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Abstract. The Gene Ontology (GO) knowledge base provides a standardized vocabulary of GO
terms for describing gene functions and attributes. It consists of three directed acyclic graphs which
represent the hierarchical structure of relationships between GO terms. GO terms enable the orga-
nization of genes based on their functional attributes by annotating genes to specific GO terms. We
propose an information-retrieval derived distance between genes by using their annotations. Four
gene sets with causal associations were examined by employing our proposed methodology. As a
result, the discovered homogeneous subsets of these gene sets are semantically related, in contrast to
comparable works. The relevance of the found clusters can be described with the help of ChatGPT
by asking for their biological meaning. The R package BIDistances, readily available on CRAN,
empowers researchers to effortlessly calculate the distance for any given gene set.
Key words: gene ontology, gene analysis, cluster analysis, knowledge base, ChatGPT.

1. Introduction

The analysis of gene expression profiles in biological materials has become routine in
molecular biomedical research, including drug development. Sets of genes emerge from
various sources, including microarray analyses of Taub et al. (1983), next-generation se-
quencing analysis of Mardis (2008), or topical searches in databases (Lötsch et al., 2013;
Ultsch and Lötsch, 2014). In addition, their functional interpretation is an active research
topic in biomedical informatics (Tarca et al., 2013). Working solutions focus on compu-
tational analyses of molecular interaction networks (Alm and Arkin, 2003; Barabási and
Oltvai, 2004) or enrichment analyses identifying over-represented functional knowledge
base derived categories annotated to a particular gene set in comparison to a random gene
set (Subramanian et al., 2005).

Available methods mainly aim to provide functional descriptions of single gene sets.
However, only limited similarity analyses are performed on gene sets and these are often
restricted to the comparative interpretation of parallel analyses or assessments of gene
set intersections. Methods assessing gene similarity remain mainly on the single gene
level, such as Resnik (1999) similarity. We propose to utilize a swarm intelligence-based

∗Corresponding author.

https://doi.org/10.15388/23-INFOR517


358 Q. Stier, M. Thrun

method for identifying homogeneous structures within gene sets, which enables functional
interpretations and is also amenable to comparative analyses. The method uses a distance
measure which is proposed in this work and motivated by information retrieval (van Ri-
jsbergen, 1979). This distance measure is immediately usable for functional comparisons
between (sub)sets of genes to establish groups within a larger set that share biological
functions or find functionally similar sets of genes from other sources.

The present work pursued the hypothesis that sets of genes may be grouped, exploiting
a knowledge base on a computational functional genomics basis by applying projection-
based cluster analysis (Thrun and Ultsch, 2020b). For data consisting of gene sets, the
concept of how cluster structures should be defined is unknown. Thus, conventional pro-
jection or clustering algorithms are unfeasible because global criteria predefine the struc-
tures they seek (Ultsch and Lötsch, 2017; Thrun, 2018). If a global criterion is given, it
follows that an implicit definition of the structures in data exists, and the bias is the differ-
ence between this definition and the existing structures (Thrun, 2021a). For example, the
global criterion of Partition-Around-Medoids (PAM) (Kaufman and Rousseeuw, 1990) is
used in the Gene clustering approach of Acharya et al. (2017).

Linear projection methods are not able to detect nonlinear entangled structures (Thrun
and Ultsch, 2020b). Especially, Principal Component Analysis maximizes variance, which
in cluster analysis benchmarks (Thrun and Ultsch, 2020a) and applications (López-García
et al., 2020) tended to be rather disadvantageous. Instead, we chose a projection-based
clustering method called Databionic Swarm (DBS) which, after extensive benchmarking,
showed to be able to simultaneously detect more complex structures in data (Thrun, 2021a)
and verify if structures in data exist at all (Thrun and Ultsch, 2020a, 2020b). In principle,
the choice of underlying focusing projection method is interchangeable as long as it tries
to preserve neighbourhoods non-linearly and allows a distance matrix as an input. As a
negative example, multidimensional scaling has an objective function that tries to preserve
all distance relations (Shepard, 1980) which is rather not advisable for this task. There-
fore, here the DBS is selected as the projection method because instead of using a global
criterion, DBS exploits self-organization and emergence (Thrun and Ultsch, 2021). Con-
sequently, DBS can find homogeneous structures in data of any shape instead of being
restricted to specific structures in data (Thrun and Ultsch, 2021).

Since different clustering techniques may discover very different structures in data or
no structure at all (Thrun, 2021a; Lötsch and Ultsch, 2020), we are using two techniques
to verify the structures found with our method. The structures we are looking for are based
on the distance measure and define natural clusters (Duda et al., 2000). Natural clusters
are defined by groups of datapoints, which possess small distances among datapoints from
their own group (intracluster distance) and large distances to datapoints of other groups
(intercluster distance).

