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Abstract. Over the past decades, many methods have been proposed to solve the linear or non-
linear mixing of spectra inside the hyperspectral data. Due to a relatively low spatial resolution
of hyperspectral imaging, each image pixel may contain spectra from multiple materials. In turn,
hyperspectral unmixing is finding these materials and their abundances. A few main approaches to
performing hyperspectral unmixing have emerged, such as nonnegative matrix factorization (NMF),
linear mixture modelling (LMM), and, most recently, autoencoder networks. These methods use dif-
ferent approaches in finding the endmember and abundance of information from hyperspectral im-
ages. However, due to the huge variation of hyperspectral data being used, it is difficult to determine
which methods perform sufficiently on which datasets and if they can generalize on any input data
to solve hyperspectral unmixing problems. By trying to mitigate this problem, we propose a hyper-
spectral unmixing algorithm testing methodology and create a standard benchmark to test already
available and newly created algorithms. A few different experiments were created, and a variety of
hyperspectral datasets in this benchmark were used to compare openly available algorithms and to
determine the best-performing ones.
Key words: hyperspectral unmixing, benchmark, matrix factorization, autoencoders, linear
mixture models.

1. Introduction

Hyperspectral imagery is used in many different areas due to the information it can cap-
ture. It is widely used in agriculture, mineralogy, food industry and others because it en-
ables fast and accurate analysis with a non-destructive data-gathering method. Usually,
hyperspectral cameras gather many light bands simultaneously but, in turn, have a small
spatial resolution. Because of this, pixels of hyperspectral images may be a mixture of
light emitted by different substances or materials, for example, different minerals cap-
tured by the hyperspectral camera while filming a quarry. The gathered light data can be
mixed in a linear or non-linear way. In turn, this mixed data may be less useful for conduct-
ing analysis; therefore, hyperspectral image unmixing is an important issue that requires
solutions. Additionally, hyperspectral cameras may gather a substantial amount of noise,

∗Corresponding author.

https://doi.org/10.15388/23-INFOR522


286 V. Paura, V. Marcinkevičius

especially when used in open fields, which creates additional errors in analysis, such as
reflection from mixed or contaminated objects, atmospheric influences, weather-induced
noise (from clouds or rain), and electrical noises from hardware.

To solve the problem of mixed data in hyperspectral pixels, hyperspectral unmixing
(HU) methods are used. HU is the process used to separate hyperspectral image pixel
spectra into a set of spectral signatures, called endmembers and their abundances for each
pixel separately. An endmember spectrum is represented in equation (1) in which Rk is
the spectral value at wavelength k, ai is the abundance of endmember i, Ei,k is the spectral
value of endmember i at wavelength k and a residual error ε at the wavelength k and n is
the total number of endmembers.

Rk =
n∑

i=1

ai · Ei,k + εk. (1)

The paper by Bioucas-Dias et al. (2012) provides a broad hyperspectral analysis al-
gorithm review upon which we expand in this paper, and because a standardized method-
ology to test the performance of HU algorithms is not available and is not used. In this
paper, we created a benchmarking methodology allowing hyperspectral methods to be
tested standardised. The proposed benchmark tests algorithm robustness to noise, several
endmembers, and image sizes and evaluates unmixing accuracy.

2. Hyperspectral Unmixing Algorithms

This section describes and reviews available algorithms used for Hyperspectral unmixing.
This section is split into three main parts describing different algorithms used. These parts
are supervised algorithms, semi-supervised algorithms, and unsupervised algorithms.
This section describes the algorithms in each category and shows the hyperspectral un-
mixing results that the authors of these algorithms acquired using experimentation. The
reviewed algorithms were also checked if the authors publicly shared the algorithm imple-
mentation code. From these openly available algorithms, a few were selected and tested
using the created hyperspectral unmixing benchmark. The code created for this paper’s
benchmark and algorithm testing implementation is published as an open source. The im-
plementation details and code is provided in Section 4.

2.1. Supervised Algorithms

Supervised algorithms are machine learning methods similar to function approximation
algorithms that try to find the connection between input and output data and, in turn,
require a collection of input and output (or ground truth) data to be present. Some examples
of supervised algorithms are the nearest neighbour (hyperspectral image classification,
Guo et al., 2018), decision tree (for example, hyperspectral classification, Goel et al.,
2003), linear regression, some types of neural networks, and many others.
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Koirala et al. (2019) proposes a supervised hyperspectral unmixing method based on
mapping true hyperspectral image spectra and the corresponding linear spectra composed
of the same endmember abundances. The suggested algorithm works in a few steps:

• Real hyperspectral dataset is gathered.
• Ground truth abundance and endmembers are used to linearly mix spectra into an arti-

ficial hyperspectral image corresponding to the real dataset.
• Both data sources are input to a machine learning algorithm to learn the mappings

between data.
• After training, the model is created and saved.
• Trained model is then tested with a part of the real hyperspectral dataset.
• A linearly mixed spectra are generated due to the unmixing resulting in the abundance

map of the hyperspectral testing dataset.

The authors used a neural network and two regression algorithms to learn the mapping
between the generated linear and nonlinear training spectra. The algorithms were tested
using 10,000 mixed spectra using 50 dB signal-to-noise ratio (SNR) Gaussian noise and
spectral signatures from USGS spectral library (Kokaly et al., 2017). The spectral mixes
were generated using the Hapke model (Hapke, 1981).

2.2. Semi-Supervised Algorithms

Semi-supervised algorithms are a combination of supervised and unsupervised learning.
Because creating a high-quality labelled dataset is a time-consuming and difficult task,
semi-supervised machine learning models may be used to help speed up this process.
These methods use as input a dataset of labelled data. By training the machine learning
method on this dataset, the created model can extrapolate data labels on a new collection
of unlabelled data. A review of automatically labelled data may already be faster than
labelling the data by hand, and with an expanding dataset, these models become more
accurate at labelling new data.

2.2.1. Sparse Regression
A regression problem is learning a function or model capable of estimating the dependent
variables from given observations or features. Sparsity refers to the input and output data
being incomplete and not fully populated. In machine learning, sparsity indicates data
that includes many zeros or other non-significant values. In turn, sparse regression is a
subcategory of regression machine learning algorithms designed to handle non-densely
packed data. The same regression algorithms can be used for sparse regression (linear,
lasso, ridge, and others), but an additional step is often required to determine the subset of
predictors. The problem of regression is learning a model that allows estimating a certain
quantity of the dependent variable from several observed variables, known as independent
variables. Table 1 shows an overview of algorithm results. More detailed explanations of
each algorithm featured in Table 1 are provided below in paragraphs of this subsection.

SUnSAL and Total Variation (SUnSAL-TV) (Iordache et al., 2012) is a variation of the
SUnSAL algorithm with an added total variation regularization which spatial informa-
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Table 1
Comparison of the results of sparse regression algorithms.

Algorithm Dataset Metrics Result

SUnSAL-TV
(Iordache et al., 2012)

Synthetic data based on
USGS library samples
ASTER

SRE USGS synthetic data:
SRE = 12.6753 dB
(SNR = 40 dB; 5 signatures)
ASTER:
SRE = 14.6485 dB
(SNR = 40 dB; 5 signatures)

SUnSAL
(Bioucas-Dias and
Figueiredo, 2010)

Gaussian
Synthetic data based on
USGS library samples

RSNR Gaussian:
RSNR = 48 dB (SNR = 50 dB)
USGS synthetic data:
RSNR = 23 dB (SNR = 50 dB)

C-SUnSAL
(Bioucas-Dias and
Figueiredo, 2010)

Gaussian
and Synthetic data based
on USGS library samples

RSNR Gaussian:
RSNR = 47 dB (SNR = 50 dB)
USGS synthetic data:
RSNR = 14.5 dB (SNR = 50 dB)

CLSUnSAL
(Iordache et al., 2014)

Synthetic data based on
USGS library samples

SRE SRE = 21.47 dB (SNR = 40 dB; 2 endmembers)
SRE = 13.96 dB (SNR = 40 dB; 4 endmembers)
SRE = 8.79 dB (SNR = 40 dB; 6 endmembers)

S2WSU
(Zhang et al., 2018)

Synthetic data based on
USGS library samples

SRE USGS synthetic data 1:
SRE = 20.5709 dB (SNR = 30 dB)
SRE = 41.4053 dB (SNR = 50 dB)
USGS synthetic data 2:
SRE = 19.5999 dB (SNR = 30 dB)
SRE = 36.5364 dB (SNR = 50 dB)

