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Abstract. This paper establishes sufficient conditions for stability of linear 
and time-invariant delay differential systems including their various usual sub­
classes (i.e., point, distributed and mixed point-distributed delay systems). Suffi­
cient conditions for stability are obtained in terms of the Schur's complement of 
operators and the frequency domain Lyapunov equation. The basic idea in the 

analysis consists in the use of modified Laplace operators which split the ch~ac­
teristic equation into two separate multiplicative factors whose roots characterize 
the system stability. The method allows a simple derivation of stabilizing control 
laws. 
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1. Introduction. Delay differential systems are continuous systems 
with a time delay. The usual class of systems includes those involving 
point and/or distributed delays. Delays can be finite or infinite. A typical 
example of distributed infinite delays is the so called Volterra equation 
(Burton, 1985). The stability of the above kinds of systems is exhaustively 

investigated in Burton (1985) through the use of Lyapunov's stability the­
ory. A major problem in the analysis of linear control systems with time 
delay is their stabilization using linear feedback with or without memory. 
Most of the stabilization schemes are complicated when compared with 
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those for systems without delay; some of them require solving the matrix 
Riccati equation (Kwon and Pearson, 1977) or a trascendental equation 
(Osipov, 1965). Others involve transforming the system equation in a 
canonical form (Ikeda and Ohta, 1976). In Mori et al. (1983) a simple 
method is derived to stabilize linear systems with internal point delay by 
memoryless linear feedback. Stabilizability can be checked by inspect­
ing the negativity of a symmetric matrix containing two free parameters 
so that, subsequently, a stabilizing feedback law can be composed from 
the solution of a matrix Lyapunov equation containing these parame­
ters. In Agathoklis and Foda (1989), state-space models for 2-D (two­
dimensional) and n-O (n-dimensional) systems were used to describe 
delay differential systems with commensurate and non-commensurate de­
lays, respectively. Sufficient conditions for the asymptotic stability inde­
pendent of delay are derived in terms of frequency-dependent Lyapunov's 
equations. The objetive of this. paper is to investigate the stability of the 
various typical classes of delay systems by using frequency-dependent 
Lyapunovequations and a decomposition of the closed-loop characteris­
tic equation in (at least) two parts related to modified Laplace (or mixed 
Laplace and discrete) operators. Both parts of the characteristic equation 
arise in a natural way from the appearance of both the Laplace operator 
"s" and the delay operator "exp(-sh)" in such an equation. 

The paper is organozed as follows. Section 2 is devoted to obtain 
sufficient conditions for stabilizability for the case of point delay systems. 
Some particular stabilizing control laws are obtained. Section 3 presents 
a similar stability analysis technique for distributed delay systems and 
mixed point-distributed delay systems. Extensions are given in Section 4 
for these systems in the context of differential difference representations. 
The case of commensurate delays is also included by using a 2-D state 
representation. Section 5 discusses the connections between the so-called 
continuous (strictly) bounded real and the (strictly) positive real lemmas 
and the stability conditions of the above sections. Section 6 is devoted 
to present abbreviately an iterative computational method related to some 
basic operators presented in Section 2 for alternative tests of stability. 
Finally, conlusions end the paper. 
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Notation. 

- 1.., lit, C are the sets of integer, real and complex numbers; 
- 1..0 , lito, Co are the above sets excluding zero; 

- T = {z E C :Izl ~ I}, i.e., the.unit circle; T1 .= T -{I}; 
- U = {z E C : I z I ~ I}, i.e., the c~mplex complement of th~ open 

unit disc; U1 = U - {I}; 
- D = {s E C : s ~ O}, i.e., the closed complex right-half plane; 

Do = D - {O}. 
- (".) denotes the inner product in a Hilbert space; 
- p.d.h. (or > 0) stands for positive definite hermitian operators; 

p.d.s. for positive hermitian operators; "~ 0" stands for semidefinite 
positive hermitian operators, and n.d.s. means negative semidefinite 
symmetric; 

- superscript "-" stands for complementation of sets; 
- Det(.) is the determinant of the (. )-matrix and Amax(. ) is its max-

imum eigenvalue. A * and AT are the conjugate transpose and trans­
pose of A; 

- I is the identity matrix; In is the n-identity matrix; 
- Ll ( a, b), L2 ( a, b) are the spaces of integrable and square-integ-

rable functions on the real interval (a, b), respectively; 12(. ) stands 
for square summable sequences. 

2. Point delay systems 

2.1. Stability. Consider the linear and time-invariant system 

(Sp) : x(t) = Ax(t) + Aox(t - h); 
x(t) = <p(t), t E [-h, 0), 

(1) 

where h > 0 is a point delay, <p: [-h, 0] ~ litn is an absolutely 
continuous function of initial.conditions for the n-vector x, and A and 
Ao are n X n-matrices of constant entries. A unique solution on (0, 00) 
exists for (1) for each function <p (De la Sen, 1988). System (1) is 
asymptotically stable iff 

E(s) = Det(sI - A - e-hSAo) =J 0, 'Is ~ D (2.a) 
or, equivalently 
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E(O) = Det(A + Ao) =I- 0; E(s) =I- 0, 'lis E Do. (2.b) 

The next results stands. 

Lemma 1. The following proposition are true. 

(i) The next identity holds: 

for all nonzero sEC with ZI = s-I (for s =I- 0), Z2 = sand .41 
being an arbitrary constant n X n-matrix, and 

S(zJ) = S (~) = S(AI - s1)-I (AI -A - e-hs Ao), (3.b) 

'lis E Co; 

(ii) The next identity holds: 

sI-A-zAo = (I-zZ(s))(sI-A), alls E C, z = e-sh , (4.a) 

where 
Z(s) = Ao(sI - A)-I. ( 4.b) 

Proof. (i) Note that identity (3.a) becomes 

forzI = 1/ s; Z2 = s. The solution S ( s -1) to (5) is (3.b) and the 
proof is complete. 

(ii) identity (4.a) follows from direct substitution of (4.b) in its right­
hand-side. 