The following two approaches visualize the datapoints based on the here defined sim-
ilarity measure and can indicate natural clusters. First, heat maps are used to visualize the
high-dimensional distances (Wilkinson and Friendly, 2009). By grouping the variables
in the heat map according to the clustering, structures can be visually validated, since
the colour of the matrix blocks on the diagonal with size corresponding to the cluster
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sizes should be clearly separable from the neighbouring blocks. Second, topographic maps
based on the U-matrix approach are visualizing similarity between datapoints (Thrun and
Lerch, 2016). In brief, a topographic map forms a Voronoi cell around each projected data-
point. Neighbouring Voronoi cells are connected resulting in a Delaunay graph (Toussaint,
1980). This Delaunay graph can be weighted with the input distances. A dendrogram can
be derived from the Delaunay graph and can be used for clustering both by visual means or
by a priorly known number of clusters (Thrun and Ultsch, 2021). The U-matrix approach
allows to add a third dimension to the two-dimensional projection. By using the distances
derived from the Delaunay graph weighted with the input distances, the neighbourhood
of each datapoint can be evaluated as more or less similar. Such similarity evaluation can
be represented by a landscape with a colour transition analog to geographic maps. Dat-
apoints which have low distances to their neighbours contribute low values to the height
building up a landscape around them resulting in valleys, whereas datapoints with high
distances to their neighbours contribute high values to the landscape height and thus result
in mountain area. Clear distinguishable clusters thus result in two neighbouring valleys
with a clear mountain wall separating the clusters. Since the definition of natural clusters
requires structures based on distance, we are further investigating the distribution of the
distances with focus on intra- and intercluster distances.

A feature matrix is created that was accessible for functional clustering to address this
hypothesis by assigning each gene with its functional annotations in the GO database (Ash-
burner et al., 2000). The feature matrix rows comprise the genes in the set, and the columns
are defined by the GO terms in which the genes are annotated. Each gene can be annotated
to multiple GO terms. Each GO term can belong to one of the three named ontologies.
An annotation of a Gene to a GO term is a statement about the function of a particular
gene. Each annotation includes an evidence code to indicate how the annotation to a par-
ticular term is supported (see http://geneontology.org/docs/guide-go-evidence-codes/).
Each element of the matrix counts the occurrence, i.e. the number of times a specific gene
is annotated in a specific GO term depending on the various possible evidence codes.
Term-frequency-inverse document frequency (tf-idf) statistics are calculated based on the
feature matrix. The tf-idf is an information retrieval technique serving to rank the rele-
vance of the terms (Rajaraman and Ullman, 2011) here associated with the genes. The
absolute distance between the tf-idf values of each pair of genes is here defined as the dis-
tance matrix and then used in unsupervised machine learning, implemented as the swarm
intelligence of the DBS (Thrun and Ultsch, 2021). DBS identifies semantically related
genes within a gene set by grouping them based on biological knowledge contained in the
GO. The resulting functional and homogeneous structures in sets of genes are visualized
using the topographic map of the U-matrix (Thrun and Ultsch, 2020a). The analysis is per-
formed on gene sets causally associated with pain and the chronification of pain (Ultsch
et al., 2016), hearing loss (GeneTestingRegistry, 2018), cancer (Sondka et al., 2018), and
drug addiction (Li et al., 2008), showing distinctive and homogeneous knowledge-based
structures.

This work is the extended manuscript initially presented in World’CIST 2022 (Thrun,
2022c). The structure of the paper is as follows. After a related work section, the method-
ology is introduced in Section 3. The first part of the results section evaluates the proposed
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distance measure and shows that all four gene sets are expected to have cluster structures if
this distance measure is used. In the second part of the results section, the structure anal-
ysis and clustering are presented and evaluated. Finally, a discussion of the results and a
conclusion follow.

2. Related Works

Lippman states that methods for selecting a subset of genes can be divided into six cat-
egories based on the underlying models: Filter, Wrapper, Hybrid, Embedded, Ensemble,
and Integrated (Lippmann, 2020; Saeys et al., 2007; Grasnick et al., 2018). Filtering meth-
ods select genes based only on the intrinsic properties of the data using a search procedure
(Lippmann, 2020). Wrappers first apply a search procedure to generate different subsets of
the total set and then apply a learning algorithm to all the subsets found, using their perfor-
mance as a quality criterion and selecting the optimal subset of genes (Lippmann, 2020).
For example, Tang et al. (2007) applies clustering approaches to microarray gene expres-
sion data and creates a connection to a gene annotation afterwards to create meaningful
results. As machine learning method applied on gene expression data it is categorized
as wrapper model. Tasoulis et al. (2006) deploy an evolutionary algorithm to detect gene
subsets depending on a neural network’s classification performance making it an approach
that belongs to wrapper models.

Hybrid gene selection methods are combinations of Wrapper and Filter methods that
attempt to exploit the good properties of both methods (Jović et al., 2015). In embed-
ded gene selection, the optimal subset of genes is already selected during the execution
of the learning algorithm (Hira and Gillies, 2015; Jović et al., 2015), making embed-
ded methods, like wrappers, highly dependent on the learning algorithm and not directly
transferable to other gene selection problems (Lippmann, 2020). Instead of a single gene
selection method, ensemble methods use multiple gene selection methods and result in the
subset that produces the best results in most methods (Lippmann, 2020). Integrative gene
selection uses domain knowledge from external knowledge bases, such as KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways, to select genes (Lippmann, 2020). For
example, Jin and Lu (2010) use differences in the word usage profile of GO terms allowing
to identify subsets of genes based on information bottleneck methods. As method applied
on data generated on some properties of GO terms which are part of a knowledge base it
can be categorized as integrated model. In another example, the method of Wolting et al.
(2006) measures graph similarity between GO annotations to cluster subsets of proteins
and thus can be grouped as an integrated model.

Typical methods within the six categories use expression data of the genes to evaluate
the genes of subsets quantitatively (Lippmann, 2020). However, if no expression data are
available for a gene set, these methods cannot be used (Lippmann, 2020).