SUSRLR-TV
(Li et al., 2021)

Synthetic data based on
USGS library samples

SRE USGS synthetic data 1:
SRE = 7.59 dB (SNR = 10 dB)
SRE = 24.98 dB (SNR = 30 dB)
USGS synthetic data 2:
SRE = 10.81 dB (SNR = 10 dB)
SRE = 35.68 dB (SNR = 30 dB)
USGS synthetic data 3:
SRE = 5.01 dB (SNR = 10 dB)
SRE = 22.27 dB (SNR = 30 dB)

MCSU
(Qi et al., 2020)

Synthetic data based on
USGS library samples
Cuprite dataset
Jasper Ridge

SRE
RMSE

USGS synthetic data:
SRE = 33.0992 dB (SNR = 40 dB)
Cuprite: RMSE = 0.0575
Jasper Ridge: SRE = 13.5567 dB

SVASU
(Zhang et al.,
2022)

Synthetic data based on
USGS library samples
Jasper Ridge dataset

SRE USGS synthetic data:
SRE = 34.33 dB (SRE reconstruction)
SRE = 1.78 dB (SRE abundance)
Jasper Ridge dataset:
SRE = 19.56 dB (SRE reconstruction)
SRE = 8.14 dB (SRE abundance)

SBWCRLRU
(Su et al., 2022)

Synthetic data based on
USGS library samples
Samson dataset
Jasper Ridge dataset

SRE USGS synthetic data:
SRE = 20.24 dB (SNR = 20 dB)
SRE = 34.66 dB (SNR = 30 dB)
SRE = 44.59 dB (SNR = 40 dB)
Samson dataset:
SRE = 17.03 dB
Jasper Ridge dataset:
SRE = 17.37 dB
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tion for better spectral unmixing results. The created total variation regularizer accounts
for spatial homogeneity because it is very likely that neighbouring pixels will have quite
similar abundance fractions of the same endmembers. The total variation regularizer is
most commonly used as a denoising algorithm in a bigger processing pipeline. A similar
algorithm using total variation minimization to unmix and increase the hyperspectral im-
age’s spectral resolution was suggested in Guo et al. (2009). Still, it uses the N-FINDR
algorithm (Zhang et al., 2009) to infer endmembers. The authors provided the signal re-
construction error (SRE) results for the algorithm performance evaluation with values:
12.67 dB for USGS (Kokaly et al., 2017) dataset and 14.64 dB for the ASTER dataset
(NASA, 2004). The given results are lower than some of the other review algorithms, but
it is hard to compare because the synthetic data is created differently by different authors.

The Sparse Unmixing by variable Splitting and Augmented Lagrangian (SUnSAL) and
Constrained SUnSAL (C-SUnSAL) algorithms (Bioucas-Dias and Figueiredo, 2010) are
based on the alternating direction method of multipliers (ADMM) (Gabay and Mercier,
1976). The ADMM algorithm splits a difficult problem into an array of simpler problems.
The results provided by the authors are in dB values of the reconstruction signal-to-noise
ratio (RSNR) metric, and both algorithms were tested using 50 dB of artificial noise. SUn-
SAL algorithm got RSNR values of 48 dB and 23 dB for Gaussian and USGS (Kokaly et
al., 2017) datasets, while SUnSAL-TV got 47 dB and 14.5 dB, respectively.

Collaborative Sparse Unmixing by variable Splitting and Augmented Lagrangian
(CLSUnSAL) (Iordache et al., 2014) is an elaboration of a previous algorithm SUnSAL
introduced in Bioucas-Dias and Figueiredo (2010). The difference between the SUnSAL
and collaborative SUnSAL algorithms is that the non-constrained algorithm performs re-
gression on each pixel independently, while the constrained algorithm calculates sparsity
for all pixels. Algorithm performance results provided by the authors were in the SRE
metric with dB as the unit and an artificial noise level of 40 dB SNR. The results were
21 dB for 2 endmembers, 14 dB for 4 endmembers, and 8.7 dB for 6 endmembers.

Spectral–Spatial Weighted Sparse Unmixing (S2WSU) (Zhang et al., 2018) is a hyper-
spectral unmixing framework that tries to get a sparse solution that is constrained by both
spectral and spatial domains at the same time. It implements ADMM for parameter and co-
efficient optimization purposes. A dataset generated from USGS spectral library (Kokaly
et al., 2017) is used to determine the algorithm’s performance and compare it to other
popular solutions. Synthetic cubes were used to test the algorithm with SRE as the given
metric with results: 20.5 dB for the first cube and 19.6 dB for the second cube with given
SNR of 30 dB.

Superpixel-based Reweighted Low-Rank and Total Variation (SUSRLR-TV) (Li et al.,
2021) is a sparse unmixing algorithm based on simple linear iterative clustering (SLIC)
algorithm to segment the hyperspectral images into homogeneous regions and combining
total variation and ADMM algorithm to calculate abundance maps. The algorithm was
tested using three synthetic data cubes created with different abundances and endmembers
gathered from USGS spectral library and using the Cuprite dataset (NASA, 2015). A set
of different datasets were used to determine the algorithm performance. The synthetic
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datasets were used to get accurate metrics, and the Cuprite dataset was used to inspect the
algorithm’s performance visually.
Spectral-Spatial-Weighted Multiview Collaborative Sparse Unmixing (MCSU) (Qi et al.,
2020) is a sparse regression hyperspectral unmixing algorithm based on spatial and spec-
tral correlation. The main algorithm idea is to use the existing correlations between ad-
jacent spectral bands and neighbouring pixels that are assumed to have highly correlated
information. A hyperspectral camera may have captured the same mixture of materials
in multiple groups of pixels or a transitioning mixture of materials which will have a
very strong correlation to its neighbouring pixels. The authors provide the SRE, and root
mean squared error (RMSE) metrics for algorithms performance evaluation. Three differ-
ent datasets were used with the following results: SRE = 33 dB for the simulated dataset,
RMSE = 0.057 for Cuprite dataset (NASA, 2015), and SRE = 13.55 dB for Jasper Ridge
(Zhu et al., 2014b) dataset.
Spectral Variability Augmented Sparse Unmixing model (SVASU) (Zhang et al., 2022)
is a model that takes into account the spectral variability of the same endmember spec-
tra. Principal component analysis (PCA) decomposition calculates a spectral variability
library. The algorithm adopts a two-stage decomposition of hyperspectral images: first is
the decomposition into endmember and abundance matrices, and the second is the recon-
struction error of the pixels from the first stage, taking into account the spectral variability
library. Algorithm testing by the authors was conducted on a synthetic dataset generated
from USGS spectral library (Kokaly et al., 2017), Jasper Ridge (Zhu et al., 2014b) and
Samson datasets (Zhu, 2017).
Superpixel-Based Weighted Collaborative sparse regression and Reweighted Low-Rank
Representation Unmixing (SBWCRLRU) (Su et al., 2022) is a hyperspectral unmixing al-
gorithm that utilizes spatial-spectral data and incorporates superpixel segmentation meth-
ods. The segmentation algorithm divides the hyperspectral image into homogeneous re-
gions with similar properties. For the superpixel segmentation, the authors adapt the SLIC
algorithm, which enables its use for hyperspectral data and not on RGB images. To test the
algorithm, authors created a synthetic dataset using USGS library (Kokaly et al., 2017)
data and a combination of three different real-world hyperspectral data cubes: Samson
(Zhu, 2017), Jasper Ridge (Zhu et al., 2014b), and Cuprite (NASA, 2015) datasets.

2.2.2. Conclusions from Sparse Regression Related Works Review
A few key takeaways and conclusions were made from the review of semi-supervised
hyperspectral unmixing algorithms and the results provided by the authors of these papers:

• Most commonly used metric was SRE, with some papers using SNR for synthetically
generated datasets.

• The Jasper ridge dataset was the most commonly used real-world dataset in these papers,
with the MCSU algorithm having the lower SRE metric for this dataset.

• Most of the synthetically created datasets that were used to test these algorithms had an
added additional artificial noise. Most commonly, 30 dB of added noise was used.

• The SUnSAl algorithm is the most influential of the algorithms reviewed due to citation
amount and other algorithms created from it.
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• Using the Jasper ridge dataset, as it should be identical between different papers and
the SRE metric, the highest value of 19.56 dB was achieved by the SVASU algorithm.

