing (3) where X; is each outcome, i is the mean and o is the standard deviation, and then
calculated the bilateral tailed p-value and a significance level o« = 0.05.

3

2.4. Shadow Detection

Within the realm of shadow detection in images, prominent methods include adaptive
thresholding, threshold segmentation (Bradski, 2000), and clustering-based segmentation
(Felzenszwalb) (Van der Walt et al., 2014). We extended the latter by integrating a causal
inference module. This advancement not only facilitated shadow detection but also en-
abled the identification of their root causes within specific scenarios. This comprehensive
approach demanded parameters encompassing a comprehensive record of perceptible ele-
ments within the image (light, sphere, surface, and shadow), alongside the causal inference
model.

Illustrating this process, Algorithm 2 outlines the intricate interplay between shadow
detection and causal inference within the shadow phenomenon.

Algorithm 2: Algorithm for detection and causal inference of shadow phenom-

ena
Data: Image, scale, sigma, min_size, light, sphere, shadow, surface, CI_model

Result: Segmented regions
Initialize an empty image segment map segments;
Initialize an empty priority queue pq for merging;
for each pixel p in Image do
Create a new segment for p and add it to pg;
end
while pq is not empty do
Merge the two smallest segments from pg;
if merge does not violate min_size constraint then
Add the merged segment to segments;
Add the merged segment to pq;

- B Y B R

[y
=)

end

—
-

end
return CI_model.estimates(light, sphere, shadow, surface)

-
w N
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(a) Causal Discovery using NOTEARS without re- (b) Causal Discovery using NOTEARS with re-
strictions strictions

Fig. 4. NOTEARS causal discovery models with and without restrictions.

Table 3
Causal inference from intervention P (Y | do(B = 0)).
Outcome  Probability  ATE z P > |z| Confidence interval
Y(0) 0.995
Y(1) 0.005 0.993 11874  0.00001  95%

3. Results
3.1. Causal Model

The structural causal model (SCM) was designed based on expert knowledge as Herndn
and Robins (2020) pointed out, but validated in two attempts by means of causal Discovery
using NOTEARS. In the first attempt, the algorithm took almost 5 minutes to generate the
model shown in Fig. 4(a), which we consider quite long for the size of the dataset, resulting
in a model that was not very coherent according to the expert knowledge. On the other
hand, in the second attempt, we added a constraint to the algorithm to consider that A,
B and C are independent as already shown in Fig. 2. The algorithm, as can be seen in
Fig. 4(b), generated the model in less than 10 seconds and with the expected consistency.

3.2. Causal Inference

From the conditional probability distribution (CPD) it was possible to query the model
under the hypothesis formulated. In Table 3, it can be seen that by eliminating the sphere
there would be a 99.5% probability that no shadow would be cast; furthermore, it can
be seen that the hypothesis gains strength by obtaining a p-value of less than 0.05 (the
default threshold value) indicating that the null hypothesis is false, and a positive average
treatment effect (ATE) value suggests that P(Y|B) > P(Y), indicating that the presence
of the sphere increases the probability of detecting a shadow cast on the surface or, in
other words, it was possible to infer that the sphere is the most likely cause of the shadow
cast on the surface.
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(a) Felzenszwalb with causal inference (b) Threshold segmentation (c) Adaptive threshold

Fig. 5. Shadow detection result.

3.3. Shadow Detection and Causality

To establish a contrast, we employed an identical image and introduced a confounding
element by aligning the background colour with the shade’s hue projected onto the sur-
face. Subsequent execution encompassed the Felzenszwalb method integrated with the
causal inference module, as well as the adaptive thresholding and threshold segmentation
techniques. The outcomes of this comprehensive approach are visualized in Fig. 5.

In the context of shadow detection, the outcomes are evident. Among the approaches,
the combination of the Felzenszwalb method with causal inference (refer to Fig. 5(a))
showcased the most promising results. It achieved an acceptable shadow detection accu-
racy of 51.5%. Following closely, the adaptive threshold method achieved an accuracy
of 51.7% (refer to Fig. 5(c)), while the threshold segmentation method achieved 55.9%
accuracy (refer to Fig. 5(b)).

It’s important to emphasize that the presence of confounding factors significantly influ-
enced the accuracy of the detection results. However, when considering the determination
of the shadow’s causality, the impact of confounding factors became negligible. Notably,
only the Felzenszwalb method (refer to Fig. 5(a)) yielded a substantial result in this regard.

4. Conclusions and Future Work

We’ve shown how to employ causal inference to strengthen a hypothesis and, as a result,
deduce the cause of a shadow phenomenon with high certainty. This is accomplished by
utilizing interventions and inquiries within the causal model. We start with a set of photos
from a 3D scenario in which four occurrences were examined as part of a structural causal
model validated with the NOTEARS algorithm for causal detection. By contrasting their
performance, we also demonstrated that adding a causal inference module to a shadow
detection approach is feasible and advantageous. This opens the door for similar connec-
tions in other diverse and complex ways. A causal model’s visual representation improves
understanding of the problem and the roles that events play in its resolution. Despite test-
ing the causal model with NOTEARS, there was some worry about the need to set limits
based on expert knowledge. A dataset with a more intricate structure is required for causal
inference when compared to typical datasets utilized for machine learning applications.
Confounding factors had a considerable impact on the detection method’s accuracy but
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not on the causal inference model. In the future, we hope to create a second version of this
project. We intend to improve causal inference in this iteration by incorporating machine
learning techniques. This combined approach will determine the origin of shadows sensed
in complex graphical settings.

Data Availability Statement

The data presented in this study are available on request from the corresponding authors.
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