The most similar approach of Acharya et al. (2017) describes a procedure for which
no expression data are required for the selection of genes. An overrepresentation analysis
is performed for a given set of genes. The overrepresentation analysis is a statistical ap-
proach to estimate how likely a GO term is observed in the given gene set in contrast to
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pure chance (Backes et al., 2007; Lippmann, 2020). Thus, the overrepresentation analysis
retrieves GO terms in which genes of a given set are annotated significantly more or less
than expected. For each significant GO term, the information content is calculated based
on the position of the GO term and the number of its descendants in the DAG resulting
from the overrepresentation analysis. A matrix describing the GO annotations is created.
Its entries are zero unless a gene in the respective row is annotated to the GO term of the re-
spective column. If the gene is annotated to the GO term, the matrix contains the structural
information content of the corresponding GO term. Computing the Euclidean distances
(or alternatively, Manhattan or Cosinus distance) based on this matrix, the genes are then
clustered with the PAM algorithm (Acharya et al., 2017). A silhouette plot proposed by
Rousseeuw (1987) is used to determine the optimal number of clusters. In Acharya et al.
the subset selection by cluster analysis is evaluated using the average Silhouette index,
Dunn (1974) index, and Davies-Bouldin index (Davies and Bouldin, 1979). The approach
from Wolting et al. (2006) uses all three categories of the GO, namely biological process,
cellular component, and molecular function, which differs from the methodology applied
in this work.

3. Methods

Prior work did not focus on the semantic value of the GO to identify gene subsets. Further-
more, there were no available open-source codes to apply them out-of-the-box. Therefore,
we further provide an R package BIDistances available on CRAN to obtain the results with
our proposed method (https://CRAN.R-project.org/package=BIDistances).

The identification of gene subsets which are semantically related is explained in
the following. The feature vector associated with each gene was obtained as the bio-
logical functions involved in the individual gene product. They were queried for each
gene from the GO knowledge base (http://www.geneontology.org/) (Ashburner et al.,
2000). The GO can be accessed for example with R via the Bioconductor package
https://bioconductor.org/packages/GO.db/ and can be searched for “biological processes”,
“cellular components” and “molecular functions”. The GO is a knowledge base consisting
of GO terms which features the knowledge about the functions of genes using a controlled,
and clearly defined vocabulary of GO terms annotated to specific genes (Camon et al.,
2003, 2004). A set of genes G consists of multiple gene IDs g ∈ G. In practice, a gene set
can be a set of sequence identifiers, i.e. a simple series of digits assigned consecutively
to each sequence record processed by the National Center for Biotechnology Informa-
tion (NCBI) for a specific use case provided by an expert. Each gene can be annotated
to multiple GO terms. Furthermore, each GO term can belong to one of the three named
ontologies. Here, all ontologies were used to retrieve GO terms. Let G be a set of genes,
then we assume that gene subsets Gi , Gj ⊂ G are disjunct, denoted by Gi ∩ Gj = ∅.

To accommodate the perception that a GO term that appears only in some genes seems
to provide a more appropriate and specific description of a gene than a general term that
occurs in almost every gene, the gene versus biological process matrix was weighted using
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the term frequency-inverse document frequency (tf-idf) (Jones, 1972). Inverse document
frequency was developed in an information retrieval context and consists of a numerical
statistic aimed at reflecting how important a word is to a document in a collection (Rajara-
man and Ullman, 2011), where it seeks to use the most relevant information for document
identification. In the present context of gene set comparison, the inverse document fre-
quency and term frequency were calculated regarding the documents as represented by
the gene set G and the terms represented by the GO term set T . In general, the term fre-
quency (tf) depends on the number of occurrences of the term in the document, although
there are various ways to define tf (Manning et al., 2008). In this work, GO-Terms t ∈ T

represent documents in the information retrieval sense, and the terms are the genes g of a
set G. The frequency of one gene g from the gene set G is computed with an aggregation
function (mean, sum, . . .) denoted as f over all GO terms t ∈ T the gene is annotated to.
To calculate tf, the resulting value is divided by the maximum observable value overall
given genes in a set, i.e.

tf(g) = f (gt )

maxg∈G{f (gt )} . (1)

For simplification, we used the augmented frequency with the aggregation function mean
for manually curated genes. For each gene, the inverse document frequency (idf) logarith-
mically in equation (2) counts the number N of GO terms in which any gene g of the
set is annotated, divided by the number n(g) of GO terms to which the specific gene g is
annotated. The resulting value is translated by 1 to ensure values greater than zero before
the logarithm is applied:

idf(t) = log

(
1 + N

n(g)

)
. (2)

Finally, the term frequency-inverse document frequency F is given as the product of
the term frequency and the inverse document frequency, i.e.

F(g) = tf(g) · idf(g). (3)

In equation (3), F reduces the weights of genes that occur very frequently among the GO
terms and increases the weight of genes that occur rarely. Thus, a gene only annotated to
some GO terms is more meaningful than one annotated to almost every GO term.

Distance D between two genes i and j is defined in equation (4) as the absolute dif-
ference of F computed by equation (3) as:

D(i, j) = ∣∣F(i) − F(j)
∣∣. (4)

This work will show that the distribution of the distance D is multimodal for all four in-
vestigated sets of genes which indicates that knowledge-based structures exist and can be
exploited (Thrun, 2021b). The existence of clusters is verified by statistical testing and
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structure analysis using the topographic map and heatmap (see sections below). Subse-
quent cluster analysis will yield homogeneous subset of genes of each gene set. The spe-
cific genes in each subset are listed in SI A (Tables 1–4). The distance is currently avail-
able on as a R package on GitHub https://github.com/Mthrun/BIDistances/ and CRAN
(https://CRAN.R-project.org/package=BIDistances). This work will show that the distri-
bution of the distance D is multimodal in the case of all four investigated sets of genes.
Multimodality in the distribution of distances serves as an indication that knowledge-based
structures exist and can be exploited.