Note that Lemma 1 also stands for any matrix Al (s) of complex 
entries. Eq. 2.b together with Lemma 1 yield: 
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Lemma 2. The following propositions hold. 

(i) System Sp, Eq. 1, is asymptotically stable (in the sence that 
IIx(t)1I is bounded on (0,00) and limt--+oo x(t) = 0) if the two 
following conditions hold: 
(1) E(O) =I 0, 
(2) Det(z2I -S(ZI)) #- 0, V(ZI,Z2) E Do xDo (6) 

for any arbitrary (strictly) Hurwitz matrix AI. 
(ii) Proposition (i) can be equivalently ennounced under the con­

ditions 
(1) E(O) # 0, 
(2) S(s) = s-I(AI - sI)S(S-I) = (AI - A - e-hs Ao) has 

no eigenvalues in Do, s #- 0, for any strictly Hurwitz 
matrix Al (i.e., Al has all eigenvalues in Do). 

(iii) System Sp is asymptotically stable if A is strictly Hurwitz; 
E(O) #- 0 and Z(s), Eq. 4.b, has all its eigenvalues in U I for 
all s E Ro. 
Proof. Proposition (i) follows directly from (2)-(4) (in fact E(O) #- 0 

means that the characteristic equation has no zero eigenvalues). Propo­

;sition (ii) follows by noting that if Al is strictly Hurwitz then S( s) has 

eigenvalues in Do iff S ( s ) has eigenvalues in Do and the fact that direct 

calculus using Schur's formula (Agathoklis and Foda, 1989) yields: 

. [I-ZIAI -ZI(AI-A-e-h / Z1 Ao)] 
Det 

-zII Z2 I 

= Det(I - zlAdDet(z2I - S(ZI)) (7) 

= Det(I - zlAdDet[z2I + (I - zIAd-I(AI - A - e-h / Z1 A o)] 

for;l # 0 which, according to (3.a), is equal to E( s) for s #- O. The 

proof of (ii) is complete by introducing Condition 1. Proposition (iii) 

follows directly from equating the roots of both sides of (5). 

REMARK 1. Note from Lemma 2 that if Al = A (strictly Hurwitz), 

then system Sp, Eq. I, is asymptotically stable if Ao is strictly Hurwitz. 

By extending Lemma 2 to the use of a complex matrix Al (s), note 
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also that Conditions 1-2 of (ii) contain the general asymptotic stability 
condition for Sp, nam~ly Al (s) = A + e-hs Ao has eigenvalues in 
Do and Det(A + Ao) i- O. Note also that the condition E(O) = 
- Det( A + Ao) i- 0 in Lemma 2 means that there are no zero roots in 
the characteristic equation of Sp. The independent test for existence of 
zero roots or unstable roots in the open right-half complex plane given by 
Conditions 1-2 in Lemma 2 (i)-(ii) is motivated by the facts that S(Zl), 
Eq. 3.b, cannot be defined for s = 0, and, furthermore, such a matrix is 
a key definition in the computation of Schur's complement. 

2.2. Stabilizing control laws 

2.2.1. Free external delay system. Assume that Sp, Eq. 1, is now 
forced as follows: 

(S~): x(t) = Ax(t) + Aox(t - h) + Bu(t), (8) 

where u E R m is the control vector and B ERn x m is the control 
matrix. Lemma 2 and Remark 1 directly imply the next result. . 

Lemma 3. System 5;, Eq. 8, is asymptotically Lyapunov stable 
for the control law 

u(t) = Kx(t) + Kox(t - h), (9) 

where K and Ko are m X n constant matrices if Lemma 2 stands 

with the changes A ~ (A + BK) and Ao ~ (Ao + BKo). In 
particular, the closed-loop systemS;, Eqs. 8-9, is asymptotically 
stable if(A+BK) and (Ao +BKo) are strictly Hurwitz matrices. 
Stabilizing matrices K and Ko exist provided that (A, B) and 

(Ao, B) are stabilizable pairs. 

Note that a necessary condition for dosed-loop asymptotic stability 
of 5; is its open-loop stabilizability, namely, rank lsI - A - e-hsAo : 
B] = n, all sED. Note also that the stabilizability of the (A, B) and 
(Ao , B) pairs reffered to in Lemma 3 means that the linear undelayed 
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systems 2-1 = AZI +BUI; 2-2 = AOZ2 +BU2 are both stabilizable un­

der linear feedback controls UI = K ZI, U2 = KOZ2 for some constant 
matrices K and K o. 

REMARK 2. Note from Lemma 3 that the closed-loop system 

s~, Eq. 8, is asymptotically stable for some linear control law U = 
K 0 x( t - h) if A is strictly Hurwitz and (Ao, B) is stabilizable. It is 

also asymptotically stable for some K and the control law U = K x( t) 
provided that Ao is strictly Hurwitz and the pair (A, B) is stabilizably 

under such a control law, It suffices that (Ab + B K 0) and (A + B K) 
be strictly Hurwitz matrices, respectively. 

2.2.2. External delay system. Now, system S;, Eq. 8, is modified 
as follows 

(S;): x(t) = Ax(t)+Aox(t-h)+Bu(t)+Bou(t-h' ), (10) 

where hand h' are internal and external positive delays. This system 
subjected to the control law (9) becomes 

x(t) = (A + BK)x(t) + (Ao + BKo)x(t - h) 
+ BoKx(t - h') + BoKox(t - h - h'). (11) 

Thus Lemmas 1-2 can be extended to the use of a complex Al (s). 
In Lemma 2 (ii), Condition (1) becomes E(O) = Det[A + Ao + (B + 
Bo)(K + Ko)l =1= 0 while Condition 2 becomes S(s) = Al(s) -
(A+BK)-e-hs(Ao +BKo)+Bo[e-h' S K +e-(h+h')s Kol has no 

eigenvalues in Do for any Al (s) of eigenvalues in Do. These conditions 
include the closed-loop stability condition, namely: 