2.3. Unsupervised Algorithms

These algorithms do not require any labelled data of previously known ground truths to
train the models. The main subcategories of unsupervised algorithms reviewed in this
paper are linear mixture models (LMM) and non-negative matrix factorization (NMF)
methods.

2.3.1. Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is an algorithm group that, as the name states,
factorizes a matrix into two separate matrices with an additional assumption that all ma-
trices have no negative elements. Because hyperspectral data cannot have negative values
and, in turn, the endmember and abundance matrices are also not negative, these algo-
rithms are widely used in hyperspectral unmixing. Table 2 summarizes the datasets and
metrics used in testing the algorithms reviewed below and the results achieved by the
authors of corresponding papers.

The spectra at each hyperspectral image pixel are assumed to be a linear mixture of
several endmembers. Therefore, the image Z, which represents the whole hyperspectral
image cube consisting of three dimensions, two spatial and one spectral, can be formulated
as:

Z = WH + N, (2)

where W is the spectral signature matrix of size equal to the number of spectral bands
(frequently annotated as λ) times the number of endmembers, H is the abundance matrix
that is the size of several endmembers times the number of pixels, and N is the residual
data of size equal to several spectral bands times the number of pixels. The hyperspectral
unmixing is then performed by reversing the formula and finding the W and H matrices
from the original hyperspectral image Z.
Coupled Nonnegative Matrix Factorization (CNMF) (Yokoya et al., 2012) is an algorithm
used to unmix a high spatial resolution multispectral data and a high spectral resolution
hyperspectral data together to achieve a hyperspectral and multispectral data fusion. Mul-
tispectral data usually has a much smaller amount of separate spectral bands that it gathers
while having a higher spatial resolution than hyperspectral data. And in turn, the fusion
between both data types is used to increase the spatial resolution of hyperspectral data.
The algorithms use a vertex component analysis (VCA) algorithm to calculate the initial
endmember matrix from the spectral data and a user-set number of endmembers to find.
A peak SNR (PSNR) and spectral angle error (SAE) metrics were used by the authors
to determine the performance of the unmixing algorithm. Spectral angle error is used
to determine the accuracy of reconstructed spectra by calculating the angle of estimated
spectra in λ-dimensional space and comparing it to actual spectra. A smaller angle indi-
cates a more accurate spectral reconstruction. A value of 40 dB for the PSNR metric is
given for the algorithm performance.
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Table 2
Comparison of the results of Nonnegative matrix factorization algorithms.

Algorithm Dataset Metrics Result

CNMF
(Yokoya et al., 2012)

Synthetic data based on
USGS library samples

PSNR
SAE

PSNR = 40.04 dB (inner iter. = 300)
SAE = 0.5917 deg (inner iter. = 300)

GLNMF
(Lu et al., 2013)

Synthetic data based on
USGS library samples
Jasper Ridge dataset

SAD USGS synthetic data:
SAD = 0.0192 (Gaussian SNR = 20 dB)
Jasper Ridge:
SAD = 0.1551 (with noisy bands)
SAD = 0.1359 (without noisy bands)

LIDAR-NTF
(Kaya et al., 2021)

Synthetic data based on
USGS library samples

RMSE RMSE (64 × 64 image, 20 dB) = 0.1214
RMSE (81 × 81 image, 20 dB) = 0.1197
RMSE (64 × 64 image, 50 dB) = 0.1216
RMSE (81 × 81 image, 50 dB) = 0.1185

TV-RSNMF
(He et al., 2017)

Synthetic data based on
USGS library samples
Urban dataset

SAD
RMSE

USGS synthetic data:
SAD = 0.0452 (SNR = 10d B)
SAD = 0.0060 (SNR = 40 dB)
RMSE = 0.0496 (SNR = 10 dB);
RMSE = 0.0051 (SNR = 40 dB)
Urban:
SAD (mean) = 0.1022

R-CoNMF
(Li et al., 2016)

Synthetic data based on
USGS library samples
Cuprite dataset

SAD USGS synthetic data:
SAD = 3.68 (SNR = 20 dB)
SAD = 0.66 (SNR = 80 dB)
Cuprite:
SAD = 4.6978 (Alunite)
SAD = 4.4922 (Muscovite)

SGSNMF
(Wang et al., 2017)

Synthetic data based on
USGS library samples
Cuprite dataset
UAV-Borne dataset

SAD
RMSE

USGS synthetic data:
SAD = 0.007 (3 endmembers)
SAD = 0.04 (15 endmembers)
RMSE = 0.02 (3 endmembers);
RMSE = 0.06 (15 endmembers)
Cuprite:
SAD (mean) = 0.0913
UAV:
SAD (mean) = 0.1185

EC-NTF-TV
(Wang et al., 2021)

Synthetic data based on
USGS library samples
Jasper Ridge

RMSE
Mean SAD

USGS synthetic data: RMSE = 0.1287
USGS synthetic data: SAD = 0.0899
Jasper Ridge: SAD = 0.1248

SC-NMF
(Lu et al., 2020)

Cuprite dataset
Indiana dataset

SAD Mean SAD = 0.0902 (Indiana dataset)
Mean SAD = 0.0887 (Cuprite dataset)

CSsRS-NMF
(Li X. et al., 2021)

Synthetic data based on
USGS library samples
Jasper Ridge dataset
Urban dataset

SAD USGS synthetic data:
SAD = 0.05 (3 endmembers)
SAD = 1.4 (8 endmembers)
Jasper Ridge:
SAD = 0.0841
Urban:
SAD = 0.1753 (with noisy bands)
SAD = 0.1711 (without noisy bands)

GLNMF
(Peng et al., 2022)

Synthetic data based on
USGS library samples

SAD
RMSE

Mean SAD: 0.0951
RMSE: 0.06 (5 endmembers)
RMSE: 0.07 (10 endmembers)

(continued on next page)
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Table 2
(continued)

Algorithm Dataset Metrics Result

CANMF-TV
(Feng et al., 2022)

Synthetic data based on
USGS library samples
Cuprite dataset

SAD USGS synthetic data:
SAD = 0.13 (SNR = 10 dB)
SAD = 0.05 (SNR = 40 dB)
Cuprite:
SAD = 0.0951

SSWNMF
(Zhang S. et al.,
2022)

Synthetic data based on
USGS library samples
Cuprite dataset
Urban dataset

SAD USGS synthetic data (SNR 20 dB):
SAD = 0.0636
USGS synthetic data (SNR 40 dB):
SAD = 0.0029
Urban: SAD = 0.1034
Cuprite: SAD = 0.1128

Graph regularized L1/2-NMF (GLNMF) (Lu et al., 2013) is a hyperspectral unmixing al-
gorithm that takes into consideration the local geometrical structures of hyperspectral im-
age data. To detect the geometrical structure, graph regularization and sparsity constraints
are used. A synthetic dataset was created using the endmembers from USGS Spectral li-
brary (Kokaly et al., 2017) with the number of endmembers differing from 5 to 10. AVIRIS
Cuprite (NASA, 2015) dataset was used to test the accuracy of abundance estimation of
different minerals. In total, six experiments were conducted by the authors to test different
performance metrics. Spectral angle distance (SAD) metric (Yuhas et al., 1992) results
are given by the authors: 0.019 for the synthetic dataset, and 0.155 for Jasper Ridge (Zhu
et al., 2014b) dataset with noisy bands, 0.135 without noisy bands.

LIDAR-aided total variation regularized Non-negative Tensor Factorization for hyper-
spectral unmixing (LIDAR-NTF) (Kaya et al., 2021) proposes using a Digital Surface
Model (DSM) that is created using LIDAR data to provide accurate elevation information
about the observed scene. The provided DSM data is used in total variation regularization
as a spatial constraint, increasing the tensor decomposition accuracy, especially in areas of
the hyperspectral image with a significant height difference between neighbouring pixels.
A tensor is a multidimensional array equal to a matrix if the tensor dimension is two. The
same methods can be used for matrix and tensor decomposition if the dimension is two,
while higher-dimension tensors require different algorithms. Five randomly selected ma-
terials from USGS library (Kokaly et al., 2017) were selected to create a synthetic dataset.
An additional Gaussian noise was added to corrupt the data. An RMSE value was calcu-
lated for synthetic images, and the results were: 0.1197 with 20 dB noise and 0.1185 with
50 dB noise.