3.1. Identification of Homogeneous Groups in Gene Sets

Identification of homogeneous groups of semantically related genes is performed using
unsupervised machine learning (Murphy, 2012) implemented as the swarm intelligence of
the DBS (Thrun and Ultsch, 2021). The DBS is a flexible and robust clustering framework
that consists of three independent modules: swarm-based projection, high-dimensional
data visualization (Thrun and Ultsch, 2020a), and representation-guided clustering. The
first module is the parameter-free projection method Pswarm, which exploits concepts
of self-organization and emergence, and game theory using swarm intelligence. Pswarm
either uses a data matrix or a given distance or distance measure.

The intelligent agents of Pswarm operate on a toroid grid, where positions are coded
into polar coordinates to allow for the precise definition of their movement, neighbourhood
function, and annealing scheme. The size of the grid and, in contrast to other (focusing)
projection methods, the annealing scheme does not require any parameters to be set. Dur-
ing learning, each agent moves across the grid or stays in its current position in the search
for the most potent scent emitted by other agents. Hence, agents search for other agents
carrying data with the most similar features to themselves with a data-driven decreasing
search radius. The movement of every agent is modelled using a game theory approach,
and the radius decreases only if a Nash Jr. (1950) equilibrium is found. After the self-
organization of agents is finished, the output of the Pswarm algorithm is a scatter plot
of projected points representing a folding of the high-dimensional data space. The second
module is a parameter-free high-dimensional data visualization technique called the topo-
graphic map (Thrun and Lerch, 2016). It uses the generalized U-matrix computed on the
projected points and visualizes the folding of the high-dimensional space, i.e. how well
the two-dimensional similarities between projected points represent high-dimensional dis-
tances. Moreover, the topographic map enables the estimation of the number of clusters,
if any cluster tendency exists. The third module offers a clustering method that the vi-
sualization and vice versa can verify. The complete method is applied to four gene sets
described in Table 1. It is accessible as the R package “DatabionicSwarm” on CRAN
(https://CRAN.R-project.org/package=DatabionicSwarm). For each gene, the GO knowl-
edge base was accessed to identify all GO terms associated with this gene resulting in a
feature matrix of gene vs GO terms. This feature matrix is used to compute the distance
in equation (4).

Searching for multimodality in distance distributions can be reasonable if no prior
knowledge about the data is available (Thrun, 2021b): This approach enables to identify
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if a distance is appropriate and the evaluation of clustering solutions using Gaussian mix-
ture models (GMMs) of distance distributions under the assumption that distance-based
structures are sought. Multimodality in the distance distribution indicates modes of intra-
partition distances and interpartition distances. If a distance distribution is multimodal the
GMM provides a hypothesis that intra-cluster distances are represented mostly by the left-
most mode and do not overlap with the right-most mode of the full distance distributions
(Thrun, 2021b).

3.2. Validation of Homogeneous Structures in Comparison to Related Work

The validation is performed with the topographic map (Thrun and Lerch, 2016; Thrun
and Ultsch, 2020b; Thrun et al., 2021), cluster heatmaps (Wilkinson and Friendly, 2009),
dendrograms of hierarchical clustering methodology defined in Thrun (2022b), and one
unsupervised quality measure provided in the FCPS package available on CRAN (Thrun
and Stier, 2021) as well as through distance distributions (Thrun, 2021b).

Acharya et al. (2017) proposed to find subgroups of genes by applying PAM. PAM was
combined with three conventional distance measures (Euclidean, Manhattan, and Cosinus
distance) to get groups of semantically related genes (Acharya et al., 2017). Hence, PAM is
compared with the methodology here. In both cases the proposed distance measure tf-idf
is used. Acharya et al. evaluated their results by the average Silhouette index, Dunn index,
and Davies-Bouldin index. However, the Silhouette index evaluates only if spherical clus-
ter structures exist in datasets (Thrun, 2021a). It is not investigated here if the Dunn index
is applicable because it requires the distance measure to be a metric (see Thrun, 2021b for
discussion). Hence, the corresponding values of the Davies-Bouldin index (Davies and
Bouldin, 1979) are reported. Best clustering scheme essentially minimizes the Davies-
Bouldin index because it is defined as the function of the ratio of the within cluster scatter,
to the between cluster separation (Davies and Bouldin, 1979). Davies-Bouldin index and
PAM clustering are provided by the FCPS package available as an R package on CRAN
(Thrun and Stier, 2021).

