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Abstract. In practical linguistic multi-criteria group decision-making (MCGDM) problems, words
may indicate different meanings for various decision makers (DMs), and a high level of group con-
sensus indicates that most of the group members are satisfied with the final solution. This study aims
at developing a novel framework that considers the personalized individual semantics (PISs) and
group consensus of DMs to tackle linguistic single-valued neutrosophic MCGDM problems. First, a
novel discrimination measure for linguistic single-valued neutrosophic numbers (LSVNNs) is pro-
posed, based on which a discrimination-based optimization model is built to assign personalized
numerical scales (PNSs). Second, an extended consensus-based optimization model is constructed
to identify the weights of DMs considering the group consensus. Then, the overall evaluations of
all the alternatives are obtained based on the LSVNN aggregation operator to identify the ranking
of alternatives. Finally, the results of the illustrative example, sensitivity and comparative analysis
are presented to verify the feasibility and effectiveness of the proposed method.
Key words: neutrosophic set, linguistic single-valued neutrosophic set, multi-criteria group
decision making, personalized individual semantics, consensus reaching process.

1. Introduction

A multi-criteria group decision-making (MCGDM) problem is defined as a decision prob-
lem where several experts (judges, decision makers (DMs), etc.) provide their evaluations
on a set of alternatives regarding multiple criteria and seek to achieve a common solution
that is most acceptable by the group of experts as a whole (Kabak and Ervural, 2017; Wang
et al., 2021). One important issue in MCGDM is to depict the ratings of experts. As the
socio-economic environment becomes increasingly complex, it becomes difficult for DMs
to specify their preferences with crisp values. Zadeh (1965) pioneered fuzzy sets (FSs),
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which are characterized by membership functions and considered as an effective tool to
capture uncertain information. In order to capture DMs’ imprecise preferences, Atanassov
(1986) introduced the concept of intuitionistic fuzzy sets (IFSs), which are considered as
an extension of Zadeh’s fuzzy sets (Zadeh, 1965). IFSs have been widely applied to ad-
dress impreciseness and uncertainty information in MCGDM problems (Chen et al., 2020;
Garg and Kumar, 2019; Ohlan, 2022; Seikh and Mandal, 2022; Wan et al., 2020; Zhao et
al., 2021). For an overview of IFSs and their extensions in MCGDM, one can refer to Xu
and Zhao (2016).

Although FSs and IFSs have been extended to manage various MCGGDM problems,
they failed to effectively handle a situation where the indeterminate and inconsistent infor-
mation are involved. To manage such issues, Smarandache (1999) pioneered neutrosophic
sets that consider the truth, indeterminacy and falsity memberships, simultaneously. Neu-
trosophic sets are regarded as a flexible tool in coping with information involving uncer-
tainty, incompleteness and inconsistency (Peng and Dai, 2020). However, without spe-
cific description, neutrosophic sets are hard to be applied in actual situations. Wang et al.
(2010) introduced single-valued neutrosophic sets (SVNSs), which are considered as an
extension of neutrosophic sets. Moreover, various extensions of neutrosophic sets, such as
interval neutrosophic sets (Liu et al., 2022; Wang et al., 2005), trapezoidal neutrosophic
sets (Liang et al., 2018b; Sarma et al., 2019), type-2 neutrosophic sets (Gokasar et al.,
2022), multi-valued neutrosophic sets (MVNSs) (Ji et al., 2018; Ye et al., 2022), proba-
bility MVNSs (Liu and Cheng, 2019; Peng et al., 2018), interval-valued fermatean neu-
trosophic sets (Broumi et al., 2022) and complex fermatean neutrosophic sets (Broumi et
al., 2023) have been proposed and applied to address various neutrosophic multi-criteria
decision making (MCDM) problems, such as investment decision, personnel selection,
disaster management and designing a stable sustainable closed-loop supply chain network
(Kalantari et al., 2022). Among various forms of neutrosophic sets, SVNSs are considered
as one of the most concise tools to capture DMs’ evaluations (Peng and Dai, 2020).

Over the past years, lots of studies have been witnessed focusing on MCDM and
MCGDM based on SVNSs and their extensions, which can be roughly grouped into two
categories (Nguyen et al., 2019; Peng and Dai, 2020). The first category is based on
various neutrosophic aggregation operators, such as single-valued neutrosophic number
(SVNN) generalized power averaging operator (Liu and Liu, 2018), SVNN weighted ge-
ometric averaging (WGA) operator (Refaat and El-Henawy, 2019), and SVNN ordered
weighted harmonic averaging operator (Paulraj and Tamilarasi, 2022). The second cat-
egory is based on kinds of neutrosophic measures (Hezam et al., 2023; Karabasevic et
al., 2020; Kumar et al., 2020; Peng and Dai, 2018; Sun et al., 2019; Tian et al., 2020;
Zhang et al., 2023). For example, Hezam et al. (2023) proposed a neutrosophic discrim-
ination measure-based COPRAS framework, and applied it to evaluate the sustainable
transport investment projects. Karabasevic et al. (2020) developed an extended TOPSIS
method based on the SVNN Hamming distance measure, and applied it to e-commerce
development strategies selection. Sun et al. (2019) developed a new distance measure for
SVNNs, based on which an extended TODIM and ELECTRE III methods were proposed
and applied in physician selection.
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The above-mentioned approaches are effective when copying with MC(G)DM prob-
lems with SVNNs. However, specific numerical evaluations cannot always accurately re-
flect DMs’ behaviour and opinions because of the limitation of their cognition. Actually,
DMs usually prefer to elicit their evaluations with linguistic terms, such as “poor”, “good”
and “perfect” due to the prominent advantages of linguistic terms for characterizing am-
biguous and inexact assessments (Zadeh, 1975). Recently, Li Y. et al. (2017) proposed
linguistic single-valued neutrosophic sets (LSVNSs) which employ a triple-tuple linguis-
tic structure to characterize the truth, indeterminacy and falsity memberships of LSVNSs.
Since LSVNSs integrate the advantages of SVNSs and linguistic term sets (LTSs), var-
ious MC(G)DM methods on the basis of linguistic single-valued neutrosophic numbers
(LSVNNs) have been proposed. For example, Fang and Ye (2017) developed a linguis-
tic neutrosophic MCGDM method based on the LSVNN weighted arithmetic averag-
ing (WAA) and WGA operators. Garg and Nancy (2018) proposed the LSVNN priori-
tized WAA and WGA operator-based MCGDM method. Moreover, several comprehen-
sive MCGDM methods that integrate with the LSVNN power WAA and WGA opera-
tors and TOPSIS (Liang et al., 2018a), and the EDAS (Li et al., 2019) were developed.
These linguistic neutrosophic MCGDM methods have been applied to the university hu-
man resource management evaluation and property management company selection, re-
spectively.