Det(A1(s)) = Det[A+BK+e-hs(Ao +BKo)+e-h's Bo[K + 
e- h•9 Koll =I- 0, all s E Do, which includes several particular cases. For 

instance, 

a) If the system with internal (i.e., in the state) delay is asymptoti­

cally stable, namely: Det[A+Ao +B(1( +Ko)l =1= 0 and [A+BK + 
e-hS(Ao +BKo)l has all its eigenvalues in D (make h' = 0, Bo = 0 

in (10», then choose Al (8) = A+BK +e-hS(Ao +BKo) (Lemma 2 
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(ii» which has all its eigenvalues in Do. Thus, the current system 

is asymptotically stable if S(8) = -Bo[K + e-hs Ko] has all its 

eigenvalues in Do or, equivalently, if all the eigenvalues of Bo [K + 
e-hSKo] are in Do. In summary, if the pairs (A,B) and (Ao,B) are 

stabilizable and K and K 0 are chosen such that (Ao + B K 0) are strictly 

Hurwitz, then system (11) (obtained from S~ with the control law (9» is 

asymptotically stable provided that the following holds: 

1) Det[A + (B + Bo)(K + Ko)] # O. 
2) Bo[K + e-hs Ko] has all its eigenvalues in Do. In fact, notice 

that if A+BK) and (Ao +BKo) are strictly Hurwitz, then S~, subjected 

to (9), i.e., the free external dalay system (h' = 0, Bo = 0 in (10» is 

asympptotically stable according to Lemma 3. In other words, the asymp­

totic stability of (S~) subjected to (9) is guaranteed if (S~), subjected to 

(9), is asymptotically stable under the sufficient condition (A + B K) and 

(Ao + BKo) are strictly Hurwitz and i(t) = Bo [K z( t) + Koz( t - h)] 
is asymptotically stable. 

b) In the case (a), a sufficient condition for asymptotic stability of 

i(t) = Bo[Kz(t) + Koz(t - h)] is that BoK and BoKo are both 
strictly Hurwitz. This follows from Lemma 2 (ii). Note that a necessary 

condition for the absence of zero eigenvalues in these two matrices is that 

the input dimension and the state dimension are coincident, i.e., m = n. 

2.3. Frequency-dependent Lyapunov equations. The stability con­

ditions of Lemma 2 (subsequent results are centered in the implications 

Lemma 2 (ii» are now interpreted in terms of frequency-dependent Lya­
punov's equations as follows. 

Theorem 1. (Stability from frequency-dependent continuous and 

discrete Lyapunov equations). The next two propositions hold: 

(i) Sp, Eq. 1, is asymptotically stable if the following holds: 

(il) E(O) # 0; 
(i2) S(8), defined in Lemma 2 (ii), is a stability (or Hurwitz) 

matrix with respect to Do, that is, for any positive defi­
nite hermitian (p.d.h.) matrix Q(8), there exists a unique 
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P(s) p.d.h. such that 

-* - --S (s)P(s) + P(s)S(s) = -Q(s), all s E Ro, (12.a) 

-* -T 
where S (jw) = S (- jw), Of, equivalently, Z(s) defined 
in (4.b) (and referred to in Lemma 2 (iii)) is a stability 
matrix with respect to ~l' that is, for any p.d.h. Q(s), 
there is a unique p.d.h. P( s) such that 

P(s) - Z*(s)P(s)Z(s) = Q(s), all s E Ro, (12.b) 

where Z*(jw) = ZT( -jw). 
(ii) l\ssume that E(O) =f:. 0 and sUPsd\tJAmaxIZ*(s)Z(s)J) < l. 

Let C(s) ~ 0, s E Ao (a semidefinite positive matrix in 
IR - {O}) be arbitrary and of n-order. Then, there exists a 
positive matrix X(.) E Rnxm , all s E Ro, such that 

F( C) = [~ ~] ~ 0; 

X(s)=GS([~ ~]) 
= C(s) - Z*(S)X-l(s)Z(s) 

(13) 

if and only if Zoo(s) > 0, which case X(s) = GS(Zoo(s», 
all s E Ao, is a solution where GS(.) denotes the generalized 
Schur complement and Zn(s) is given by 

C Z* 
Z C Z* 0 

Zn(s) = Z 
0 Z C Z* (14) 

Z C 
n E 1. is greater than unity, 
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where Z 00(' ) is the block tridiagonal matrix of infinite blocks 
whose diagonal entries are all A, whose subdiagonal and su­
perdiagonal entries are Z and Z*, respectively (Z ~(. ) in (14) 
is defined by the first n X n blocks of the upper right portion 
of Zoo(. )). 

Also, there exists a solution P( s) > 0 to (12. b) for 

Q(s) =X(s) + X-l(S) - C(s) 
- --1 

=Zoo(s) - Zoo (s) - C(s), Vs E Ro, (15) 

and Sp, Eq. 1, is asymptotically stable. 
Proof Proposition (i) follows from Lemma 2 (ii), which requires 

Condition (it), and the equivalence between the continuous frequency­
dependent Lyapunov equation (12.a) in (i2) and Condition 2 in Lemma 2 
(ii) (Agathoklis and Foda, 1989). Proposition (ii) is proved as follows. 
Let GS[F(C)] = C - Z* X.:... 1 Z be the generalized Schur comple­
ment (or shorted operator) of the partitioned matrix F( C), Eq. 13. The 
(bounded) matrix F( C) on the Hilbert space 1{ of the square integrable 
functions x E L2( -00,00) of the solutions of (1) endowed with the 
norm (x, x) = J~oo II x(j w ) 112 dw. Such functions are square integrable 

as a direct consequence of proposition (i). Consider Zoo = limn -+oo Z n 

with Zn defined in (14), as an operator on Z2(Pj, 1{), the Hilbert space 

of all sequences x = {xdi::l' with Xl = Xl in 1{, and 2:~1 IIxdl 2 < 
00 and the Xi generated from (14) defined for any arbitrary partition Pj 
of Zany j E zt, for the solution x( t). First note that a positive definite 
solution X ( s) fulfilling (13), all s E R verifies 