Total Variation Regularized Reweighted Sparse NMF (TV-RSNMF) (He et al., 2017) is
a blind hyperspectral unmixing algorithm based on nonnegative matrix factorization and
is implemented using reweighted sparse regularizer to promote abundance sparsity and a
TV regularizer to enhance the spatial information because the nearby pixel is likely to be
highly correlated due to similar chemical composition. RMSE values of 0.049 and 0.051
are given for 10 dB SNR and 40 dB SNR with the synthetic dataset.
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Robust Collaborative Nonnegative Matrix Factorization (R-CoNMF) (Li et al., 2016) is
an unmixing algorithm that performs three steps of a hyperspectral unmixing chain. The
three steps denoted by the authors are as follows:

• Estimation of the number of endmembers in the dataset being analysed.
• Identification of the endmember signatures.
• Estimation of the abundances in each pixel.

SAD values of 3.68 and 0.66 for a synthetic dataset with 20 and 80 dB SNR, respectively,
are given.
Spatial Group Sparsity regularized NMF (SGSNMF) (Wang et al., 2017) is a blind un-
mixing method that incorporates a spatial groups sparsity regularizer constraint that takes
into account the pixel location (spatial data) and the fact that abundance matrices are
sparse. A simulated dataset was created from USGS library (Kokaly et al., 2017), and
a real dataset was used to test the created algorithm. RMSE of 0.02 for 3 endmembers and
0.06 for 15 endmembers are given for the synthetic dataset.
Endmember Constraint Non-negative Tensor Factorization via Total Variation for hyper-
spectral unmixing (EC-NTF-TV) (Wang et al., 2021) is an algorithm that uses a proposed
endmember constraint to mitigate the high correlation between spectral signatures for esti-
mating endmembers and a total variation regularization for exploiting the spatial correla-
tion in calculating the abundance maps. The authors also use an augmented multiplicative
algorithm to solve their abundance map objective function. To test the algorithm’s per-
formance, SAD and RMSE metrics were used with synthetically generated data and the
Jasper Ridge dataset (Zhu et al., 2014b). For the Jasper Ridge dataset, a mead SAD score
was calculated from SAD values for each data class. The mean SAD for Jasper Ridge was
0.1248.
Subspace Clustering constrained sparse NMF (SC-NMF) (Lu et al., 2020) is a spectral un-
mixing framework that uses subspace clustering with NMF to improve the precision of the
unmixing. A coefficient matrix derived from the mentioned subspace clustering algorithm
instead of a simple Euclidean distance is used to create a similarity graph. A synthetic hy-
perspectral image was created from the USGS Spectral library (Kokaly et al., 2017) to
test the algorithm. SAD values for algorithm performance are 0.09 for the Indiana dataset
and 0.089 for the Cuprite dataset (NASA, 2015).
Correntropy-based Spatial-spectral Robust Unmixing Model (CSsRS) (Li X. et al., 2021)
is an unmixing model that uses correntropy-based nonnegative matrix factorization, loss
function, and a sparsity penalty. The algorithm is tested using a synthetic dataset created
from USGS spectral library (Kokaly et al., 2017) and real datasets: Jasper Ridge (Zhu et
al., 2014b), and Urban (Zhu et al., 2014a). The authors provide values of SAD to evaluate
the algorithm performance: 0.05 for a synthetic dataset with 3 endmembers, 1.4 for a
synthetic dataset with 8 endmembers, 0.084 for the Jasper Ridge dataset, and 0.17 for the
Urban dataset.
General Loss-based NMF (GLNMF) (Peng et al., 2022) is a hyperspectral unmixing al-
gorithm that uses a general robust loss function in place of the least-squares loss func-
tion. The algorithm is tested using a synthetic dataset created from USGS spectral library
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(Kokaly et al., 2017), and Jasper Ridge (Zhu et al., 2014b) dataset. Values of RMSE are
given, which are: 0.06 for 5 endmembers and 0.06 for 10 endmembers.
Correntropy-based Autoencoder-like Nonnegative Matrix Factorization with Total Vari-
ation (CANMF-TV) (Feng et al., 2022) is an unmixing algorithm that adds correntropy-
induced metric to create the unmixing model, and total variation regularizer is added
to preserve spatial information. Synthetic datasets created from USGS spectral library
(Kokaly et al., 2017) and Cuprite (NASA, 2015) datasets were used to test the algorithm.
The authors provide values of SAD: 0.13 for a synthetic dataset with 10 dB SNR, 0.05 for
a synthetic dataset with 40 dB SNR and 0.095 for the Cuprite dataset.
Spectral–Spatial Weighted sparse NMF (SSWNMF) (Zhang S. et al., 2022) is a hyper-
spectral unmixing algorithm that introduces weighting factors in the L1-NMF unmixing
model. In addition, spatial and spectral data weighting factors can be included in L1-NMF
to enhance the sparsity of the abundance matrix. To test the algorithm, the authors used
a combination of synthetic and real data. The synthetic dataset was created using USGS
spectral library (Kokaly et al., 2017) data with different amounts of added Gaussian noise,
and the real data used was Urban (Zhu et al., 2014a) dataset and Cuprite (NASA, 2015)
data.

2.3.2. Conclusions from Nonnegative Matrix Factorization Related Works Review
From the conducted review of algorithms using nonnegative matrix factorization for hy-
perspectral unmixing, a few conclusions were gathered:

• Most commonly used metric was SAD, and compared to semi-supervised algorithms,
SRE matric was not used.

• Cuprite and Jasper ridge datasets were the most common real-world datasets used in
these reviewed papers.

• The most cited algorithm of the reviewed is CNMF, while the most popular now is the
LIDAR-NTF due to the number of citations per year since it was published in 2021.

• Using the SAD metrics provided by the authors, the best algorithm from this review
is SGSNMF for the Cuprite dataset (0.0913). The differences between SGSNMF and
other algorithms that used the Cuprite dataset are very small, and visually inspecting
the provided hyperspectral data cube reconstructions, the differences are imperceptible.

2.3.3. Autoencoder Networks
Autoencoders are a type of unsupervised learning-based neural network architecture.
An artificial neuron bottleneck is created to create an autoencoder network that forces
the input data to be compressed into a small number of features, extracting additional
nonlinear information from the data. A few different types of encoder networks exist and
are used for different purposes:

• Denoising autoencoder – a network that adds noise to input data, and from the corrupted
input, it is trained to reconstruct the original data. This allows the removal of noise from
the data in the future.

• Deep autoencoder – consists of at least 4 encoder and decoder layers that are Restricted
Boltzmann Machines.
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• Convolutional autoencoder – use the convolution to consider that a signal can be seen
as a sum of other signals. In turn, they try to encode the input in a set of simple signals
and reconstruct it in the decoder part.

The most commonly used autoencoder network for hyperspectral unmixing is the varia-
tional autoencoder. The model consists of the encoder part of the network that compresses
the data and the decoder that reconstructs the original data using the compressed features
as input. This allows the networks to be trained by minimizing the data reconstruction er-
ror, which measures the difference between input and reconstructed data. After the model
is trained, the compressed data is extracted and can be input into other algorithms. This
method extracts hidden or latent features in the training data. Variational autoencoder neu-
ral network architecture consists of two parts: the first part of the network is the encoder,
and the second is the decoder, with a bottleneck layer in between. The variational part
of the encoder provides distributions of values in the latent space of the network instead
of a single value like in a regular autoencoder. The diagram also shows that the middle
layers are smaller than the input and output layers, and the lines between nodes depict the
neuron connection and weights. An overview of algorithm results is shown in Table 3,
summarising results, metrics, and datasets from each corresponding paper.

Convolutional Neural Network AutoEncoder Unmixing (CNNAEU) (Palsson et al., 2021)
is a hyperspectral unmixing model based on both autoencoder neural network architec-
ture and usage of convolutional layers. It is based on exploiting the spatial structures of
hyperspectral images (HSI) and their spectral information. It is achieved by using the con-
volutional neural network (CNN) to extract spatial features from the structure of HSI. The
authors give values of mean MSE for different datasets used: 0.078 for Samson dataset
(Zhu, 2017), 0.056 for Urban (Zhu et al., 2014a) dataset, 0.13 for Houston dataset of Sci-
ence and Technology, 0.10 for Apex dataset (Schaepman et al., 2015).