Although great efforts have been made to improve and extend the application of lin-
guistic neutrosophic MCGDM methods, there still exist some challenges. The existing
methods seem to overlook the semantics of individual DMs and the consensual solution.
In the existing methods, numerical values are identified through calculating the index val-
ues of linguistic terms. In this way, the numerical values cannot indicate experts’ person-
alized individual semantics with respect to linguistic terms.

When tackling linguistic MCGDM problems, it is argued and accepted that words indi-
cate different meanings for various DMs in computing with words (Mendel et al., 2010).
Considering the issue of personalized individual semantics (PISs) is necessary. For ex-
ample, two referees are invited to express evaluations about a manuscript. Both of them
provide comments with “good”. However, linguistic term “good” may indicate different
numerical semantics for them. Recently, different attempts have been made to copy with
this issue, which can be roughly classified into three groups, including type-2 fuzzy set
model (Mendel and Wu, 2010), multi-granular linguistic model (Morente-Molinera et al.,
2015), and consistency-driven models (Li et al., 2017). Compared with the first two types
of models, the consistency-driven model can effectively characterize the specific seman-
tics of individuals, and becomes a popular tool to manage PISs in linguistic GDM. Thus,
various consistency-driven models have been designed to assign personalized numeri-
cal scales (PNSs) based on linguistic preference relations (LPRs) (Zhang and Li, 2022),
incomplete LPRs (Li et al., 2022a), distribution LPRs (Tang et al., 2020), and hesitant
fuzzy LPRs with self-confidence (Zhang et al., 2021). In these models, DMs’ PISs can
be explored according to their linguistic preferences in terms of a set of alternatives. The
traditional PIS models are valid in the situations where the evaluations are expressed with
LPRs or their extensions. However, they will fail to work when DMs’ evaluations are in
forms of linguistic MCGDM matrices.
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Recently, Li et al. (2022a) designed a data-driven learning model to investigate the PISs
of DMs in MCGDM. In this model, two objectives are achieved through maximizing the
minimum overall deviation among alternatives between any two consecutive categories,
and minimizing the overall deviation among alternatives in a category. Inspired by the
idea of Li et al. (2022b), this study aims to propose an improved framework to handle
PISs and GDM, where the evaluations are presented in forms of MCGDM matrices with
LSVNNs. The main novelties and contributions are summarized as follows:

(1) A novel discrimination measure for SVNNs is proposed, based on which a discrimi-
nation-based optimization model is constructed to assign PNSs. The proposed frame-
work is the first attempt to manage PISs in linguistic GDM, where DMs’ assessments
are presented with linguistic neutrosophic MCGDM matrices.

(2) An extended consensus-based optimization model is constructed to identify the weig-
hts of DMs considering group consensus. The proposed approach can cautiously as-
sign DMs’ weights to guarantee a level of agreement among members regarding the
final solution, and reveal the differences among alternatives with the optimal discrim-
ination degrees.

The rest of the paper is organized as follows. Section 2 introduces some concepts about
2-tuple linguistic model and numerical scale (NS) model, neutrosophic sets and LSVNSs.
Section 3 presents the concept of distance and discrimination measures for LSVNNs and
develops a discrimination-based optimization model to obtain PNSs. Section 4 presents
a comprehensive linguistic neutrosophic MCGDM framework considering the PIS and
group consensus. Section 5 presents an illustrative example, followed by the comparative
analysis to valid the proposed framework. Finally, Section 6 concludes this study.

2. Preliminaries

2.1. 2-Tuple Linguistic and Numerical Scale Models

Definition 1 (Herrera and Martínez, 2000). Let S = {s0, s1, . . . , sτ } be an LTS and
β ∈ [0, τ ] indicate the result of a symbolic aggregation operation. The conversion function
between 2-tuples and numerical values are defined as follows:

� : [0, τ ] → S̄ being �(β) = (sθ , α) with
{

sθ , θ = round(β),

α = β − θ, α ∈ [−0.5, 0.5).
(1)

The inverse function of �, �−1 : S̄ → [0, τ ] is defined as �−1(sθ , α) = θ + α. The
corresponding negative operator is Neg(�−1(sθ , α)) = �(τ − �−1(sθ , α)).

Definition 2 (Dong et al., 2009). Let S = {s0, s1, . . . , sτ } be an LTS and R be a set of
real numbers. A function NS : S → R is called an NS of S, and NS(sθ ) is the numerical
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index of sθ . The numerical scale NS for (sθ , α) is defined as follows:

NS(sθ , α) =
{

NS(sθ ) + α × (
NS(sθ+1) − NS(sθ )

)
, α � 0,

NS(sθ ) + α × (
NS(sθ ) − NS(sθ−1)

)
, α < 0.

(2)

If NS(sθ ) < NS(sθ+1) for θ = 0, 1, . . . , τ − 1, then the numerical scale NS on S is
ordered. Furthermore, Li et al. (2017) added several conditions: NS(s0) = 0, NS(s τ

2
) =

0.5, NS(sτ ) = 1 and NS(sθ ) ∈ [
θ−0.5

τ
, θ+0.5

τ

)
(θ = 1, 2, . . . , τ − 1; θ �= τ

2 ) in order to
generate the PNS.

The inverse operator of NS is defined as Dong et al. (2009):

NS−1 : R → S̄ with

NS−1(r) =

⎧⎪⎪⎨
⎪⎪⎩

(
sθ ,

r − NS(sθ )

NS(sθ+1) − NS(sθ )

)
, NS(sθ ) < r <

NS(sθ ) + NS(sθ+1)

2
,

(
sθ ,

r − NS(sθ )

NS(sθ ) − NS(sθ−1)

)
,

NS(sθ−1) + NS(sθ )

2
< r � NS(sθ ).

(3)

2.2. Neutrosophic Sets

Definition 3 (Smarandache, 1999). Let X be a space of points, where x ∈ X. Then,
a neutrosophic set A in X is characterized by A = {〈x, TA(x), IA(x), FA(x) | x ∈
X〉}, where TA(x), IA(x), FA(x) ∈ ]0−, 1+[ represent the truth, indeterminacy and
falsity-membership functions, respectively, such that 0− � sup TA(x) + sup IA(x) +
sup FA(x) � 3+.

Definition 4 (Wang et al., 2010; Ye, 2013). An SVNS in A is characterized by A =
{〈x, TA(x), IA(x), FA(x) | x ∈ X〉}, where TA(x), IA(x), FA(x) ∈ [0, 1], such that 0 �
sup TA(x) + sup IA(x) + sup FA(x) � 3.