The topographic map visualizes the high-dimensional structures of data points rep-
resented by genes here. The topographic map is visualized with so-called hypsometric
tints (Thrun and Lerch, 2016). Hypsometric tints are surface colours that represent ranges
of elevation, which are combined with a specific colour scale. The colour scale is cho-
sen to display various valleys, ridges, and basins: blue colours indicate small distances
(sea level) between genes, green and brown colours indicate middle distances (low hills)
between genes, and shades of white colours indicate vast distances between genes (high
mountains covered with snow and ice). Valleys and basins represent homogeneous groups
of genes, and the watersheds of hills and mountains represent the borders between the
groups in a gene set. In this 3D landscape, the borders of the visualization are cyclically
connected with a periodicity. Each point in the topographic map represents a gene coloured
by its assigned group using DBS. Here the interest lies in distance-based structures in data.
Therefore, heatmaps are provided in which the clustering Cls orders the distances D(l, j)

in equation (4) with blue to yellow colours indicating low distances and orange to red



Deriving Homogeneous Subsets from Gene Sets by Exploiting the Gene Ontology 365

colours indicating large distances which is depicted in a legend on the right. Each group
is depicted on the axis by “Cls x”. If the colouring of the map’s ordered pixels indicates
that the intracluster distances are smaller than the intercluster distances, then the structures
are homogeneous in the meaning described above. Applying Gaussian mixture modelling
to the distance distribution, a specific Bayesian hypothesis can be stated, in which range
the intra-cluster distances should mainly lie (Thrun, 2021b).

3.3. Retrieving Meaningful Descriptions

One way of explaining the clusters yielding meaningful results is to use expert knowledge.
Either an expert can be asked directly or one can look answers up, for which the process
can be quite cumbersome. Recent developments created chat bots answering on given
questions (Brown et al., 2020). Such methods use large amounts of data from the web and
billions of parameters for the model (Brown et al., 2020). ChatGPT expects any kind of
natural language and will answer only with natural language. In that manner, questions
about patterns and context regarding a given set of references such as the NCBI num-
bers can be given to ChatGPT. Currently, there is no way of automatic verification of the
answers (Lewkowycz et al., 2022).

4. Results

The proposed distance measure is evaluated on four gene sets consisting of lists containing
NCBI numbers (see Table 1) genes associated with hearing loss (109), pain (528), can-
cer (696) and drug addiction (381). The four data sets with further relevant information
are available on Zenodo: 10.5281/zenodo.7706192. The distances are computed based on
equation (4) resulting in a distance matrix. The distance feature df is defined as the vector
with the elements of the upper triangle of the distance matrix (Thrun, 2021b).

Table 1
The table presents the number of items (#) of genes gt and GO terms t , and the Davies-Bouldin index values
(DB) for the gene sets associated with pain and the chronification of pain (Ultsch et al., 2016), hearing loss

(GeneTestingRegistry, 2018), cancer (Sondka et al., 2018), and drug addiction (Li et al., 2008). Only genes gt

that are annotated to specific GO terms t within one of the three ontologies (Ont.) biological process (1),
molecular function (2) and cellular component (3) are considered. There is no classification vector for the gene

set available. Lower values of the Davies-Bouldin index indicate structures that are more homogeneous.

Name of
gene set

# gt # t

in Ont.
1 + 2 + 3

# t

in Ont. 1
# t

in Ont. 2
# t

in Ont. 3
# groups
(outliers
groups)

DB for
DBS

DB for
PAM

Hearing
Loss

109 829 540 153 136 3(+1) 0.53 0.76

Pain 528 3137 2208 642 287 3(+2) 0.59 0.63
Cancer 696 4283 3002 775 506 3(+1) 0.60 0.72
Drug
Addiction

381 3107 2140 586 381 3(+2) 0.51 0.60
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Fig. 1. (a) Gaussian mixture model of the distance distribution of genes associated with hearing loss (GeneTest-
ingRegistry, 2018) and (b) QQ-plot with paired quantiles of Data on y axis and the Gaussian mixture model on
x axis. The Gaussian mixture model (left) shows the three distance components indicating distance-based struc-
tures and the QQ-plot (right) validates the Gaussian mixture model as appropriate based on the match between
blue dots and red line for most of the plot.

Fig. 2. (a) Gaussian mixture model of the distance distribution of genes associated with pain (Ultsch et al., 2016)
and (b) QQ-plot with paired quantiles of Data on y axis and the Gaussian mixture model on x axis. The Gaussian
mixture model (left) shows the three distance components indicating distance-based structures and the QQ-plot
(right) validates the Gaussian mixture model as appropriate based on the match between blue dots and red line
for most of the plot.

In the first part the proposed distance measure is evaluated. In the second part structure
and cluster analysis of the distances is performed. For the first part of section four figures
(Figs. 1–4) are presented. They show on their left side the visualization of the Gaussian
mixture model for the distances of the knowledge-based structures and on the right side
the QQ-plot of the estimated distance distribution and the Gaussian mixture model for
model evaluation. In the Gaussian mixture model visualization, the black line represents
the density estimation, the blue lines represent the three components of the Gaussian mix-
ture model and the red line – the superposition of the blue modes. On the right side are the
QQ-plots evaluating the respective Gaussian mixture model on their left side. The blue
dots represent the pairings of the quantiles of the models and the estimated data distribu-
tion. The red line indicates the position on which the quantiles would need to be placed in
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Fig. 3. (a) Gaussian mixture model of the distance distribution of genes associated with cancer (Sondka et al.,
2018) and (b) QQ-plot with paired quantiles of Data on y axis and the Gaussian mixture model on x axis. The
Gaussian mixture model (left) shows the three distance components indicating distance-based structures and the
QQ-plot (right) validates the Gaussian mixture model as appropriate based on the match between blue dots and
red line for most of the plot.