[c X*] = [X 0] [z* 0] [X-1 / 2 

ZX 00+ 0 I 0 X~1/2] 
[I I] [X- 1 / 2 0] [Z 0] + I I 0 Xl/2 0 I ' (16) 

Vs E Ro and, thus, F(C) ~ 0, any matrix C E Rnxn all S E Ro 
and the right-hand-side of the second equation in (13) is indeed a shorted 
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operator. In the case of singular X, the positive condition will be required 
as an ,additional hypothesis. Now, X = GS[F( C)] is a positive operator 
iff Zoo is positive in which Cl:!.se X = G S ( Zoo) is a solution to the 
second equation in (13) (Anderson et al., 1990). The remainder of the 
proof is done by assuming that pes) > 0 exists for(12.b), all s E Ro. 
Define Xes) = pes) - X-l(s), all s E Ro. Substitution of this 
identity.into ( 12. b) yields 

Q(s) = (X-l(s) +X(s)) - S*(S)(X-l(S) +X(s))Z{s). (17) 

By adding (C + X) to both sides of the (17) and by taking into 
account that there exists a solution X = G S ( Zoo) to the second equation 
in (13), it follows that 

Q(s) + C(s) + Xes) = X-l(s) + Xes) + Xes) 

- Z*(s)X(s)Z(s) + C(s) - Z(S)X-l(S)Z(s)::::} 

Q(s) = pes) + Xes) - Z*(s)X(s)Z(s) - C(s) 

= X(s) + X-l(s) + X(s) - Z*(s )X(s )Z(s) - C(s), (18) 

since P( s) = X-I ( s) + X ( s ). Substitution of the second equation of 
(13) into (18) yields 

Q(s) :::::X-l(S) - Z*(s)X-l(s)Z(s) 

+ Xes) - Z*(s)X(s)Z(s), (19) 

which is positive definite for any X E Rnxn , all SEAt provided that 
Amax(Z*(s)Z(s)) < 1, all s E Rt. The equivalence between (12.b) 
and (19) yields a unique solution P( s) > 0 to (12.b) from Proposition 
(i) since Q(. ) > O. The proof is complete. 

Note that Eq. 12.a is the continuous Lyapunov equation while 
Eq. 12.b is the discrete Lyapunov equation whose existence of a solution 
is dealt with again in Theorem 1 (ii). Extensions of proposition (ii) to the 
continuous Lyapunov equation (12.a) can be done althouhg they are more 
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involved. Tests for the existence of a solution to X = C - Z* X-I Z 
leading to the existence of a solution for (12.a) can be obtained by com­
bining several results in Anderson et al. (1990) and Theorem 2 as follows. 

Theorem 2. The next propositions hold: 

(i) Let F(C) ~ O. Then, range(Z) C range(X I / 2 ) and there is 
a unique matrix M satisfying the following three conditions: 

(i.1) Z = X I / 2 M, 
(i.2) K er(Z) = K er(M), 
(i.3) range(M) ~ range(X), 
and this matrix satisfies 

X = GS[F(C)] = C - M* M. 

(ii) For any n-vector c, 

and, futhermore, 

GS[F(X)] = sup{X: Diag (X : 0) ~ F(X), 0 ~ X}. 

(iii) Assume that E is a positive matrix, partitioned as 

Let GS2(E) denote the shorted operator of E to the upper 2 x 2 
block, for example in the invertible case, GS2(E) may be written 

Then GS(E) = GS(GS2(E)). 
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then Zoo = limn _ oo Z n ~ ° in (14) and a solution X ~ ° 
exists for the second equation in (13). If E(O) =f. ° and Q(.) 
is defined by (15), the Sp is asymptotically stable provided 

sUPsERo (Amax IZ*(s )Z(s)1 < 1). 
(v) Ifin proposition (iv) C and Z are both positive (and hence Z = 

Z*), then Z 00 ~ ° if Y ~ 0. If, in addition, E(O) =f. ° and 
Q(. ) is defined by (15) for all s E Ro, then Sp is asymptotically 
stable. 

Note that Theorems 1-2 can be easily extended to deal with stability 
of the closed-loop systems (8)--(9) and (11) obtained by linear feedback 

and eventually subject to external delays. Such an extension can be per­
formed by modifying the matrices A and Ao of (1) by including the 
controller matrices J( and J( o. Note that the usefulness of Theorem 2 
(i)-(iii) lies in checking the positiveness of GS(F(C)) for some matrix 

C ~ ° so that the existence of a solution X to (13) is guaranteed. This 
implies the existence of a solution to a particular discrete Lyapunov equa­

tion (see (12.b) and (15) and see Theorem 1) so that Sp is asymptotically 

Lyapunov stable. 

3. Distributed delay systems 

3.1. Stability. Consider the different system 

h 

(Sd): x(t) = Ax(t) + J Ao(O)x(t - O)dO, (20) 
o 

where x(.) is an n-vector initilized on [-h, 0] by an absolutely continu­

ous function <p[-h,O]- Rn , A E Rnxn and Ao([-h,O],Rnxn ) E 
Ll(-h,O). 



398 Stability and the matrix Lyapunov equation 

From (20), the characteristic equation of S d is 

Det[sI - A - Ao(s, h)]= 0, (21) 

where Ao(s, h) = J: Ao(B)e-()sdB. A particular case of interest is 

when Ao(B) = eA~() with A~ E Anxn. In this case, the particular 

system S~ of S d is given by (20) with 

h 

Ao(s, h) = J eA~() e-()sdB 

o 
h h 

= J e(A~-sI)()dB = J eA(s)() dB, (22) 

o 0 

since the series L~=o A K t K / K! converges uniformly to the function 

eAt for all real t, Eq. 22 can be rewritten for all s not being an eigenvalue 

of A~ as 

(23) 

Thus, the characteristic equation (21) reduces to 
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Define the matrix function Ao ( s, h) .= e hs Ao ( s, h) which, in the 
particular case (22), becomes 