2.3. Linguistic Single-Valued Neutrosophic Sets

Definition 5 (Li Y. et al., 2017). Let S = {s0, s1, . . . , sτ } be an LTS. Then, an LSVNS
is defined as A = {〈x, sT

A(x), sI
A(x), sF

A (x) | x ∈ X〉}, where sT
A(x), sI

A(x), sF
A (x) ∈ S

indicate the linguistic truth, indeterminacy and falsity degrees, respectively, such that
0 � sT

A(x), sI
A(x), sF

A (x) � 3sτ . Particularly, 〈TA(x), IA(x), FA(x)〉 is described as an
LSVNN, and each SVNN is a = 〈sT

a , sI
a , sF

a 〉.

Definition 6 (Fang and Ye, 2017). Let rj = 〈sT
rj

, sI
rj

, sF
rj

〉 (j = 1, 2, . . . , n) be a set
of LSVNNs and � be a set of all given values. Then, the LSVNN WAA operator is the
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mapping LNWA : �n → �, defined as follows:

LNWA(r1, r2, . . . , rn) =
n∑

j=1

wjrj = 〈
sT
r , sI

r , sF
r

〉

=
〈
NS−1

(
1 −

n∏
j=1

(
1 − NS

(
sT
rj

))wj

)
, NS−1

( n∏
j=1

(
NS

(
sI
rj

))wj

)
,

NS−1
( n∏

j=1

(
NS

(
sF
rj

))wj

)〉
, (4)

where wj ∈ [0, 1] is the corresponding weight of rj , satisfying
∑n

j=1 wj = 1.

Definition 7 (Fang and Ye, 2017). Let r = 〈sT
r , sI

r , sF
r 〉 be an LSVNN over LTS S. Then,

the score function S(r) and accuracy function H(r) of r are defined as follows:

S(r) = 2 + NS(sT
r ) − NS(sI

r ) − NS(sF
r )

3
and H(r) = NS

(
sT
r

) − NS
(
sF
r

)
, (5)

where NS(sθ ) is the ordered NS of linguistic term sθ , as defined in Definition 2.

3. Optimization Model to Obtain PNSs in MCGDM with LSVNNs

This section presents the concepts of distance and discrimination measures of LSVNNs,
based on which a programming model is constructed to derive the PNSs of each DM.

For convenience, assume that M = {1, 2, . . . , m}, N = {1, 2, . . . , n} and Q =
{1, 2, . . . , q}. Assume that A = {a1, a2, . . . , am} (m � 2) is a set of alternatives;
C = {c1, c2, . . . , cn} (n � 2) is a set of criteria and wj ∈ [0, 1] is the corresponding
weight of criterion cj , satisfying

∑n
j=1 wj = 1; and E = {e1, e2, . . . , eq} (q � 2)

is a set of experts and each expert is assigned with a weight λh ∈ [0, 1], satisfying∑q

h=1 λh = 1. Suppose that Bh = [bh
ij ]m×n (h ∈ Q) are the decision matrices, where

bh
ij = 〈sT

bh
ij

, sI

bh
ij

, sF

bh
ij

〉 is linguistic single-valued neutrosophic evaluation given by ex-
pert eh.

Assume that the standardized matrices are denoted by Rh = [rh
ij ]m×n (h ∈ Q). The

original decision matrices Bh = [bh
ij ]m×n (h ∈ Q) can then be normalized into Rh =

[rh
ij ]m×n (h ∈ Q) based on the primary transformation rule of Li Y. et al. (2017), where

rh
ij =

⎧⎨
⎩

〈
sT

bh
ij

, sI

bh
ij

, sF

bh
ij

〉
, for benefit criterion cj ,〈

sF

bh
ij

, sI

bh
ij

, sT

bh
ij

〉
, for cost criterion cj .

(6)
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3.1. Distance and Discrimination Measures for LSVNNs

Definition 8. Let rj = 〈sT
rj

, sI
rj

, sF
rj

〉 (j = 1, 2) be any two LSVNNs. Then, the distance
measure d(r1, r2) between r1 and r2 is defined as follows:

d(r1, r2)

=
(

1

3

(∣∣NS
(
sT
r1

) − NS
(
sT
r2

)∣∣ρ + ∣∣NS
(
sI
r1

) − NS
(
sI
r2

)∣∣ρ + ∣∣NS
(
sF
r1

) − NS
(
sF
r2

)∣∣ρ)) 1
ρ

,

(7)

where NS(sθ ) is the ordered NS of linguistic term sθ , as defined in Definition 2, and ρ > 0.

Remark 1. Particularly, ρ = 1, 2, Eq. (7) is degenerated into the Hamming and Euclidean
distance measures, respectively. Due to the distinct applicability of the distance measure
under different values of ρ, Eq. (7) can help DMs flexibly select suitable parameter ρ

based on actual decision scenarios, thereby optimizing DMs’ discrimination measures.

Theorem 1. Let rj = 〈sT
rj

, sI
rj

, sF
rj

〉 (j = 1, 2, 3) be any three LSVNNs. Then, the distance
measure in Definition 8 satisfies the following properties:

(1) 0 � d(r1, r2) � 1;
(2) d(r1, r2) = d(r2, r1);
(3) If sT

r1
� sT

r2
� sT

r3
, sI

r1
� sI

r2
� sI

r3
and sF

r1
� sF

r2
� sF

r3
, then d(r1, r2) � d(r1, r3) and

d(r2, r3) � d(r1, r3).

Proof. It is obvious that Properties (1) and (2) hold. Thus, the proof of Property (3) is
provided.

Since NS(sθ ) is ordered in terms of sθ , it has NS(sT
r1

) � NS(sT
r2

) � NS(sT
r3

),
NS(sI

r1
) � NS(sI

r2
) � NS(sI

r3
) and NS(sF

r1
) � NS(sF

r2
) � NS(sF

r3
). Thus, S(r1) �

S(r2) � S(r3) based on Eq. (5) and the following inequalities can be obtained: |NS(sT
r1

)−
NS(sT

r2
)|ρ � |NS(sT

r1
) − NS(sT

r3
)|ρ , |NS(sI

r1
) − NS(sI

r2
)|ρ � |NS(sI

r1
) − NS(sI

r3
)|ρ and

|NS(sF
r1

) − NS(sF
r2

)|ρ � |NS(sF
r1

) − NS(sF
r3

)|ρ . Therefore,

∣∣NS
(
sT
r1

) − NS
(
sT
r2

)∣∣ρ + ∣∣NS
(
sI
r1

) − NS
(
sI
r2

)∣∣ρ + ∣∣NS
(
sF
r1

) − NS
(
sF
r2

)∣∣ρ
�

∣∣NS
(
sT
r1

) − NS
(
sT
r3

)∣∣ρ + ∣∣NS
(
sI
r1

) − NS
(
sI
r3

)∣∣ρ + ∣∣NS
(
sF
r1

) − NS
(
sF
r3

)∣∣ρ
⇒ d(r1, r2) � d(r1, r3).