Deep Generative Unmixing algorithm (DeepGUn) (Borsoi et al., 2020) is a spectral un-
mixing algorithm based on Generative models such as generative adversarial networks
(GANs) and variational autoencoders (VAEs). According to the authors, their proposed
strategy leads to more accurate abundance estimation at a small cost of computation re-
sources. Their proposed autoencoder architecture consists of 3 hidden encoder layers with
the rectified linear unit (ReLU) activation functions, 3 hidden decoder layers with ReLU
activation functions, and an input and output layer with a sigmoid activation function. The
experiment was conducted with 4 synthetically created data cubes from USGS Spectral
Library (Kokaly et al., 2017) data, and hyperspectral images called Houston dataset of Sci-
ence and Technology, Samson (Zhu, 2017) and Jasper Ridge (Zhu et al., 2014b) datasets.
The authors provide RMSE values for these datasets: 0.045 for the synthetic dataset, 0.236
for the Houston dataset of Science and Technology, 0.086 for the Samson dataset (Zhu,
2017), 0.11 for the Jasper dataset (Zhu et al., 2014b).

Deep autoencoders with Multitask learning for Bilinear hyperspectral Unmixing (DMBU)
(Su et al., 2021) is an unmixing algorithm created using deep autoencoder networks and a
multitask learning framework. In the proposed method, authors train two instances of au-
toencoder networks together by minimizing the errors between encoder reconstructed data
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Table 3
Comparison of the results of autoencoder network algorithms.

Algorithm Dataset Metrics Result

CNNAEU
(Palsson et al., 2021)

Samson dataset
Urban dataset
Houston dataset
Apex dataset

Mean SAD
Mean MSE

Samson:
mSAD = 0.04;
mMSE = 0.0781
Urban:
mSAD = 0.0398;
mMSE = 0.0562
Houston:
mSAD = 0.0502;
mMSE = 0.1299
Apex:
mSAD = 0.0714;
mMSE = 0.1031

DeepGUn
(Borsoi et al., 2020)

Synthetic data based on
USGS library samples
Houston
Samson
Jasper Ridge

normalized RMSE
(reconstruction)

USGS synthetic data:
RMSE = 0.0448
Houston: RMSE = 0.2355
Samson: RMSE = 0.0862
Jasper Ridge: RMSE = 0.1094

DMBU
(Su et al., 2021)

Urban and
Jasper Ridge

RMSE
Mean SAD

Urban SAD = 0.2173
Jasper SAD = 0.1496
Urban RMSE = 0.2062
Jasper RMSE = 0.247

Deep HSnet
(Dong et al., 2020)

Synthetic data based on
USGS library samples
Urban dataset

aRMSE
rRMSE

USGS synthetic data:
aRMSE = 0.3
rRMSE = 0.12 (SNR 40 dB)
Urban:
aRMSE = 0.3592
rRMSE = 0.0869

LSTM-DNN
(Zhao et al., 2021a)

Urban dataset RMSE aSAD = 9.2 ± 2.9
Average SAD aSID (∗10−3) = 115.7 ± 84.7
Average SID RMSE (∗10−3) = 13.4 ± 3.4

AAS
(Hua et al., 2021)

Synthetic data based on
USGS library samples
Jasper dataset
Samson dataset

aRMSE
(abundance RMSE)
eSAD
(endmember SAD)

USGS synthetic data (aRMSE) =
0.0160 (Dataset 1; SNR = 35 dB)
0.0339 (Dataset 2; SNR = 35 dB)
Samson (eSAD) = 0.1062
Jasper (eSAD) = 0.1593

GAUSS
(Ranasinghe et al.,
2022)

Synthetic data based on
USGS library samples
Jasper Ridge dataset
Urban dataset
Samson dataset

average RMSE USGS synthetic data:
RMSE = 0.1816
Jasper Ridge: RMSE = 0.1446
Urban: RMSE = 0.1358
Samson: RMSE = 0.1945

SC-CAE
(Zhao et al., 2021b)

Synthetic data based on
USGS library samples

mean SAD
mean AAD

mSAD (SNR 20 dB) = 0.0135
mSAD (SNR 50 dB) = 0.0051
mAAD (SNR 20 dB) = 0.0671
mAAD (SNR 50 dB) = 0.0306

and original hyperspectral images. Using multitask learning frameworks, authors create a
model to obtain endmembers and abundances and a second model to estimate the bilinear
components of hyperspectral data. As a result, a bilinear mixture model is created that
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can more accurately predict the nonlinear interaction of light scattering. The authors used
a variety of synthetic and real datasets to test the algorithm’s accuracy and computation
time. For the Jasper Ridge dataset (Zhu et al., 2014b), an RMSE of 0.247 was achieved,
and a Mean SAD over all of the different classes was 0.150.
Deep Half-Siamese Network (Deep HSNet) (Dong et al., 2020) is a hyperspectral unmix-
ing algorithm that consists of two different networks: endmember guided network and re-
construction network. The first network maps extracted endmembers to the abundances,
while the reconstruction network is an autoencoder architecture network that recreates
hyperspectral pixels. Two different parameter networks were used in the experimentation
with a synthetic dataset created using USGS spectral library (Kokaly et al., 2017) and
Urban dataset (Zhu et al., 2014a). Values of reconstruction RMSE are given: 0.12 for a
synthetic dataset with 40 dB SNR and 0.087 for the Urban dataset.
LSTM-DNN based autoencoder network for nonlinear hyperspectral image unmixing
(LSTM-DNN) (Zhao et al., 2021a) is a proposed hyperspectral unmixing algorithm that
uses long short-term memory (LSMT) based deep learning network. The authors propose
an architecture of a recurrent neural network (RNN) architecture, specifically LSTM lay-
ers, and an autoencoder structure to calculate hyperspectral endmembers and abundances
using the encoder and reconstruct a hyperspectral data cube using the decoder network.
Authors created synthetic datasets using USGS spectral library data using a laboratory-
created mixture data, Urban (Zhu et al., 2014a) dataset and other scenes to test the al-
gorithm performance. Multiple metrics were calculated: average spectral angle distance
(aSAD), average spectral information divergence (aSID), RMSE, and a few others that
were not used in the experiment conducted for the Urban dataset. Results for Urban dataset
were: aSAD – 9.2 ± 2.9 , aSID (∗10−3) − 115.7 ± 84.7 , RMSE (∗10−3) − 13.4 ± 3.4 .
Autoencoder network with Adaptive Abundance Smoothing (AAS) (Hua et al., 2021) is
a hyperspectral unmixing algorithm based on an autoencoder network with an adaptive
spatial smoothing algorithm to improve the unmixing performance. The synthetic dataset
created from USGS spectral library (Kokaly et al., 2017) and Samson (Zhu, 2017), and
Jasper Ridge (Zhu et al., 2014b) datasets were used to carry out the algorithm benchmark
experiments. For Samson and Jasper datasets, endmember SAD values are given: 0.11
and 0.16, respectively.
Guided encoder-decoder Architecture for hyperspectral Unmixing with Spatial Smooth-
ness (GAUSS) (Ranasinghe et al., 2022) is a three-network hyperspectral unmixing ar-
chitecture. It consists of the: approximation network, unmixing network, and mixing net-
work, the first two of which are the encoder part of the network, and the last one is the
decoder. The authors also propose the pseudo-ground truth mechanism to generate better
abundance in the algorithm’s decoder network and other parts. Algorithm testing and ex-
perimentation were conducted using USGS spectral library (Kokaly et al., 2017) data and
three real hyperspectral datasets: Samson (Zhu, 2017), Jasper Ridge (Zhu et al., 2014b),
and Urban (Zhu et al., 2014a).
Sparsity Constrained Convolutional AutoEncoder network for hyperspectral image un-
mixing (SC-CAE) (Zhao et al., 2021b) is a convolution-based autoencoder network algo-
rithm for hyperspectral unmixing with constrained sparsity. Authors propose an algorithm
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that uses PCA on hyperspectral data that is then fed into a convolutional autoencoder deep
learning network that can find abundance maps and spectral endmembers and reconstruct
original hyperspectral data given enough training data and time. A combination of syn-
thetic data generated using spectral information from USGS library (Kokaly et al., 2017)
and Jasper Ridge dataset (Zhu et al., 2014b) was used to test the performance proposed
algorithm. Mean spectral angle distance (mSAD) and mean abundance angle distance
metrics (mAAD) were used for comparing algorithms. For the synthetic dataset, mSAD
values were 0.0135 with an SNR of 20 dB, 0.0051 with an SNR of 50 dB, and mAAD
values were 0.0671 with an SNR of 20 dB, 0.0306 with an SNR of 50 dB.