The characteristic equations (21) and (24) can be rewritten, respec-
tively, as 

Det[sI - A - ehs Ao(s, h)] = 0, (26) 

and 

Thus, Lemma 1 remains valid with the change Ao ~ Ao ( s, h) so 
that Eq. 3.a becomes 

for ZI :- s-1 (s =1= 0), Z2 = s and Al being an arbitrary n X n-matrix 
with 

with Ao(s, h) = ehs Ao(s, h), Ao(s, h) = Joh Ao(B)e-OS dB. In the 
particular case of (22) and (25), one gets 

S(zJ) = S(l/s) =S(AI - s1)-1 [AI - A - e-hS(sI - A~)-1 

X (e hs I - eA~h)], (30) 

and S( s) in Lemma 2 (ii) becomes 

S(s) = (AI - A - e-hs Ao(s, h)) (31) 

with Ao(s, h) = Joh Ao(B)e-OSdB and 

S(s) = [AI - A - e-hS(sI - A~)-I(ehs I - eA~h)]. (32) 
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In both cases, a strictly Hurwitz matrix Al (s) (i.e., Det Al (s) =1= 0, 
all sED) can be considered. The next results stands. 

Lemma 4. Lemmas 1-2 and thus Theorems 1-2 apply mutatis­
mutandis for system Sd, Eq. 20, (including the particular case of 
system S~ Eq. 20 and 22) provided that A~ is nonsingular and 

E(O) = -Det(A + Ao(s, h)) =1= 0 (Or, in particular, E(O) = 
-Det(A + A~-I(I - eA~h)) =1= 0) subjected to the definitions 
Eqs.29-32. 

3.2. Free external delay system. Assume that S d is forced with free 
external delay as follows 

h 

(S~): x(t) = Ax(t) + J Ao(B)x(t - B) dB + Bu(t), (33) 
o 

where u E I Rm and BEl Rn x m are, respectively, the control vector 
and control matrix. 

3.2.1. Stabilizing control law. Assume the control law 

h 

u(t) = Kx(t) + J Ko(B)x(t - B) dB, 
o 

where K and K 0 (.) ERn x m. Define K 0 ( s, h) and ]{ 0 ( s, h) as 
follows 

h 

Ko(s, h) = e-hs Ko(s, h) = J Ko(B)e-oS dB. (35) 
o 

As in the control law (9) for Sp, particular control laws may be obtained 
from (34) (see Remark 2.). 
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The closed-loop characteristic equation associated with (33)-(34) be­
comes: 

Det[sI - (A + BK) - e-hS(Ao(s, h) + BKo(s, h))] = 0, (36) 

which cannot have roots in D in order the system to be asymptotically 
stable. Lemma 3 applies to this characteristic equation with the change 

(Ao + BKo) -+ Ao(s, h) + BKo(s, h). In particular, the closed­
loop system is asymptotically stable if (A + BK) is strictly Hurwitz 
(which requires that the pair (A, B) is stabilizable) and Det [Ao(s, h) + 
BKo(s, h)] =f. 0, all sED. 

In the particular case S~, Eq. 22, and provided that 

(37) 

and A~ and K~ are n X nand m X m nonsingular matrices, Eq. 36 
becomes 

Det{ sI - (A + BK) - e-hs [(sI - A~)-l (e hs I _ eA~h) 

+ B(sI - K~)-l (e hs I - eK~h)] Ko } =f. 0, 'Is E D (38) 

and the results of Sections 2-3 can be again applied. 

3.3. External delay system. Assume that the closed-loop system 
possess an external delay h' > 0, namely: 

h 

(S~') : x(t) = Ax(t) + J Ao(B)x(t - B) dB + Bu(t) 
o 
h' 

+ J Bo(B)u(t - B) dB, (39) 
o 
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where Bo(.) E Rnxm , and is subjected to the control law (34). The 
closed-loop system becomes 

h 

x(t) = [A + BK]x(t) + J [Ao(O) + BKo(O)] x(t - 0) dO 
o 

h' [. h ] 
+ (Bo(6) Kx(t ~ 6) + / KO(7)X(t ~ 6 ~ 7) d7 d6.(40) 

and the condition for asymptotic stability is 

h h' 

Det{ sl + BK) - J [Ao(O) + BKo)] e- Bs dO - J Bo(O)K e- Bs dO 
o 0 

h' h -J J Bo(O)Ko(r)e-(B+r)s drdO} i= 0, 'is E D. (41) 
o 0 

In the particular case of (22), one has 

Ko(s, h) = [i e(K;-'I)'d6] Ko; 

Bo(s,h)· [{ IB;-'I)'d6] Bo, 

(42) 

where Ko and Bo are m X nand n X m matrices, respectively while 
Kb and Bb are m X n matrices. In this case, Eq. 41 becomes modified 
as follows 
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+ B(sI - K~)-l(ehs I - eK~h)Ko 
+ ehS(sI _ B~)-l(I _ e(B~-sI)h) 

X Bo(sI - K~)-l(I - eK~-sI)h')Ko 

+ ehS(sI - B~)-l(I - e(B~-SI)hl)BoK]} =I- 0 (43) 

for all sED. Again, results of Sections 2 and 3 apply to the char­
acteristic equations (41) and (43) with the changes A --7 A + BK, 
Ao --7 Ao(s, h) and E(O) obtained from Det[sI - (A + BK) -
e-hs Ao(s, h)]ls=o. In particular, the necessary condition for stability 

E(O) =I- 0 is 

E(O) = - Det[A + BK - A'~\I - eA~h) 

- BK'~\I - eK~h)Ko - B'~\I - eB~hl)K 

+ B'~l (I - eB~h)BoK'~l(I - eK~h' )Ko] =I- 0, (44) 

provided that n x n-matrices A~ and Bb and the m x m matrix Kb are 
nonsingular. Thus, a set of particular conditions (which imply together 

that Eq. 43 has all its roots in D, namely, for (S~'), Eq. 39, subjected 
to distributed delays fulfilling (22), is asymptotically stable is (Lemma 2 