Thus, we have d(r1, r2) � d(r1, r3). Similarly, it can be demonstrated that d(r2, r3) �
d(r1, r3). This completes the proof of Property (3).

In GDM, a panel of experts are invited to provide their evaluations about a set of
alternatives. It is required that an expert should be qualified with the ability to differentiate
between cases which are similar but not identical (Herowati et al., 2017). Motivated by
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Table 1
LSVNN evaluations of Example 1.

c1 c2 c3 c4

a1 〈s6, s2, s1〉 〈s5, s3, s1〉 〈s6, s1, s1〉 〈s4, s2, s2〉
a2 〈s4, s3, s1〉 〈s7, s3, s2〉 〈s6, s3, s2〉 〈s6, s2, s3〉
a3 〈s5, s3, s2〉 〈s4, s2, s3〉 〈s4, s3, s1〉 〈s5, s2, s2〉
a4 〈s5, s3, s3〉 〈s7, s2, s1〉 〈s6, s2, s3〉 〈s6, s2, s3〉

the idea of maximizing deviation method (Wang, 1997), the total deviation among all
alternatives is considered an effective tool to measure the discrimination of an expert (Tian
et al., 2019).

Definition 9. Let Rh = [rh
ij ]m×n is a linguistic single-valued neutrosophic evaluation

matrix, given by DM eh. Then, the discrimination measure Dis(eh) of eh is defined as
follows:

Dis(eh) = 1

m(m − 1)

n∑
j=1

m∑
i=1

m∑
k=1,k �=i

wjd
(
rh
ij , r

h
kj

)
, (8)

where Dis(eh) ∈ [0, 1], wj ∈ [0, 1] is the weight of criterion cj , and d(rh
ij , r

h
kj ) is the

distance between LSVNNs rh
ij and rh

kj , as per Eq. (7).

Remark 2. Although the discrimination measures defined in this study and Tian et al.
(2019) are both used to measure experts’ discrimination degrees among alternatives, there
are differences in application. The discrimination measure in Tian et al. (2019) is de-
fined for measuring experts’ discrimination degrees among alternatives with evaluations
in forms of interval type-2 fuzzy numbers. However, the discrimination measure defined
in this study is suitable for experts who elicit qualitative ratings with LSVNSs.

Example 1. Assume that S = {s0, s1, . . . , s8} is an LTS and R1 = [r1
ij ]4×4 is a linguistic

single-valued neutrosophic evaluation matrix, given by DM e1 based on S, as shown in
Table 1. The corresponding criterion weights are wj = 0.25 (j = 1, 2, 3, 4). Assume
that the NSs on S are predetermined as NS(sθ ) = θ

8 (θ = 0, 1, . . . , 8). Then, according
to Eq. (8), the discrimination degree is Dis(e1) = 0.1128.

3.2. Discrimination-Based Optimization Model to Obtain PNSs

As mentioned above, an expert is expected to be skilled and have the ability to discriminate
the differences between cases. When experts are required to express linguistic ratings, their
PISs of linguistic terms are embedded in the evaluations, which implicitly indicate the
subtle differences among alternatives distinguished by experts. Therefore, an optimization
model by maximizing the discrimination degree can be considered as a good solution to
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derive the PISs of DMs.

Max Dis(eh) = 1

m(m − 1)

n∑
j=1

m∑
i=1

m∑
k=1,k �=i

wjd
(
rh
ij , r

h
kj

)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

NSh(s0) = 0,

NSh(sθ ) ∈
(θ − 1

τ
,
θ + 1

τ

]
, θ = 1, 2, . . . , τ − 1; θ �= τ

2
,

NSh(s τ
2
) = 0.5,

NSh(sτ ) = 1,

(9)

where d(rh
ij , r

h
kj ) is the distance measure of LSVNNs, as per Eq. (7).

By resolving Model (9), a set of possible PNSs of linguistic terms for DM eh can
be derived, i.e. APSh = {(NSh(s0), NSh(s1), . . . , NSh(sτ )); . . . }. The obtained NSs can
guarantee the maximum discrimination degree with respect to alternatives.

Example 2 (Continuation of Example 1). Assume that R1 = [r1
ij ]4×4 and w are the same

as Example 1. Then, the PNSs of linguistic terms for DM e1 can be obtained as follows:
Without loss of generality, ρ is set as ρ = 1. The discrimination-based optimization

model can be established based on Model (9).

Max Dis(e1) = 1

3 × 4 × 4

4∑
j=1

4∑
i=1

4∑
k=1,k �=i

d(r1
ij , r

1
kj )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NS1(s0) = 0,

NS1(s1) ∈
(0

8
,

2
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(10)

By resolving Model (10), the PNSs of linguistic terms for DM e1 can be identified,
i.e. NS1(s0) = 0, NS1(s1) = 0.05, NS1(s2) = 0.125, NS1(s3) = 0.45, NS1(s4) = 0.5,
NS1(s5) = 0.55, NS1(s6) = 0.875, NS1(s7) = 0.95, and NS1(s8) = 1. Moreover, ac-
cording to Eq. (8), the discrimination degree is Dis′(e1) = 0.1816, which is higher than
that derived from Example 1. Specifically, compared to the method of without consid-
ering PISs in Example 1, the approach of considering PISs increases the discrimination
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Fig. 1. Results derived from without considering and considering PISs.

degree of DM e1 by approximately 61%. Figure 1 vividly reveals the difference between
the method of without considering and considering PISs.

4. Linguistic Single-Valued Neutrosophic MCGDM Considering PIS and
Consensus

This section develops a comprehensive linguistic neutrosophic MCGDM framework that
considers the PIS and group consensus.