Fig. 4. (a) Gaussian mixture model of the distance distribution of genes associated with drug addiction (Li et al.,
2008) and (b) QQ-plot with paired quantiles of Data on y axis and the Gaussian mixture model on x axis. The
Gaussian mixture model (left) shows the three distance components indicating distance-based structures and the
QQ-plot (right) validates the Gaussian mixture model as appropriate based on the match between blue dots and
red line for most of the plot.

order to yield an optimal match of both distributions. The density of the distances of each
dataset is estimated by the procedure described in Thrun (2021b).

We are using three components to partition the data into three groups: low, intermedi-
ate and large distances. For this purpose, we are using three components in our Gaussian
mixture model. We are choosing the variance in such a way that there is a minimum of
overlap of the neighbouring Gaussian mixture model components. Then, we used these
values as initial values to start an Expectation-Maximization algorithm optimizing the
Gaussian mixture model to arrive at a local optimum. In order to select a final model to
our satisfaction which can be considered valid, we are applying Occam’s razor to choose
the simplest model that sufficiently explains the data (Blumer et al., 1987). Each model is
verified by QQ-plots (Michael, 1983; Thrun and Ultsch, 2015). In order to assess the fine
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details of the distribution, we are using appropriate tools following (Thrun et al., 2020a).
For the given distance distributions Figs. 1–4 and 8, multimodality is visible in the esti-
mated probability density functions and the dip tests verify the hypothesis (Hartigan and
Hartigan, 1985).

Each Gaussian mixture model consists of three components representing different un-
derlying structures. From left to right the three Gaussian mixture model components can
be interpreted as model of one intra- (small distances) and two intercluster (medium and
large distances) distance distributions (cf. Thrun, 2021b). The Hartigan’s dip-test yields
p-values < 0.01 for all 4 cases indicating multimodal distance distributions, and therefore
indicates the existence of cluster structures (clusterability) (Adolfsson et al., 2019; Thrun,
2020). The Root Mean Square Deviation (RMS) yields for the Gaussian mixture models
the values 0.2206, 0.1896, 0.1703, 0.1875 in order of Figs. 1–4. The chi-squared test ac-
cepts the null hypothesis that the estimated data distribution does not differ significantly
from the Gaussian mixture model. An investigation of the distances of datapoints within
each cluster for all four datasets shows, that all or most of the intracluster distances lie be-
neath the Bayesian boundary of their respective first Gaussian mixture model component.
More specific, the intracluster distances of the first two datasets lie within the Bayesian
Boundary of their respective first Gaussian mixture model component, for the third dataset
all intracluster distances with exception of cluster 1 and 3, for which 30% and <1% re-
spectively lie above the Bayesian Boundary and for the fourth dataset 6% of cluster 1 lie
above the Bayesian Boundary.

In the second part of the result section, the presented figures (Figs. 5, 6(a)–6(d)) first
show the visualization of knowledge-based structures with topographic maps and second
an analytical verification of the found structures with the heatmaps of the distance ma-
trices which were ordered by the classifications obtained with the DBS clustering. In the
supplementary parts, there are two further techniques supporting the findings of the topo-
graphic map, namely the Mirrored-Density plot (SI A) and the dendrograms (SI B). The
Mirrored-Density plots (see Figs. 7(a)–7(d) in SI A) show the distance distribution for
the complete dataset, each cluster recognized by the DBS and the remaining noise. The
vertical lines indicate the Bayesian borders resulting from the GMM partitioning the dis-
tances in their previously determined group (intra- and medium and large intercluster dis-
tances). The dendrograms (see Figs. 8(a)–8(d) in SI B) show the ultrametric proportions
of the distance measure representing structures from high-dimensional data (Murtagh,
2004). The colouring of the datapoints are based on the resulting cluster recognized by
the DBS.

The topographic maps of Fig. 5 show the structures found within the data, which was
obtained from the GO terms restricted by those genes, which are associated with certain
causes by an expert. The hearing loss gene set (GeneTestingRegistry, 2018) on the left
top shows homogeneous group of points in magenta, red and black. An outlier group of
points in yellow is visible distinctively. Additionally, the matching heatmap in Fig. 6(a)
indicates that the red and black groups have a lower distance in between than between
the yellow group and all other groups. Because of the low distance within, all groups are
homogeneous. The topographic map of Fig. 5 on the top right outlines the knowledge-
based structures of the set of pain genes (Ultsch et al., 2016). Similarly than before, it is
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Fig. 5. Knowledge-based structures of associated gene sets indicate homogeneous groups in the topographic
maps: hearing loss (GeneTestingRegistry, 2018) (left top) – three groups and five outliers, pain (Ultsch et al.,
2016) (right top) – five groups, cancer (Sondka et al., 2018) (left bottom) – three groups and one outlier and
drug addiction (Li et al., 2008) (right bottom) – three groups and two groups of outliers.
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Fig. 5. (continued)
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Fig. 6. Knowledge-based structures of associated gene sets indicate homogeneous groups verified by heatmaps.
The heatmaps show the value of the proposed distance measure.