(ii». 
(a) E(O) =1= 0 (Eq. 44); A~, Bb and Kb are nonsingular; 
(b) (A + B K) is strictly Hurwitz (Note that it always exists a stabiliz­

ing K provided that (A, B) is a stabilizable pair) and Det[ Ao ( s, h, 
h')] =1= 0, "Is E D, where 

Ao(s, h) =(sI - A~)-l(ehs I _ eA~h) 

+ B(sI - K~)-l(ehs I - eK~h)Ko 

+ ehS(sI _ B~)-l(I _ e(B~-sI)h) 

X Bo(sI - K~)-l(I - e(K~-sI)hl)J{o 

+ ehS(sI - B~)-l(I - e(B~-sI)h')BoJ{. (45) 
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REMARK 3. Note that Lemmas' 1-3 and Theorems 1-2, related to 
sufficient conditions for asymptotic stability apply to the various classes of 
distributed delay systems (Sd, S~, S~, S~/) and its closed-loop versions 
for the given control laws with the only appropriate modifications of 

E(O), S(s), Z(s), A and Ao(.) 

3.4. Mixed point-distributed delay systems. Consider the au­
tonomous system 

h 

(Sm): :i:(t) = Ax(t) + Aox(t - ho) + J eAo9x(t - 0) dO (46) 
o 

under the initial conditions given for systems Sp, Eq. 1, and S~, Eqs. 20 
and 22. ho and h are positive point and distributed delays, respectively. 
Eq. 46 can be extended to use of a matrix function Ao (0) of entries 
of bounded variation as in Section 3.1 (see Sd Eq. 20). System Sm is 
asymptotically Lyapunov stable iff 

Det[s1 - A - e-hos Ao 

- (s1 - A~0-1(1 - e(A~-sI)h)] "/: 0, Vs E D. (47) 

This condition can be splited in two, one being related to the static 
conditions through E(O) = -Det[A + Ao - A~-l(I - e{h)] "/: 0, 
provided that A~ is nonsingular, :nd another one related to the fact that 

the roots of the corresponding S( s )-matrix (obtained as in Lemma 2) 

must belong to Do In this way, the generalizations of Lemmas 1-3 and 
Theorems 1-2 to Sm is inmediate. Their extensions for results on closed­
loop stability are also direct. 

4. Mixed point-distributed delay systems with extended differen­
tial-difference representations. Systems with commensurate delays 

4.1. Mixed point-distributed delay systems. First, system S m , 

Eq. 46, having mixed point-distributed delay is interpreted as a mixed 
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differential-difference delay system. Taking Laplace transforms in (46) 

with zero initial conditions, one gets 

[sf _A_e-hos Ao -(f _e~~-sI)h)(sf _A~)-l]x(s) = O. (48) 

Define the auxiliary variable Xl ( s) = (sf - A~ ) -1 x( S ). Thus, we 

have in the time-domain the next differential 2n-system which has the 

same characteristic equation (48) as Sm, Eq. 46: 

(s:n): x(t) =Ax(t) + Aox(t - ho) 
A' h + (f - e 0 )Xl(t) - Xl(t - h), 

Xl(t) =A~Xl(t) + x(t) 

(49.a) 

( 49.b) 

with appropriate initial conditions. On the other hand, it is possible to 
rewrite (48)-(49) in operational form as follows 

where Zl = e-hos; Z2 = e-hs and ..4(s) = sf - A. Note that 

= Det A(s) - zlAo (e 0 - I) + Z2 f =1= 0 [
"AI h 1 

-f sf - A~ 
(51) 

for all (s, Zl , Z2) E D X U X U, for asymptotic stability. Direct calculus 
with Schur's complement in (51) gives 

E(S,Zl,Z2) =Det(A(s) - zlAo)Det(sf - Z(Zl,Z2)) (52.a) 

=Det(A( s ))Det(f - ZI, A-I (s )Ao) 

(52.b) 
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where Z(Zl,Z2) = Ati + (zll X(s) - AO)-1[(Z21 I - eA~h) - 1l. 
Note that (52) can be rewritten, by eliminating the complex argument s 
in the second factor of (52.b), as 

E(s, Zl, Z2) =Det(s1 - A)Det(I - zlA-1( -l/ho In zJ)Ao) 

x Det(s1 - Z(ZI,Z2)). (53) 

The following result follows from (52.b) and (53). 

Lemma 5. Bp is asymptotically stable if the following condi­
tions hold 
(i.1) A has all its eigenvalues in D. 
(i.2) X-l(-l/holnzI)Ao has all its 'eigenvalues in U 

(or X-I(s)Ao has all its eigenvalues in f) for all s E R). 

(i.3) Z (Zl, Z2) has no eigenvalues in D for all (Zl, Z2) E TxT (or, 
Z(zI) = Z(ZI, Z2. ~leAh/holnZl), for ~h = (h - ho), 
has no eigenvalues in D for all Zl E T). 

Thus, Lemma 5 gives sufficient stability conditions in the sense that 
E( S, Zl, Z2) =I 0 in D x U x U (i.e, the characteristic polynomial is 
void of zeros in the non-compact hyperplane composed of the closed right 
half-plane and the two dimensional closed unit disc. This zero criterion 
is stronger than the asymptotic stability condition (47) of Section 3 since 
D X U X U has more points than D x exp( - D) x exp ( - D). Therefore, 
the stability results based only on this zero criterion are 'moreconservative 
than those given in Section 3 Agathoklis and Foda (1989). 

Frequency-dependent Lyapunov equations and the associated stabil­
ity conditions follow inmediately from (52)-(53) in the same way, as in 

Section 2-3 (see Theorems 1-2 and Remark 3). 
Now, assume that B:n, Eq. 49, is substituted by: 

(Be): x(t) =Aox(t - ho) 
A' h + (I - e 0 )Xl(t) - XI(t - h), 

Xl (t) =A~XI (t) + x(t) 

(54.a) 
(54.b) 

This system is called a point-commensurate delay system because it 
involves mixed differential-difference equations. The particular case dealt 
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with in Agathoklis and Foda (1989) can be equivalently described by a 
differential equation involving point delays. 