4.1. Consensus Measure

Definition 10. Let Rh = [rh
ij ]m×n(h ∈ Q) be a set of individual linguistic neutro-

sophic evaluation matrices, Rc = [rc
ij ]m×n be the collective evaluation matrix, and

λ = (λ1, λ2, . . . , λq)T be the weight vector of DMs. Then, the distance d(Rh,Rc) be-
tween Rh and Rc is defined as follows:

d
(
Rh,Rc

) = 1

mn

m∑
i=1

n∑
j=1

d
(
rh
ij , r

c
ij

)
, (11)

where d(rh
ij , r

c
ij ) is the distance between LNNs based on Eq. (7) and rc

ij = LNWA(r1
ij , r

2
ij ,

. . . , r
q
ij ) is the collective evaluation of all DMs, which is obtained based on Eq. (4).
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Definition 11. For a MCGDM problem, let Rh = [rh
ij ]m×n (h ∈ Q), Rc = [rc

ij ]m×n and
λ = (λ1, λ2, . . . , λq)T be as the same as in Definition 10. Then, the consensus measure
of such a decision group is defined as:

GCL = 1 − Max
h∈Q

{
d
(
Rh,Rc

)}
, (12)

where d(Rh,Rc) is the distance between Rh and Rc based on Eq. (11). The group con-
sensus GCL ∈ [0, 1] indicates the agreement level among group members regarding the
final solution. Higher value of GCL indicates more reliable result of the MCGDM (Wan
et al., 2017).

4.2. Determination the Weights of DMs

In order to merge the group consensus into the MCGDM, an optimization model is estab-
lished to derive the weights of DMs by maximizing the group consensus as follows:

Max GCL = 1 − Max
h∈Q

{
d
(
Rh,Rc

)}
,

s.t.

⎧⎪⎨
⎪⎩

q∑
h=1

λh = 1,

λh ∈ [0, 1], h ∈ Q.

(13)

Set η = mn Maxh∈Q{d(Rh,Rc)} and it has d(Rh,Rc) � η
mn

for all h ∈ Q. Thus,
Model (13) can be equally converted into the following model:

Min η

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

n∑
j=1

d(rh
ij , r

c
ij ) � η, h ∈ Q,

rc
ij =

q∑
h=1

λhr
h
ij ,

q∑
h=1

λh = 1,

λh ∈ [0, 1], h ∈ Q,

(14)

where λh(h ∈ Q) are the decision variables, d(rh
ij , r

c
ij ) is the distance between LSVNNs

based on Eq. (7), and rc
ij = LNWA(r1

ij , r
2
ij , . . . , r

q
ij ) is the collective evaluation of all DMs,

which is obtained based on Eq. (4).
By resolving Model (14), the weight vector of DMs λ = (λ1, λ2, . . . , λq)T can be

obtained. Moreover, the group consensus GCL can be calculated based on Eq. (12). Ac-
cording to the consensus-driven optimization model, DMs who make great contribution
to achieve the high level of group consensus will be assigned large weight. In this way,
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Table 2
PNSs of linguistic terms for DMs in Fang and Ye (2017).

NS(s0) NS(s1) NS(s2) NS(s3) NS(s4) NS(s5) NS(s6) NS(s7) NS(s8)

APS1 0 0.05 0.375 0.45 0.5 0.563 0625 0.95 1
APS2 0 0.05 0.125 0.45 0.5 0.55 0.875 0.95 1
APS3 0 0.05 0.375 0.45 0.5 0.55 0.625 0.95 1
APSc 0 0.05 0.311 0.45 0.5 0.553 0.689 0.95 1

the proposed weighting framework can be considered as an indirect reward mechanism to
encourage group members to obtain the consensual solutions.

Example 3. Take the numerical example with LSVNN decision matrices Rh = [rh
ij ]4×3

(h = 1, 2, 3) and criterion weights w = (0.35, 0.25, 0.4)T in Fang and Ye (2017) as an
instance. Then, the PNSs of linguistic terms and weights for each DM can be obtained as
follows:

First, the PNSs of linguistic terms for each DM can be derived based on Model (9).
The obtained results are presented in Table 2.

Second, the weights of each DM can be identified based on Model (14)

Min η

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4∑
i=1

4∑
j=1

d
(
rh
ij , r

c
ij

)
� η, h = 1, 2, 3,

rc
ij = λ1r

1
ij + λ2r

2
ij + λ3r

3
ij ,

λ1 + λ2 + λ3 = 1,

λh ∈ [0, 1], h = 1, 2, 3,

(15)

where d(rh
ij , r

c
ij ) is the distance between LSVNNs based on Eq. (7).

By resolving the above model with the software MATLAB or LINGO, the weight vec-
tor of DMs is λ = (0.254, 0.258, 0.488)T . The collective PNSs APSc for group members
can be calculated based on the simple weighted average of APSh (h = 1, 2, 3), as shown
in Table 2.

4.3. Proposed Framework for MCGDM with LSVNNs

This subsection presents a framework for managing MCGDM with LSVNNs considering
the PIS and consensus, which is described in Fig. 2. The detailed steps are as follows:

Step 1: Normalize the decision matrices of group members.
Each member provides evaluation information with LSVNNs and the individual deci-

sion matrices are normalized based on Eq. (6), i.e. Rh = [rh
ij ]m×n (h ∈ Q).

Step 2: Identify PNSs of linguistic terms for each DM.
The PNSs APSh (h ∈ Q) of linguistic terms can be derived based on Model (9).
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Fig. 2. Flowchart of the proposed approach.

Step 3: Determine the weight vector and obtain the collective evaluations of DMs.
The weight vector λ = (λ1, λ2, . . . , λq)T can be derived based on Model (14), and

the collective evaluation matrix Rc = [rc
ij ]m×n can be calculated based on Eq. (4).

Step 4: Derive the overall evaluations of each alternative.
The overall evaluations rc

i (i ∈ M) of each alternative can be calculated based on
Eq. (4).

Step 5: Determine the ranking of alternatives.
The ranking of alternatives can be identified based on the score values S(rc

i ) (i ∈ M)

and accuracy values H(rc
i ) (i ∈ M).

5. Illustrative Example

This section presents an illustrative example adapted from Garg and Nancy (2018) to
demonstrate the application of the proposed approach.

5.1. Illustration of the Proposed MCGDM Method

A panel involving five experts are invited to express their evaluations and select the best
internet service provider(s). After conducting the preliminary investigation, four internet
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Table 3
LSVNN evaluations given by DM e1.

c1 c2 c3 c4

a1 〈s6, s1, s1〉 〈s5, s3, s3〉 〈s4, s3, s1〉 〈s6, s3, s1〉
a2 〈s5, s3, s3〉 〈s5, s4, s1〉 〈s6, s2, s1〉 〈s5, s2, s2〉
a3 〈s5, s3, s2〉 〈s4, s3, s2〉 〈s3, s4, s2〉 〈s6, s2, s2〉
a4 〈s5, s3, s3〉 〈s6, s2, s2〉 〈s4, s3, s2〉 〈s7, s1, s2〉

Table 4
LSVNN evaluations given by DM e2.