2.3.4. Conclusions from Autoencoder Networks Related Works Review
A few conclusions were derived from the review of algorithms using autoencoder net-
works to solve the hyperspectral unmixing problems:

• Most common metric used in these reviewed papers was the RMSE. But a few varia-
tions of RMSE were used to analyse the differences between the reconstructed hyper-
spectral data, RMSE average over different material (classes), and separate RMSE for
abundance matrix analysis.

• For autoencoder network algorithms, the most common real-world dataset was the Ur-
ban dataset.

• By using the provided RMSE metric of hyperspectral data reconstruction error, the
algorithm with the lowest value (13.4 × 10−3) was LSTM-DNN.

• Compared to the algorithms in semi-supervised and non-negative matrix factorization
categories, the autoencoder network algorithms are newer, with the oldest published in
2020.

2.3.5. Linear Mixture Models
Linear mixture models (LMM) are regression model that simultaneously considers the
variation of the dependent and the independent variables. The variations of both types of
variables are often called fixed and random effects, and because the model uses both of
these effects, it is called a mixed model. The linear mixture model is represented in equa-
tion (3). In the equation, y is the outcome variable or mixture, X is the predictor multiplied
by β regression coefficients, and Z is the design matrix of random effects of mixed data
groups. The ε is residuals like noise. An overview of algorithm-acquired results, metrics,
and datasets used in experimentation are shown in Table 4.

y = Xβ + Zu + ε. (3)

Augmented Linear Mixing Model (ALMM) (Hong et al., 2019) is a changed linear mix-
ture model that uses an endmember dictionary to determine the scaling factors and an
additional dictionary to help model the rest of spectral variabilities. The proposed algo-
rithm also implements an ADMM-based optimization to solve multi-block optimization
problems (Xu et al., 2012). In the experiment proposed by the authors, a combination
of synthetic data generated from the USGS spectral library (Kokaly et al., 2017) and an
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Table 4
Comparison of the linear mixture model and supervised algorithms results.

Algorithm Dataset Metrics Result

ALMM (Hong et al., 2019) Synthetic data based on
USGS library samples

rRMSE
aSAM

rRMSE = 0.0003
aSAM = 0.0052

GP_LM (Koirala et al., 2019) Synthetic data based on
USGS library samples
(Hapke generating model)

RMSE Training set 1: RMSE = 19.88
Training set 2: RMSE = 3.05

KRR_LM (Koirala et al., 2019) Synthetic data based on
USGS library samples
(Hapke generating model)

RMSE Training set 1: RMSE = 31.81
Training set 2: RMSE = 4.05

NN_LM (Koirala et al., 2019) Synthetic data based on
USGS library samples
(Hapke generating model)

RMSE Training set 1: RMSE = 23.57
Training set 2: RMSE = 4.15

AVIRIS gathered a hyperspectral image called Cuprite (NASA, 2015). The results of the
reconstruction RMSE given by the authors are 0.0003 for the Cuprite dataset.

3. Benchmark Methodology

This section establishes and discusses the methodology used in creating the experiments
to develop a hyperspectral unmixing algorithm performance benchmark. The proposed
benchmark methodology could be used as a standardized way to simultaneously test hy-
perspectral unmixing algorithms in a few different ways. Different experiments test dif-
ferent aspects of the unmixing algorithms.

3.1. Datasets

This section describes the datasets used for the algorithm testing experiments. Three dif-
ferent datasets were used to test the various performance metrics of hyperspectral unmix-
ing algorithms. These datasets were chosen due to their popularity, usability, and avail-
ability:

• A synthetic hyperspectral data cube was created artificially by mixing different amounts
of pure spectra from the USGS spectral library. To create the synthetic datasets, ver-
sion 7 of the USGS spectral library (splib07a) (Kokaly et al., 2017) was used, which
contains over 2000 different spectral endmembers with spectral ranges from 0.2 to 200
micrometres in wavelength. A few different datasets are generated using the spectral
data from this library to conduct the benchmark experiments. The detailed generation
process is written in Section 4 and its corresponding subsections.

• A hyperspectral dataset created by the article’s authors (Zhao et al., 2019) in a labora-
tory setting containing hyperspectral images and spectral ground truths. The dataset is
split into 3 scenes, each containing the spectra of pure-coloured materials mixed with
different proportions to create mixed spectra. The difference between this dataset and
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Fig. 1. 2018 IEEE GRSS data fusion hyperspectral data RGB reconstruction.

the synthetic data created using the USGS library is that the mixtures are created phys-
ically and represent a more true-to-life mixing model. In contrast, library endmembers
are usually mixed linearly. The first and third scenes use cyan, magenta, and yellow dyes
and mixtures, while the second uses red, green, blue, and white dyes.

• IEEE GRSS 2018 data fusion contest hyperspectral dataset (Prasad et al., 2020). The
hyperspectral dataset is gathered over the University of Houston and consists of 1202
by 4172 pixels, each containing 48 spectral bands with wavelengths from 317 nm to
1047 nm. The RGB reconstruction of the data is shown in Fig. 1.

3.2. Metrics

To correctly test the performance and the ability of these algorithms in various aspects,
a few metrics and their variants were chosen. Multiple different metrics are used in the
hyperspectral unmixing problems. The most common are root mean squared error, sig-
nal reconstruction error, spectral angle mapping, and spectral angle distance. Root mean
squared error and signal reconstruction error metrics were selected due to their popularity
in hyperspectral unmixing algorithm performance evaluation and their overall simplicity
in describing the differences between evaluated and real spectra in this benchmark:

• Root mean squared error (RMSE) shows the difference between the predicted spectra
and the ground truth value. Different authors used a few variations of RMSE to test
a different aspect of the created algorithms; these include average RMSE between all
endmembers, reconstruction RMSE and abundance RMSE.

• Signal reconstruction error (SRE) is used to determine the quality of the spectral mix-
ture reconstruction generated by the algorithms. A higher SRE value means a better
reconstruction quality.

Metrics are calculated using these formulas:

RMSE =
√√√√ 1

N

N∑
i=1

(xi − x̂i )2, (4)



302 V. Paura, V. Marcinkevičius

where N is the number of values in the vector being tested, xi is the i-th true value, and
x̂i is the i-th predicted value.

SRE = 10 log10

(
E[‖x‖2

2]
E[‖x − x̂‖2

2]
)

, (5)

where x is the true value and x̂ is the predicted value and E[] is the expected value of the
expression inside.

3.3. Experiment Steps

To test the different aspects of the algorithm, the main experiment part is divided into four
main sections:

1. Hyperparameter testing. This experiment tests the tested algorithms’ results when
changing the available hyperparameter. Standard and controlled datasets are created
to ensure that the results are only affected by the change in algorithm hyperparameter.
This test allows checking the algorithm dependencies on the hyperparameters and, in
turn, checking the universality of the algorithm. The laboratory-created dataset (Zhao
et al., 2019) was used for this experiment. It was selected because of the different col-
lections of data, accurate measurements and ground truths provided.

2. Endmember robustness. This tests the algorithm’s ability to be generalized and its over-
all performance when the input number of endmembers is changed. This type of test
allows checking the algorithm’s ability to find endmembers and reconstruct hyper-
spectral images depending on the scene’s difficulty. Due to the changing number of
endmembers, a synthetic dataset created using a combination of IEEE GRSS (Prasad
et al., 2020) data as a basis and USGS spectral library (Kokaly et al., 2017) was used.

3. Robustness to noise. This experiment determines the algorithm’s ability to accurately
unmix the hyperspectral image spectra when a different level of artificial noise is added
to said image. This experiment tests algorithms with different amounts of white noise
and a noise profile created from a real-world scenario. The dataset created to test end-
member robustness was used as a base hyperspectral dataset, and a layer of artificial
noise was added to it.

4. Impact of differences in input image sizes. By setting different sizes of hyperspectral
images, the amount of spatial and spectral information changes, affecting the overall
performance of algorithms. This also allows us to determine the optimal image size
for the most accurate unmixing result and performance combination. It also shows
the data required for algorithms to achieve their best accuracy. The same endmember
robustness dataset was used and then downscaled using the methodology described
below to create the different spatial size hyperspectral images.

The experiments described above were performed using the different datasets de-
scribed in Section 3.1.
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Fig. 2. Artificial hyperspectral image RGB representation.