The characteristic equation implies that 

(55) 

all (s, Zl, Z2) E D X U X U for Zl = e-hos, Z2 = e-hs in order Se 
to be asymptotically stable. 
Note that 

where 

Thus, the next result stands. 

Lemma 6. System Se Eq. 54 is asymptotically stable if the 
following conditions hold 

(i. I) A has all its eigenvalues in U. 
(i.2) Z(Zl,Z2) has no eigenvalues in D for all (Zl,Z2) E TxT (or 

Z(zJ) = Z(Zl, Z2 = Zle~h/ho In Zl), llh = (h - ho), has no 

eigenvalues in D for all Zl E T). 
Assume that ho = h so that Z = Zl = Z2 = e-hs so that 

E(s, z) = Det(I -zAo)Det(sI -Z(z)) and Z(z) = A~ +(z-l 1-
Ao)-l [z-l(I -eA~h)-Il. Thus, asymptotic stability is guaranteed 

by modifying (i.2) so that S(z) has no eigenvalues in D for all 
z E T. If A~ = 0 in (54) (namely, there is a point delay only), then 
the result holds with Z(z) = (z-l 1- Ao)-l. 

REMARK 4. Note that the use of Schur's formula in (55) for Se 
leads to 

E(S,Zl,Z2) = Det(I - zlZ(s))Det(sI - A~), (56) 
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or the modified expression corresponding to (52), where Z ( s) = Ao + 
[z;l(I - eA~h) - I](sI - Ati)-l. Thus, an equivalent criterion for 

asymptotic stability to that in Lemma 6 is: Ari is strictly Hurwitz and 

Z ( s) has all its eigenvalues in U, all s E R. 
As in section before, Theorems 1-2 can be applied to derive condi­

tions for the determinant Eq. 56 to have all its zeros in D X U leading 

to frequency-dependent Lyapunov equations. Note that Lemma 1 (ii) ap­

plies "mutatis-mutandis" and so Theorem 1 (i) (as much as Eq. 12.b is 

concerned) and Theorem 1 (ii), and Theorem 2. 

4.2. Commensurate delays. Note that if Ati = 0 and h = ho ~ 
z = ZI = Z2 . e-hs , then the characteristic Eq. 55 

(S,). [Xl(t + h)] = [Ao -I]. 
c· X2(t) I 0 ' (57) 

y = [EI : E2 ]x 

with x = [xi : xf]T and appropriate matrices of parameters E1,2. 

Eq. 57 describes a delay differential system with commensurate delay 
which is given by the functional differential equation 

whose autonomous 2-D state-space model is, in general, an extension of 
(57) to 

[xI(t+h)]=[AO AI]. 
X2(t) A2 A3 ' (59) 

some Ai E Rnxn (1 = 1,2,3,4). 

5. Stability and the CBR and DPR lemmas. In this section, the 

stability interpreted in terms of real positiveness of a square matrix. First, 
the next definitions are borrowed and extended from Agathoklis and Foda 

(1989). 



M. de la Sen 409 

DEFINITIONS. (1) Let Z(s) be a square matrix over R(s). It is 
called continuous strictly bounded real (CSBR) if the following holds: 

(i) Z ( s) is analytic in D; 
(ii) 1- Z*(s) Z(s) > 0, all s E Fit (60) 

If (i)-(ii) stand only on Do and Ro, respectively, then Z ( s) will be 
called continuous bounded real (CBR). 
(2) Let S ( z) be a square matrix over R (z ). It is called discrete strictly 
positive real (DSPR) if the following holds: 

(i) S (z) is analytic in U. 
(ii) S*(z) + S(z) > 0, all sET. (61) 

If (i)-(ii) stand only on UI and TI , respectively, then Z (s) will be 
called discrete positive real (CPR). 

REMARK 5. As pointed out in the above reference, the CBR matrix 
definition compared to Theorem 1 (i) leads to the implication from (60) 
to (12.b) provided that this one is extended to all s in R and admits the 

.............. 
constant solution P = T*T over Fit However, the converse is not true. 

REMARK 6. Note that condition 2 in Lemma 2 (ii) can be rewritten 
as S(z) = (AI - A - zAo) with z = e-hs • Thus, the fact that S(z) 
has no eigenValues in Do for all z E T can be described in terms of 
a discrete frequency-dependent Lyapunov equation as follows; S( z) is a 

stability ~atrix with respect to Do if for any p.d.h. Q( z), there exists a 

unique P( z) being p.d.h. such that 

-* -.." "......", - ,...., 
S' (z)P(z) + P(z)S(z) = -Q(z), all z E TI , (62) 

which is equivalently to (l2.a). 

REMARK 7. As a direct consequence of Theorem 1 (i) and Remarks 
4--6, it follows that Condition 2 of Lemma 2 (ii) for Sp can be tested 
through Eq. 12.b (Theorem 1 (i» an similarly, guaranteed if (60) holds. 

Alternatively, it can be checked under (62) or (12.a) and guaranteed if 
(61) holds. Similar arguments can be used for the various open and 
closed-loop delay systems which have been dealt with in this paper. 

Lemma 7. The following propositions hold: 



410 Stability and the matrix Lyapunov equation 

(i) (CBR lemma). Suppose that the q~adruple {F, G, HT, J} 
is a minim~l realization of Z(s), Eq. 60, i.e., 

The, Z (s) is CSBRiff there exists P p.d.s. such that 

(64) 

(i.e., Q1 is n.d.s.). Eq. 64 holds with Q1 ~ 0 iff Z( s) is CSBR. 
(ii) (DPR lemma). Suppose that the quadruple {F, G, H T , J} is 

a minimal realization of Z(s), Eq. 61, i.e., 

Thus, S(z) is DSPR iff there exists P p.d.s. such that 

[ FT P F - P FT PG - H ] 
Q2 = (FTpG-Hf GTpG _ J _ JT < O. (66) 

Eq. 66 with "~" (i.e., Q2 is semidefinite) iff S (z) is DPR. 