c1 c2 c3 c4

a1 〈s4, s4, s1〉 〈s5, s3, s2〉 〈s6, s2, s2〉 〈s6, s1, s1〉
a2 〈s5, s2, s2〉 〈s4, s3, s3〉 〈s3, s4, s2〉 〈s5, s3, s2〉
a3 〈s6, s2, s1〉 〈s5, s4, s2〉 〈s6, s2, s4〉 〈s6, s2, s4〉
a4 〈s5, s2, s2〉 〈s7, s1, s2〉 〈s6, s2, s2〉 〈s6, s5, s2〉

Table 5
LSVNN evaluations given by DM e3.

c1 c2 c3 c4

a1 〈s5, s3, s3〉 〈s5, s3, s1〉 〈s4, s3, s1〉 〈s6, s3, s1〉
a2 〈s4, s2, s7〉 〈s5, s4, s1〉 〈s6, s2, s1〉 〈s5, s2, s2〉
a3 〈s5, s3, s3〉 〈s4, s3, s2〉 〈s3, s4, s2〉 〈s6, s2, s2〉
a4 〈s4, s2, s5〉 〈s6, s2, s2〉 〈s4, s3, s2〉 〈s7, s1, s2〉

service providers, namely, Bharti Airtel (a1), Relience Communications (a2), Vodafone
India (a3) and Mahanagar Telecom Nigam (a4) are considered as alternatives. The criteria
are Customer Service (c1), Bandwidth (c2), Package Deal (c3) and Total Cost (c4). The
group of experts, represented as eh (h = 1, 2, 3, 4, 5) provide their ratings about alter-
natives ai (i = 1, 2, 3, 4) in terms of each criterion cj (j = 1, 2, 3, 4) with LSVNNs
based on the LTS S = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 =
slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 = very good, s8 =
extremely good}. Assume that the decision matrices of experts are denoted by Bh =
[bh

ij ]m×n (h = 1, 2, 3, 4, 5) and the criterion weight vector is w = (0.35, 0.3, 0.2, 0.15)T .
The proposed approach is employed to deal with the above linguistic neutrosophic

MCGDM problem. Let the parameter ρ = 1.

Step 1: Normalize the decision matrices of group members.
Each member provides evaluation information with LSVNNs and the individual deci-

sion matrices are normalized based on Eq. (6), as presented in Tables 3–7.

Step 2: Identify PNSs of linguistic terms for each DM.
The PNSs APSh (h = 1, 2, 3, 4, 5) of linguistic terms on LTS S can be identified based

on the discrimination-driven optimization model. Taking R1 as an example, a program-
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Table 6
LSVNN evaluations given by DM e4.

c1 c2 c3 c4

a1 〈s4, s1, s3〉 〈s6, s2, s1〉 〈s5, s4, s2〉 〈s6, s1, s3〉
a2 〈s7, s2, s4〉 〈s7, s4, s2〉 〈s5, s3, s2〉 〈s6, s4, s3〉
a3 〈s6, s2, s1〉 〈s5, s4, s3〉 〈s6, s1, s2〉 〈s6, s3, s1〉
a4 〈s4, s2, s3〉 〈s5, s3, s2〉 〈s6, s5, s1〉 〈s7, s4, s2〉

Table 7
LSVNN evaluations given by DM e5.

c1 c2 c3 c4

a1 〈s5, s1, s2〉 〈s6, s2, s3〉 〈s5, s3, s2〉 〈s6, s1, s1〉
a2 〈s7, s1, s1〉 〈s6, s2, s2〉 〈s5, s2, s2〉 〈s7, s1, s2〉
a3 〈s5, s2, s3〉 〈s5, s1, s1〉 〈s5, s2, s2〉 〈s5, s3, s1〉
a4 〈s4, s3, s1〉 〈s7, s2, s1〉 〈s5, s3, s2〉 〈s6, s1, s1〉

ming model is established based on Model (9) as follows:

Max Dis(e1) = 1
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NS1(s8) = 1.

By resolving the above model with the software MATLAB or LINGO, the PNS APS1

for DM e1 can be obtained. Similarly, APSh (h = 2, 3, 4, 5) can be derived and the results
are presented in Table 8. There are subtle differences about the semantics of linguistic
terms among DMs.
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Table 8
PNSs of linguistic terms.

NS(s0) NS(s1) NS(s2) NS(s3) NS(s4) NS(s5) NS(s6) NS(s7) NS(s8)

APS1 0 0.05 0.201 0.45 0.5 0.55 0.875 0.95 1
APS2 0 0.05 0.125 0.45 0.5 0.651 0.875 0.95 1
APS3 0 0.05 0.125 0.25 0.5 0.75 0.875 0.95 1
APS4 0 0.05 0.375 0.45 0.5 0.55 0.875 0.95 1
APS5 0 0.05 0.375 0.45 0.5 0.55 0.751 0.95 1
APSc 0 0.05 0.262 0.406 0.5 0.605 0.854 0.95 1

Table 9
Overall evaluations of alternatives in terms of each criterion.

c1 c2

a1 〈(s5, 0.379), (s1, 0.2), (s2, −0.41)〉 〈(s6,−0.424), (s3,−0.276), (s1, 0.418)〉
a2 〈(s6, −0, 121), (s2,−0.327), (s2, 0.423)〉 〈(s6,−0.249), (s3,−0.015), (s2,−0.367)〉
a3 〈(s6, −0.409), (s2, 0.382), (s1, 0.491)〉 〈(s5, 0.001), (s2, 0.46), (s2, −0.411)〉
a4 〈(s4, 0.305), (s2, 0.133), (s2, 0.255)〉 〈(s6,−0.033), (s2,−0.184), (s2,−0.318)〉

c3 c4

a1 〈(s5, 0.375), (s2,−0.069), (s2,−0.484)〉 〈(s6, 0.058), (s1, 0.339), (s1, 0.266)〉
a2 〈(s5, 0.202), (s2, 0.19), (s2,−0.084)〉 〈(s6, −0.18, (s2,−0.095), (s3, −0.193)〉
a3 〈(s6,−0.028), (s2, −0.159), (s2, −0.169)〉 〈(s6, 0.196), (s3,−0.421), (s1, 0.32)〉
a4 〈(s6,−0.291), (s2, −0.041), (s1, 0.313)〉 〈(s6, 0.439), (s2,−0.302), (s2,−0.448)〉

Step 3: Determine the weight vector and obtain the collective evaluations of DMs.
A consensus-based optimization model can be established based on Model (14) as

follows:

Min η

s.t.
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2
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ij + λ4r

4
ij + λ5r

5
ij ,

λ1 + λ2 + λ3 + λ4 + λ5 = 1,

λh ∈ [0, 1], h = 1, 2, 3, 4, 5.