3.4. Endmember Robustness Experiment Schema

Endmember robustness testing is done by creating a group of artificially generated datasets
according to a set of rules:

• Datasets Dx (where x is the set number of endmembers) are created by selecting the
endmembers from USGS spectral library data.

• The number of endmembers x selected are: from 3 to 10 endmembers with a step of 1,
from 10 to 30 endmembers with a step of 5, and from 30 to 100 endmembers with a
step of 10.

• For each Dx one abundance matrix Aequal is created by using an equal abundance of
each endmember x.

• For each Dx ten abundance matrices Ay are created by randomly generating endmember
abundances y using a uniform distribution. y is normalized to conform to sum-to-one
constraint (equation (6)).

• An artificial hyperspectral image Ii (an example RGB representation of the such image
is shown in Fig. 2) of size 150 by 100 pixels is generated using the abundance matrix
Ay and endmembers x. The size of the image was selected to represent a realistic hy-
perspectral image while at the same time keeping it low to reduce computation resource
usage.

yi = yi∑N
i=1 yi

. (6)

3.5. Robustness to Noise Experiment Schema

A collection of artificially generated hyperspectral images is created to test the algorithm’s
robustness to noise. Then a different amount of noise is added to the images according to
these set rules:

• A collection of 4 different datasets are created with different endmembers using the
same methodology as in the endmember robustness experiment in Section 3.4.

• For each of the 4 datasets, a different amount of artificial noise is added.
• The created noise is measured in SNR dB, in which a lower number means a higher

amount of white noise.
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Fig. 3. Real and artificially created noise profile Pearson correlation comparison.

• A random noise with a mean value of 0 is generated with the desired SNR dB values
of 20, 25, 30, 35, 40, 45, and 50.

• This noise is then applied to each of the 4 datasets to create noisy images.

In addition to the random white noise generated, a set of noise parameters was ex-
tracted from a hyperspectral imaging camera used for research in an uncontrolled field
environment. The camera was a BaySpec OCI-F Hyperspectral Imager in VIS-NIR range
(BaySpec, 2021). A Pearson correlation coefficient was calculated to measure the amount
of noise the camera-generated at each wavelength. Each neighbouring wavelength was
taken from a hyperspectral image, and the correlation between the values of these wave-
lengths across the whole image was calculated. Figure 3 (orange line) shows the correla-
tion coefficient at wavelength index x and x −1. The same Pearson correlation was calcu-
lated for one of the synthetically generated hyperspectral images used in this experiment,
and the results are shown in Fig. 3 (blue line). Pearson correlation between neighbouring
bands in the same image was calculated using formula (7) where r is the correlation value,
x is the first set of values (in this case, values of specific wavelength) and y the second set
of values (values of neighbouring wavelength). The calculation is done by taking a pair
of values from the same pixel i, calculating the difference to the average value of each
set (x̄ and ȳ), multiplying them, getting the sum and dividing by the root of their squared
product sum:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

. (7)

A set of artificial noise parameters was found using a gradient descent minimization
algorithm. When applied to our synthetically generated hyperspectral image, the band-to-
band Pearson correlation coefficients were close to resembling a real-world camera noise
specification. In this instance, a multivariate optimization algorithm was used to calculate
the number of wavelengths – 1 amount of different variables. Specifically, an evolutionary
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algorithm from python library scipy called differential evolution was used to minimize the
difference between true correlation and artificial correlation. Figure 3 shows the created
noise specification results. This noise profile was then used to create a more true-to-real-
world camera noise to test how algorithms perform in this scenario.

3.6. Image Size Difference Experiment Methodology

Algorithm performance testing according to different image sizes was conducted using
these steps:

• A synthetically generated hyperspectral image dataset with different numbers of end-
members was generated. Created using the exact methodology of the endmember ro-
bustness experiment described in Section 3.4.

• These datasets are then downscaled using mean values in an area of 2 × 2 pixels to 1
value and 3 × 3 pixels to one value. In turn, this creates images 4 and 9 times smaller.

• RMSE and SRE metrics are then calculated on these 3 collections of datasets to com-
pare the results.

4. Benchmark

In this section, all of the algorithms used in the experiments are described, and the final
benchmark results are given. These algorithms were selected based on a few main factors:
algorithm code was made public by the authors and opened to use, and the algorithm
solved at least one of the hyperspectral unmixing tasks.

4.1. Tested Algorithms

The algorithm code was gathered from the author’s GitHub or personal pages. All the
code used in the experiments and links to the author’s pages is provided in the Github
repository (https://github.com/VytautasPau/HUBenchmark.git). Algorithms were imple-
mented using Matlab software and Python programming language and ran using the Mat-
lab Python engine, which adds additional overhead to the calculations. For these reasons,
direct performance comparison to pure Matlab implementation is not recommended. This
subsection describes the algorithms that were tested:

1. SUnSAL – solves an l1–l2 norm optimization problem with several constraints: pos-
itivity, which checks if all resulting values are greater or equal to 0, and Add-to-one,
which calculates if the sum of the results (abundances) is equal to 1. The algorithm tries
to minimize the l1 and l2 regularization norms. In other words, l1 and l2 norm opti-
mization is simultaneously a sparse regression calculation on both linear and squared
values.

2. SUnSAL-TV – is an extension of the SUnSAL algorithm that adds an isotropic or non-
isotropic total variation spatial regularization.

https://github.com/VytautasPau/HUBenchmark.git
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3. S2WSU – an algorithm that uses spectral and spatial data at the same time to calculate
a sparse unmixing matrix.

4. CNMF – an algorithm that fuses high spatial resolution multispectral data and high
spectral resolution hyperspectral data to calculate image endmembers and unmix these
spectra.

5. R-CoNMF – algorithm performs 3 important steps to find the endmembers, gather their
signatures, and calculate the unmixing matrix.

6. SGSNMF – considers the spatial data and pixel locations and runs under the assump-
tion that unmixing matrices are sparse.

7. RSNMF – a total variation regularized blind unmixing algorithm that considers pixel
location and their correlation to nearby pixels.

8. ALMM – a linear model that uses an endmember dictionary to help calculate the spec-
tral variability.

4.2. Benchmarking Results

This subsection describes the results collected by running the created experiments on
available algorithms. The code used in creating and running these benchmarks can be
accessed at https://github.com/VytautasPau/HUBenchmark.git.

Endmember robustness: This experiment was conducted using an artificial dataset gen-
erated using the pattern depicted in Fig. 2. The pattern has a ground truth counterpart,
a crop version of the same image but with 20 different classes (collections of more than 2
endmembers assigned to each pixel) labelled in the image. Twenty-one randomly selected
endmembers were mixed with different abundances using this classification pattern. The
abundances selected followed a few steps that are also shown in a diagram of Fig. 4:

• 10 different datasets were created using the same 21 endmembers to add statistical dif-
ferences to calculations.

• Endmembers were randomly selected into groups to create different amounts of end-
members, from 2 to 21, for each of the classes in the pattern.

• For each group of endmembers, uniformly distributed abundances were created.
• Other 9 variations of abundances were randomly selected and mixed into 10 different

hyperspectral images.

Figure 5 and Table 5 show the results gathered from algorithms and calculating the
RMSE metric between the predicted values and ground truth abundances that were gen-
erated. In Fig. 5, almost all algorithms excluding RSNMF show a consistent RMSE with
different amounts of endmembers in the image, with SGSNMF having the biggest errors
and, in turn, the worst performance while SUnSAL having the lowest error of all algo-
rithms on average. The SGSNMF and RSNMF algorithms have the biggest value distri-
butions out of these algorithms. The smaller distributions show more consistent results of
these algorithms, while RSNMF is inconsistent at low amounts of endmembers. Table 5
displays the same information given in the previously mentioned Fig. 5, but in a numerical
form and with the values averaged instead of their distributions.

https://github.com/VytautasPau/HUBenchmark.git
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Fig. 4. Endmember robustness experiment diagram.

Fig. 5. Endmember robustness experiment result with box plots for each endmember group and algorithm.
(Colours: purple – SUnSAL, dark blue – SUnSAL-TV, blue – SGSNMF, light blue – S2WSU, cyan – RSNMF,
yellow – R-CoNMF, orange – CNMF, red – ALMM.) A combined synthetic IEEE GRSS and USGS spectral
library dataset was used as test data.
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Table 5
Endmember robustness experiment results with average RMSE values for each endmember group and

algorithm. (Columns list algorithms tested, and rows are several endmembers.)