The next result stands as an alternative to Theorem 2 (iv)-(v). 

Lemma 8. Condition (i2) of Theorem 1 (i) is ensured if S( s) 
is CBR (Definition 1) or alternatively and equivalently by S(z = 
e-hs ) being DBR (Definition 2) (see Remarks 5-7). Thus, Sp, 
Eq. 1 is asymptotically stable if Condition (it) of Theorem 1 (i) 
holds. 

REMARK 8. Note that, according to Lemmas 3-5, and Remarks 

4-5, Lemma 8 applies "mutatis-mutandis" for systems Sd, Sd, SJ, SJ', 
Sm, S:nS:n, Se and S~ as well as for their closed-loop versions through 
the appropriate changes in the various matrices of parameters. 
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6. Iterative computational procedure. Note that Z n ffi 0 --+ Zoo 
strongly and that Zoo> 0 -{::=} Z n > 0 for all n. Formally define 
Zoo: 12((H) --+ 12(H) by 

i = 1, 
i.> 1, 

(67) 

where H is discrete Hilbert space obtained from initial conditions in 
H (i.e., the initial state vector - see Eq. 12.b) and the application of 
(67). Let Zn = [Z; 0; ... ; 0] a block 1 x n partioned matrix and let 

Zoo = [Z; 0; ... ; 0]. Thus, 

Zn(C) = [C Z~_l] , 
Zn-1 Zn-1 . 

- [C Z*] Zoo(C) = Zoo Z: . 

(68) 

If Zoo ~ 0 then let Moo (namely, the operator of Theorem 2) 
-* -1/2 - * 

be such that Zoo = Zoo Moo and GS(Zoo(C)) = C - MooMoo. 
Similarly, for Zn(C), define Mn- 1, Zn-1, Z~_l and GS (Zn(C)) = 
C - M~_l M n - 1 . 

Define a sequence of positive operators 

Xo=C, X1=GS([~ 10]); 
Xn+1=GS([~ ~:l); 

(69) 

X n --+ X 00 strongly in the strong operator topology and the shorts of the 
upper-left hand n X n blocks of an operator converge, in the strong opera­
tor topology, to the short of that operator (Anderson et aI., 1988), namely, 

Xn --+ GS(ZnC)) as n --+ 00 strongly so that GS(Zn(C)) --+ X 
strongly in that topology. 

Conclusions. This paper has presented a method to derive sufficient 
conditions for asymptotic stability of linear and time-invariant systems 
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involving delays. Several cases have been considered by including point, 

distributed, mixed point-distributed and commensurate delays. The stabil­
ity criteria are based upon the use of mixed Laplace and delay operators in 
2-D and 3-D state representations which lead to (sufficient) conditions for 
asymptotic stability stated over biplanes or hyperplanes through the use 

of Schur's complements of operators. An interpretation of those stability 
conditions is given in terms of frequency-dependent Lyapunov equations. 
Such conditions can be tested by using an iterative procedure involving 
the use of (generalized) Schur's complement for operators. 

Acknowledgments. The author is very grateful to Direcci6n General 
de Investigaci6n Cientffica y Tecnica by its partial support of this work 
under grant PB 87--0002. . 

REFERENCES 

Agathoklis, P., and S.Foda (1989). Stability and the matrix Lyapunov equation 

for delay-differential systems. Int. J. Control, 49(2),417-432. 

Anderson, W.N., T.D.Morley and G.E.Trapp (1988). The cascade limit, the shorted 
operator and quadratic optimal control. In Christopher 1. Byrnes, Clyde F. 
Martin and Richard E. Saeks (Eds.), Linear Circuits, Systems and Signal Pro­
cessing; Theory and Applications, North-Roland, New York. pp. 3-9. 

Burton, T.A. (1985). Stability and Periodic Solutions of Ordinary and Functional 
Differential Equations. Academic Pres, New York. 

De la Sen, M. (1988). Fundamental properties of linear control systems with after­

effect. Part 1: The continuous case, Mathematical Computer Modelling, 10(7), 
473-489 Part 2: Extensions including the discrete case, Mathematical Com­

puter Modelling, 490-502. 

Ikeda, M., and J .Ohta (1976). Stabilization of linear systems with time delay. Trans. 

Soc. Instrumen. and Control Engng., 12,637-647. 

Kwon, W.R., and E.A.Pearson (1977). A note on feedback stabilization of a 

differential-difference system. IEEE Trans. Aut. Control., AC-22, 468-471. 

Mori, T., E.Noldus and M.Kuwahara (1983). A way to stabilize linear systems with 
delayed state. Automatica, 19(5),571-576. 

Osipov, Y.S. (1965). Stabilization of controlled systems with delays. Differential 



M. de La Sen 413 

Equations, 1, 463-470. 

Thowsen, A. (1981). Stabilization of a class of linear time-delay systems. Int. J. 
Systems Sci., 12, 1485-1497. 

Received October 1994 

M. de Ia Sen was born in Arrigorriaga, Bizkaia, Spain in July, 1953. 
He obtained the M.Sc. degree with honors from the Basque Contry Uni­
versity in 1975, the Ph.D. degree in Applied Physics with high honors 
from the same university in 1979 and the degree of "Docteur d'Etat­
es-Sciences Physiques" (specialite Automatique et Traitement du Signal) 
from the Universite de Grenoble, France with "mention tres honorable" in 
1987. He has had several teaching positions in the Basque Country Uni­
versity in Bilbao, Spain, where he is currently Professor of Systems and 
Control Engineering. He has also had the positions of visiting Professor in 
the University of Grenoble, France and the University of Newcastle, New 
South Wales, Australia. He has been author or coauthor of a number of 
papers in the fields of Adaptive Systems, Mathematical Systems Theory 
and Ordinary Differential Equations, which are his research interest sub­
jects. He acts or has acted as reviewer for several international Journals of 
Control Theory and Applied Mathematics, and he is currently a member 
of the Editorial Board of the Electrosoft Journal (CML Mechanical and 
Computational Engineering Publications). 