visible that the five groups are homogeneous. Distinctively, two outlier groups of genes
represented by points in black and red are depicted. Figure 5 on the left bottom shows the
knowledge-based structures of the Cancer gene set (Sondka et al., 2018) with genes of
the first group coloured as points in yellow, the second group in black, the third group in
red, and one outlier in magenta. The heatmap in Fig. 6(c) agrees with this identification
of groups. Figure 5 on the right bottom represents the topographic map of the set of drug
addiction genes (Li et al., 2008) with genes of a group of points in magenta, another
group in yellow, the third group in red, and outliers in a volcano of two subgroups in black
and green. The heatmap in Fig. 6(d) agrees in general with this assessment but differs in
one detail: the topographic map indicates that magenta, yellow and red groups have a low
distance in between, whereas the heatmap indicates that the yellow and red groups of genes
have a relatively high distance in between (Cluster No. 2 vs. Cluster No. 4). This shows the
ability of the topographic map to investigate how well high-dimensional neighbourhoods
are preserved in the low-dimensional planar space of the projected points, in contrast to the
heatmap, which only visualizes intra and inter-cluster distances. In this case, the heatmap
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Fig. 6. (continued)

indicates that the intra-cluster distances are smaller than usual meaning that the clusters
are close to each other. The topographic map, however, shows that the clusters can still be
separated which is verified by the figures of the intra-cluster distributions (SI A) and the
dendrograms (SI B). Table 1 shows the number of groups identified in the DBS for which
outliers are defined by the visualization if they lie in a volcano. In Fig. 5, the outliers in the
left top are depicted by yellow points, in the right top by red and green points, in the left
bottom in magenta and in the right bottom in black and green. Furthermore, the Davies-
Bouldin indices are presented for DBS in comparison to PAM which is used in Acharya
et al. (2017). The specific genes in each subset of each gene set are listed in Table 1.

We propose to identify meaningful descriptions of our found subset of genes with
ChatGPT. As a test, we asked ChatGPT (see SI C for details) about patterns in the dataset
regarding hearing loss (GeneTestingRegistry, 2018). The biological functions of each sub-
set of hearing loss genes are summarized in Fig. 7. The figure is coloured with the colours
of the points of the groups presented in Fig. 5(a) within the topographic map. Each subset
of genes of hearing loss has a specific set of functions.
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Fig. 6. (continued)

5. Discussion

This work shows the identification of gene subsets based on a clustering approach with
the help of the GO and the term frequency-inverse document frequency (tf-idf). The used
data was generated with the tf-idf concept based on the gene vs. term matrix extracted
from the GO. The methodology is applied on four gene sets with causal associations. The
unsupervised algorithm DBS uses knowledge-based structures to extract homogeneous
groups. In addition, the groups are verified by heatmaps and Gaussian mixture models
of distances. Constructing the distance measure on the tf-idf, genes in the same group
also share similar biological functions. The existence of similar and dissimilar groups
is modelled as three components consisting of low, intermediate and high distances in
the Gaussian mixture model of intra- vs. intercluster distances. These knowledge-based
structures can be used to define semantically related subspaces which can reduce the high-
dimensional gene space in successive gene expression analysis.
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Fig. 6. (continued)

The error of algorithms applied for identification of homogeneous structures can be
generally defined as the sum of the variance, bias, and noise components. The bias is de-
fined as the difference between the structures within the data and the algorithms ability
to reproduce these structures. In case a global clustering criterion is defined, the bias is
the difference between the criterions definition and the given structures within the data.
The variance is the result of the varying outcome of a stochastic algorithm across multiple
trials. Small or zero variance means high reproducibility (see Thrun, 2021a for details).
In prior work, PAM in combination with conventional distances was proposed by Acharya
et al. (2017) to group semantically related genes. However, applying PAM with conven-
tional distances shows disadvantages because the structures within the data are unknown
and may not be necessarily spherical. The values of the Davies-Bouldin index are lower
for DBS than PAM for the four gene sets (see Table 1), which indicates that the structures
identified by DBS are more homogeneous. Consequently, it is highly likely that the found
structures within the gene sets are not of spherical character. Though the algorithm DBS
showed a lower bias for various types of structures evaluated in prior works (Thrun and
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Fig. 7. Biological description retrieved from ChatGPT for dataset hearingloss (GeneTestingRegistry, 2018).
In a clockwise manner starting from red, there are four colours representing four clusters. Cluster No. 1 (ma-
genta) describes age-related genes. Cluster No. 2 (yellow) describes genes associated to autosomal recessive
non-syndromic hearing loss. Cluster No. 3 (black tones) describes genes associated with the formation of gap
junctions in the inner ear, syndromic hearing loss, progressive hearing loss and autosomal dominant and au-
tosomal recessive forms of non-syndromic hearing loss. Cluster No. 4 (red tones) decribes genes which are
involved in the formation of stereocilia bundles or the maintenance of the epithelial integrity of the inner ear and
in ion transport, actin cytoskeleton dynamics, protein synthesis, intracellular transport, and extracellular matrix
formation in the inner ear. Mutations or variants in these genes can lead to hearing loss.

Ultsch, 2021), it can yield higher variance than PAM (Thrun, 2021a). The result in Fig. 5
left top, for example, switches between five and seven groups, splitting a group into sub-
groups sometimes, although the main structures depicted remain stable. And finally, the
clusterability (Adolfsson et al., 2019) of the datasets was not investigated in prior work
(Acharya et al., 2017). Thus, clustering could result in arbitrary subsets of genes since
cluster algorithms can be optimized on specific data even if there exists no cluster struc-
tures within the data at all (Thrun, 2021a).