By resolving the above model with the software MATLAB or LINGO, the weight
vector of DMs is λ = (0.244, 0.113, 0.219, 0.252, 0.172)T . The collective PNSs APSc

for group members can be calculated based on the simple weighted average of APSh

(h = 1, 2, 3, 4, 5), as shown in Table 8. The collective evaluation matrix Rc = [rc
ij ]4×4

is calculated based on Eq. (4). The result is presented in Table 9. Moreover, the group
consensus GCL can be calculated based on Eq. (12), namely, GCL = 0.858.

Step 4: Derive the overall evaluations of each alternative.
The overall evaluations rc

i (i = 1, 2, 3, 4) are calculated based on Eq. (4). The results
are shown in Table 10.
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Table 10
Overall values of each alternative.

rc
i

S(rc
i
) H(rc

i
) Rankings

a1 〈(s6,−0.435), (s2,−0.399), (s1, 0.465)〉 0.807 0.597 1
a2 〈(s6,−0.274), (s2, 0.057), (s2, 0.017)〉 0.751 0.522 4
a3 〈(s6,−0.354), (s2, 0.291), (s2, −0.453)〉 0.765 0.600 3
a4 〈(s6,−0.337), (s2,−0.086), (s2,−0.295)〉 0.776 0.571 2

Step 5: Determine the ranking of alternatives.
The score and accuracy values S(rc

i ) (i = 1, 2, 3, 4) and H(rc
i ) (i = 1, 2, 3, 4) are

calculated based on Eq. (5), as presented in Table 10. Based on the comparison method
for LSVNNs, the ranking of alternatives is a1 
 a4 
 a3 
 a2, and Bharti Airtel (a1) can
be considered as the best internet service provider.

5.2. Sensitivity Analysis

In order to investigate the influence of parameter ρ on the final result, different values of
ρ are assigned, namely, ρ = 1, ρ = 2 and ρ → ∞. The PNSs of linguistic terms and
discrimination degrees of each DM with different values of ρ are presented in Figs. 3–5,
respectively. From Figs. 3(a)–5(a), there are slight differences about the PNSs of linguistic
terms when ρ is assigned different values. From Figs. 3(b)–5(b), although the discrimi-
nation levels are various when ρ is assigned different values, the orders of discrimination
levels of DMs remain unchanged, except ρ = 2. Moreover, from Table 11, the orders
of alternatives almost have no change, except ρ = 2. The worst alternative is Relience
Communications (a2) in the three cases. In summary, different values of ρ can gener-
ate various distance measures of LSVNNs. However, it seems to have little influence on
the final ranking of alternatives. Thus, one can choose the Hamming distance measure of
LSVNNs with ρ = 1 to assign the PNSs and drive the ranking of alternatives, which is
simple and straightforward.

5.3. Comparative Analysis

A comparative analysis is conducted between the existing MCGDM and the proposed
approaches with LSVNNs. Two common MCGDM methods are employed in this com-
parison, and they are the LSVNN WAA and WGA operator-based method (M1 for short)
(Fang and Ye, 2017) and the LSVNN prioritized WAA and WGA operator-based method
(M2 for short) (Garg and Nancy, 2018).

The proposed approach is employed to solve the MCGDM problems in Fang and Ye
(2017) and Garg and Nancy (2018), where the criterion weights keep the same as M1
and M2, respectively. The ranking results obtained by different methods are presented in
Table 12. The sorting results obtained from the first group of comparative analysis are
consistent, all of which are a4 
 a2 
 a3 
 a1. However, there are differences in the
ranking results obtained from the second group of comparative analysis, which reflected
in the order of alternatives a1, a2 and a4. The possible reason for this difference is that the
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Fig. 3. PNSs of linguistic terms and discrimination degrees with ρ = 1.

Fig. 4. PNSs of linguistic terms and discrimination degrees with ρ = 2.

M1 needs to identify the orders of DMs and criteria before determining their weights. The
aggregated results are highly related to the predefined orders. By contrast, the proposed
approach identifies the weights of DMs based on a consensus-based optimization model,
omitting the extra pre-procedure of determining the orders of DMs and criteria. Moreover,
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Fig. 5. PNSs of linguistic terms and discrimination degrees with ρ → ∞.

Table 11
Rankings of alternatives with different values of ρ.

ρ S(rc
i
) Rankings

ρ = 1 S(rc
1 ) = 0.807, S(rc

2 ) = 0.751, S(rc
3 ) = 0.765, S(rc

4 ) = 0.776 a1 
 a4 
 a3 
 a2

ρ = 2 S(rc
1 ) = 0.795, S(rc

2 ) = 0.757, S(rc
3 ) = 0.763, S(rc

4 ) = 0.797 a4 
 a1 
 a3 
 a2

ρ → ∞ S(rc
1 ) = 0.802, S(rc

2 ) = 0.762, S(rc
3 ) = 0.775, S(rc

4 ) = 0.781 a1 
 a4 
 a3 
 a2

Table 12
Rankings of alternatives yielded by different methods.

Methods Rankings Discrimination degrees

M1 (Fang and Ye, 2017) a4 
 a2 
 a3 
 a1 Dis(e1) = 0.069, Dis(e2) = 0.085, and Dis(e3) = 0.121
The proposed approach a4 
 a2 
 a3 
 a1 Dis(e1) = 0.159, Dis(e2) = 0.123, and Dis(e3) = 0.166
M2 (Garg and Nancy, 2018) a2 
 a4 
 a1 
 a3 Dis(e1) = 0.159, Dis(e2) = 0.214, and Dis(e3) = 0.283
The proposed approach a1 
 a2 
 a4 
 a3 Dis(e1) = 0.231, Dis(e2) = 0.319, and Dis(e3) = 0.386

the alternatives are ranked based on the proposed PNSs-based score and accuracy func-
tions. The different weight determination methods, aggregation rules and ranking methods
may yield various results. The differences between M1, M2 and the proposed approach
are summarized in Table 13.

In order to highlight the characteristics of considering PISs, the discrimination de-
grees of decision matrices are calculated. Since the PISs of DMs are overlooked in M1
and M2, the fixed NSs for LTS S are set, namely, FNS(sθ ) = θ

8 (θ = 0, 1, . . . , 8). Then,
the discrimination degrees of decision matrices Rh (h = 1, 2, 3) in Fang and Ye (2017)
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Table 13
Comparisons between the existing and the proposed methods.