No. of
endmembers

SUnSAL SUnSAL-TV SGSNMF RSNMF S2WSU R-CoNMF CNMF ALMM

2 0.00124 0.0386 266.85 0.1 0.0001 0.088 0.093 0.162
3 0.00193 0.038 274.59 0.096 0.0064 0.086 0.091 0.157
4 0.00127 0.0494 203.004 0.091 0.0054 0.091 0.083 0.155
5 0.00196 0.0424 171.066 0.089 0.0038 0.082 0.081 0.151
6 0.00117 0.0445 124.579 0.083 0.0066 0.086 0.075 0.151
7 0.00189 0.0381 349.082 0.081 0.0076 0.091 0.076 0.143
8 0.0021 0.044 219.953 0.076 0.010 0.090 0.072 0.150
9 0.00138 0.0411 220.569 0.074 0.013 0.090 0.073 0.148

10 0.00124 0.0368 299.613 0.069 0.011 0.090 0.065 0.146
11 0.00169 0.0446 342.694 0.067 0.013 0.0907 0.060 0.146
12 0.00111 0.0377 251.486 0.066 0.013 0.0904 0.055 0.141
13 0.00152 0.0366 246.71 0.062 0.0169 0.0906 0.057 0.146
14 0.00174 0.0346 202.204 0.061 0.015 0.0899 0.050 0.143
15 0.00133 0.0390 404.76 0.0588 0.016 0.0874 0.049 0.145
16 0.00139 0.0369 177.42 0.054 0.019 0.0894 0.041 0.139
17 0.00171 0.0383 215.487 0.054 0.0209 0.090 0.042 0.142
18 0.00145 0.0360 219.009 0.054 0.0207 0.0909 0.042 0.140
19 0.00164 0.0391 335.102 0.051 0.0219 0.0909 0.039 0.140
20 0.00183 0.0358 173.696 0.049 0.0232 0.0916 0.032 0.138
21 0.00163 0.0354 218.699 0.047 0.0204 0.0895 0.035 0.135

Robustness to noise: as with the previous experiment, hyperspectral images were gen-
erated using the classified surface image of Fig. 2 better to represent the distribution of
endmembers in the hyperspectral image. As described in the methodology section, an im-
age with 5 endmembers was generated, and artificial noise was added. Figure 6 shows the
averaged results of 10 runs each of RMSE for each tested algorithm and different amounts
of artificial noise added, including the noise generated from real camera noise character-
istics. This figure shows that the SUnSAL algorithm has a very linear correlation between
the RMSE and the amount of noise in the image. RMSE is the worst of all algorithms when
using a real-life noise characteristic. Other algorithms get almost consistent results across
all of the noise levels. The RSNMF algorithm has the most accurate overall RMSE, higher
at greater noise levels but the most accurate unmixing result in real noise experiments.

Image size difference: the RMSE results of 9 times down-scaled images are shown in
Fig. 7. Compared with the images scaled down 4 times, Fig. 8 shows the algorithm perfor-
mance results. Both figures show similar results, correlating with endmember robustness
experiment RMSE values where images are not downscaled.

To better compare these results, a Table 6 was created showing the averages of RMSE
and SAD metrics for each algorithm and each set of scaled images. These results are shown
in Table 6. Negative SRE values represent a worse reconstruction than positive values be-
cause the higher the SRE, the better the signal reconstruction. This table determines the
effects of image scaling on the results of tested algorithms. All tested algorithms got con-
sistent results between the different image scales. The SGSNMF algorithm got the worst
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Fig. 6. Algorithm robustness to noise experiment results. A combined synthetic dataset of IEEE GRSS and
USGS spectral library with added noise was used as test data.

results, while SUnSAL got the lowest RMSE results. The SRE values were consistent
across the image scales, with S2WSU having a big difference in metrics values. Overall
RSNMF algorithm got the lowest RMSE results of all the values.

During the benchmark experiment calculations, a log of the time spent on calculations
of each algorithm was recorded to compare the time differences between them. This is
not a standardized test, so the time comparison is only relative and will depend on the
hardware. To compare the running times of the different algorithms with each dataset,
all experiments were performed using a desktop computer with 12 core 24-thread AMD
CPU and 64 GB of RAM and an Nvidia GTX 1080Ti with 11 Gb of VRAM. The average
recorded times were gathered and are shown in Table 7.

5. Conclusions

In this paper, we analyse different available hyperspectral unmixing algorithms, propose
a methodology, and create a benchmark to more accurately test these algorithms against
each other. The code for the benchmark is available on GitHub. A hyperparameter testing
experiment was conducted to determine the optimal hyperparameter of each tested algo-
rithm. The main conclusion from this experiment was that hyperparameters are highly
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Fig. 7. Algorithm performance with 9 times down scaled hyperspectral images. A combined synthetic dataset
of IEEE GRSS and USGS spectral library scaled down 9 times was used.

dependent on the datasets used and are not universal. An endmember robustness exper-
iment was created to test the algorithm’s ability to accurately detect the abundances in
hyperspectral images with different numbers of endmembers. Robustness to noise experi-
ment shows the algorithm’s ability to get accurate results despite the artificially generated
noise added to the same dataset. Image size difference experiment tests the algorithm’s
ability to unmix hyperspectral images depending on the size of the image given and, in
turn, the amount of spatial and spectral data available. One of the main takeaways from the
conducted research is a perceived lack of standard algorithm testing methodology. Many
reviewed papers use different metrics, testing methodologies and hyperspectral datasets
to test their created algorithms. This makes it difficult to determine the best-performing
algorithms. In this paper, we proposed a hyperspectral unmixing algorithms benchmark
to help homogenize this type of algorithm testing. From the conducted hyperspectral un-
mixing algorithm benchmark experiments, we can conclude:

• The SUnSAL algorithm got the lowest RMSE results (0.008) across all of the exper-
iments except on the dataset with a noise profile that resembles a real-world scenario
(4.824) which indicates that the algorithm may not be suitable for real-world use espe-
cially if the gathered data tends to have noise.



Benchmark for Hyperspectral Unmixing Algorithm Evaluation 311

Fig. 8. Algorithm performance with 4 times down scaled hyperspectral images. A combined synthetic dataset
of IEEE GRSS and USGS spectral library scaled down 4 times was used.

Table 6
Image size difference algorithm comparison results.

Metrics

Algorithm Downscale RMSE SRE

SUnSAL 1 0.003 19.800
2 0.001 20.095
3 0.001 16.549

SUnSAL-TV 1 0.046 2.184
2 0.040 1.643
3 0.047 1.114

SGSNMF 1 257.327 −20.889
2 305.677 −28.925
3 197.180 −32.716

S2WSU 1 0.176 2.125
2 0.020 4.603
3 0.042 1.558

Metrics

Algorithm Downscale RMSE SRE

RSNMF 1 0.053 0.569
2 0.051 0.311
3 0.050 0.452

R-CoNMF 1 0.217 −4.189
2 0.218 −5.496
3 0.216 −5.330

CNMF 1 0.045 −0.025
2 0.041 −0.153
3 0.042 0.009

ALMM 1 0.195 −4.982
2 0.204 −5.230
3 0.200 −5.039

Table 7
Algorithm average calculation times in seconds.

Algorithm SUnSAL SUnSAL-TV SGS NMF S2WSU RSNMF R-Co
NMF

CNMF ALMM

Time (s) 228 2671 636 7451 2106 257 3855 851
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• In a real-world noise scenario, CNMF algorithm got the lowest RMSE result (0.0961).
The resulting RMSE value was close to half of the next best value, but the values are
small (at around 0.1 RMSE), so a perceived difference between these results may be
minimal.

• Using the SRE metric shows that the S2WSU (4.603) and SUnSAL (20.095) algorithms
achieved the most accurate image size comparison experiment results. The difference
between the most accurate algorithms is almost ten times, and in turn, differences be-
tween the best and the worst algorithms are more than a few orders of magnitude. But
algorithms amongst themselves in the three different image sizes remain in the same
SRE magnitude, showing little to no degradation of results when images are down-
scaled.

• Image size comparison experiment showed that the differences in results between each
image size were unnoticeable; from that, it is concluded that all of the algorithms are
robust to changes in image size if their quality stays the same.

• SUnSAL and R-CoNMF got the fastest calculation times, 228 and 257 seconds, of all
algorithms. It has to be taken into account that this comparison between running times
is only relative between the algorithms as the test was not normalized for other factors
such as hardware and software resources.
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