Extensive prior works showed that by using the topographic map in combination with
DBS the probability is high that meaningful structures in data instead of noise are iden-
tified (Thrun, 2021a; Thrun et al., 2021; Thrun and Ultsch, 2021, 2020a, 2020b; Thrun,
2022c, 2022a). Further verification by heatmaps 6 and the quality measures in Table 1 as
well as intracluster distance distributions 7 confirms this fact for the datasets investigated
here. Of note, finding distance-based structures in data does not necessary mean that the
clusters are meaningful to the domain expert. This should be investigated in future works.
In theory, we could use any preferable focusing projection method that can represent struc-
tures of high-dimensional data. The resulting projection can always be visualized with
the generalized U-matrix technique as a topographic map in order to show which neigh-
bourhoods of the high-dimensional distances were preserved by the projection method
(Thrun et al., 2020b). This visualization technique representes the data structures intu-
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itively, where the colour and contour lines match the convolution of the high-dimensional
space exactly (Thrun et al., 2020b). The advantage of the DBS is the ability to use the
distance matrix directly. As we integrated GO-Terms for the definition of dissimilarity
and identified distance-based structures, these structures are meaningful because they in-
tegrated the knowledge stored in the gene ontology (GO). Of note, finding distance-based
structures in data does not necessarily mean that the clusters are meaningful to the domain
expert. For the set of hearing loss genes, the identified subsets were meaningful because
the AI system called ChatGPT identified specific biological functions that differed be-
tween subsets (see Fig. 7). In the current beta version of ChatGPT we were limited in the
number of input and out characters which is the reason that the other three gene sets could
not be investigated with the AI system. The meaningfulness of the subsets by means of
AI’s like ChatGPT will be investigated in future works.

Alternatively, the meaning of these subsets of genes could be explored via text mining.
For example, a web-based PubMed abstract biomedical named entity recognition system
like PubTator (Wei et al., 2013) can be used. PubTator can use the genes as tag in PubMed
abstracts and can be accessed via the RESTful API. Genes that PubTator does not tag can
be searched in the medical subject heading (MeSH) (Lipscomb, 2000), a hierarchically
organized medical vocabulary thesaurus used to index articles for PubMed. The articles
are curated by NLM and indexed with several related MeSH terms; every MeSH term has a
unique id and hierarchical categories. After that, either latent semantic analysis (Landauer
et al., 1998) or latent Dirichlet allocation (LDA) (Blei et al., 2003) methods could be used
to extract topics per group of genes and either evaluate these groups’ meaningfulness or
apply supervised learning for a combination of topic model vectors and the clustering
(Phan et al., 2008) to predict genes in the given knowledge-based structure that are not
given in the prior gene set (see Table 1).

6. Conclusion

This work introduces a novel distance measure for identifying gene subsets. Prior work
mainly focused on the use of gene expression data in order to retrieve gene subsets.
Here, the grouping is purely based on the semantic knowledge stored in the gene on-
tology (GO). Based on the GO, a distance measure between genes is derived as the
term-frequency-inverse-document-frequency (tf-idf). By using the proposed distance we
show that a specific gene set can be investigated analytically and applying cluster analy-
sis can reveal meaningful structures. In this work, an unbiased cluster algorithm named
DBS is used to find groups within four gene sets. Analytical tools like Gausian mix-
ture modeling were further used to verify the found structures based on the new distance
measure. The distance is accessible in the R package BIDistances available on CRAN
(https://CRAN.R-project.org/package=BIDistances). The four use cases show promising
results for applying the proposed method in future.

A. Supplementary A

https://CRAN.R-project.org/package=BIDistances
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Fig. 8. Mirrored-Density plots (Thrun et al., 2020a) showing the distributions of the distance measure for the
complete dataset, the resulting clusters and the noise.
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Fig. 8. (continued)
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B. Supplementary B

Fig. 9. Dendrogram of the distance measure for the four use case datasets. The dendrogram visualizes the ul-
trametric property of the distance measure, which is able to represent proximity and hierarchical structures of
high-dimensional data (Murtagh, 2004). In the dendrogram, close datapoints or clusters of datapoints are con-
nected with each other creating a connection between two points on the x axis with small height on the y axis.
The further away two datapoints or clusters of datapoints are, the higher is the height of the built connection
represented on the y axis.
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Fig. 9. (continued)
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Fig. 9. (continued)
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Fig. 9. (continued)

C. Supplementary C

We conducted a search for meaningful descriptions of the dataset hearing loss (GeneTest-
ingRegistry, 2018) by means of text mining through the usage of an AI system called
ChatGPT. Although the approach is currently restricted by the number of characters of
input and output, in future, it should be possible for any set or subset of genes. For that
purpose, we filtered the NCBI numbers according to the final clustering and asked Chat-
GPT (Brown et al., 2020) questions regarding the pattern for this set of genes as follows:
Search for patterns for the following genes listed by NCBI numbers in context of hearing
loss: NCBI1, NCBI2, . . . , NCBId and summarized the pattern. d denotes the respective
number of genes in the selected cluster. We could identify different groupings of biologi-
cal meaning correlating with the found clustering.
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Class 1
The genes contained in class one are mostly associated with age-related hearing loss.

Class 2
Genes from class 2 are mostly associated with autosomal recessive non-syndromic hearing
loss.

Class 3
Genes from class 3 are associated with the formation of gap junctions in the inner ear,
syndromic hearing loss, progressive hearing loss and autosomal dominant and autosomal
recessive forms of non-syndromic hearing loss.

Class 4
Genes from class 4 are involved in the formation of stereocilia bundles or the maintenance
of the epithelial integrity of the inner ear and in ion transport, actin cytoskeleton dynamics,
protein synthesis, intracellular transport, and extracellular matrix formation in the inner
ear. Mutations or variants in these genes can lead to hearing loss.
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