Methods Aggregation operators Ways of addressing
LSVNNs

PISs
considered

Group consensus
considered

M1 (Fang and Ye,
2017)

LSVNN WAA and WGA
operators

Consider indices of
linguistic terms

No No

M2 (Garg and Nancy,
2018)

LSVNN prioritized WAA
and WGA operators

Consider indices of
linguistic terms

No No

Method in Li Y. et al.
(2017)

LSVNN geometric
Heronian mean and
prioritized geometric
Heronian mean operators

Consider indices of
linguistic terms

No No

Method in Liang et al.
(2018a)

LSVNN power WAA and
WGA operators

Consider indices of
linguistic terms

No No

Method in Li et al.
(2019)

LSVNN power WAA and
WGA operators

Consider indices of
linguistic terms

No No

The proposed
approach

LSVNN WAA operator NS-based 2-tuple
linguistic model

Yes Yes

and Garg and Nancy (2018) are calculated by using Eq. (8) based on the fixed and per-
sonalized NSs. The results are presented in Figs. 6 and 7. It shows that when expressing
linguistic rating with LSVNNs, different DMs may present various linguistic semantics,
as shown in Fig. 6(a) and Fig. 7(a). Therefore, it is necessary to take the PISs of each
DM into account. Moreover, the proposed approach presents higher discrimination de-
grees than M1 and M2 that both fail to consider PISs of DMs, as shown in Fig. 6(b) and
Fig. 7(b). Although the discrimination degrees obtained from the comparative analysis of
each method are implicit, their significance can be achieved by describing the percent-
age of the improvement value brought by the proposed method compared to the results
obtained by existing methods, as shown in Fig. 8. For example, in the first group of com-
parative analysis, the discrimination degree of e1 calculated using the proposed method
is greater than that using the M1 approach, and the discrimination degree is significantly
improved by about 130.43% compared to the M1 method. In this way, the differences of
alternatives in MCGDM problems with LSVNNs can be robustly distinguished by em-
ploying the proposed approach.

Furthermore, comparisons are conducted between the existing LSVNN MCGDM
methods and the proposed approach. The comparison results are summarized in Table 13.
The results reflect that the existing methods aggregate LSVNNs based on the indices of
linguistic variables of them. In this way, various virtual linguistic terms will be output
and they may fail to be mapped to any original linguistic terms, reducing the readability.
By contrast, the proposed approach considers the PISs of DMs and employs an NS-based
2-tuple linguistic model to address LSVNNs. The proposed approach can effectively avoid
generating virtual linguistic terms. Meanwhile, the group consensus considered in the pro-
posed approach can yield a final solution that is highly accepted by the group. In summary,
the suggested method is better compared to other approaches.

Based on the discussion in the illustrative example, sensitivity and comparative anal-
ysis, the prominent features of the developed framework are summarized as follows:
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Fig. 6. Comparisons between M1 and the proposed approach.

Fig. 7. Comparisons between M2 and the proposed approach.

(1) An effective solution for addressing PISs. The proposed PIS model can provide an
effective solution to assign PNSs of linguistic terms for DMs, characterizing their
personalized semantic preferences regarding linguistic MCGDM with LSVNNs.

(2) A cautious method to assign the weights of DMs considering group consensus. The
developed consensus-driven optimization model is utilized to identify the weights of
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Fig. 8. Discrimination degrees derived from considering and without considering PISs.

DMs, guaranteeing a high level of agreement among members in terms of the final
solution.

(3) A robust method to determine the differences among alternatives. The proposed ap-
proach can not only consider the PISs of DMs, but also provide a robust method to
reveal the differences among alternatives with the optimal discrimination degrees.

However, although the proposed approach equips outstanding characteristics in dealing
with linguistic MCGDM problems with LSVNNs, DMs may have to derive the PNSs and
weights of DMs by resolving some mathematic programming models. Compared to the
existing methods without considering PISs, the proposed approach is intricate and time-
consuming.

6. Conclusions

LSVNNs are valuable for describing qualitative ratings involving uncertain, incomplete,
and inconsistent information. When eliciting linguistic evaluations, words may be as-
signed different meanings for various people, that is, DMs have PISs with regard to lin-
guistic terms. Considering PISs of DMs can lead to a realistic and effective methodology
for addressing linguistic neutrosophic MCGDM problems. This study firstly develops a
discrimination-based optimization model to assign PNSs of linguistic terms on LTS for
DMs, and effectively describe their personalized semantic preferences regarding linguistic
MCGDM with LSVNNs. Then, an optimization model on the basis of group consensus is
constructed to identify the weights of DMs, which guarantees a high level of agreement
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among members in terms of the final solution. Subsequently, an LSVNN WAA aggrega-
tion operator and PNSs-based score and accuracy functions are utilized to determine the
ranking of alternatives. Finally, by comparing with existing methods, the results demon-
strate that the proposed approach which developed PIS can effectively derive PNSs of
linguistic terms on LTS for DMs and lead to higher discrimination degrees than those
without considering PISs.

In the future study, it would be an interesting topic to investigate the PIS-based ap-
proach for addressing incomplete MCGDM problems with LSVNNs. Moreover, complex
MCGDM involving large-scale members and considering their social relationships has
attracted much attention (Liao et al., 2021). It would be an interesting extension of the
proposed framework for tackling social network large-scale MCGDM problems.

Appendix

The notation used in this study is summarized in Table 14.

Table 14
Notation in this study.

Indicators Meanings

S = {s0, s1, . . . , sτ } Set of linguistic terms
NS(sθ ) Numerical index of linguistic term sθ

A = {〈x, sT
A

(x), sI
A

(x), sF
A

(x)
∣∣ x ∈ X〉} LSVNS with linguistic truth degree sT

A
(x), indeterminacy

degree sI
A

(x) and falsity degree sF
A

(x)

rj = 〈
sT
rj

, sI
rj

, sF
rj

〉
(j = 1, 2, . . . , n) Collection of LSVNNs

LNWA(r1, r2, . . . , rn) LSVNN WAA operator
S(r) Score function of LSVNN r

H(r) Accuracy function of LSVNN r

A = {a1, a2, . . . , am} Set of alternatives
C = {c1, c2, . . . , cn} Set of criteria
wj Weight of criterion cj

E = {e1, e2, . . . , eq } Set of experts
λh Weight of expert eh

Bh = [bh
ij

]m×n Original decision matrix of expert eh

bh
ij

= 〈
sT

bh
ij

, sI

bh
ij

, sF

bh
ij

〉
LSVNN evaluation given by expert eh

Rh = [rh
ij

]m×n Standardized decision matrix of expert eh

d(r1, r2) Distance measure between LSVNNs r1 and r2
ρ Parameter of distance measure d(r1, r2)

Dis(eh) Discrimination measure of expert eh

APSh = {
(NS(s0), NS(s1), . . . , NS(sτ )); . . .

}
Set of possible PNSs of linguistic terms for expert eh

GCL Group consensus measure
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